Print then work on it directly. Staple HW 9-1 and 9-2 together.

Problem 1

5.24 In Exercise 5.6, we assumed that if a radioactive particle is randomly located in a square with sides of unit length, a reasonable model for the joint density function for Y_{1} and Y_{2} is

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}1, & 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1, \\ 0, & \text { elsewhere }\end{cases}
$$

a Find the marginal density functions for Y_{1} and Y_{2}.
b What is $P\left(.3<Y_{1}<.5\right)$? $P\left(.3<Y_{2}<.5\right)$?

Ignore the words "In Exercise 5.6,"

Problem 2

5.25 Let Y_{1} and Y_{2} have joint density function first encountered in Exercise 5.7:

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}e^{-\left(y_{1}+y_{2}\right)}, & y_{1}>0, y_{2}>0, \\ 0, & \text { elsewhere } .\end{cases}
$$

a Find the marginal density functions for Y_{1} and Y_{2}. Identify these densities as one of those studied in Chapter 4.
b What is $P\left(1<Y_{1}<2.5\right)$? $P\left(1<Y_{2}<2.5\right)$?

Problem 3

5.21 In Exercise 5.3, we determined that the joint probability distribution of Y_{1}, the number of married executives, and Y_{2}, the number of never-married executives, is given by

$$
p\left(y_{1}, y_{2}\right)=\frac{\binom{4}{y_{1}}\binom{3}{y_{2}}\binom{2}{3-y_{1}-y_{2}}}{\binom{9}{3}}
$$

where y_{1} and y_{2} are integers, $0 \leq y_{1} \leq 3,0 \leq y_{2} \leq 3$, and $1 \leq y_{1}+y_{2} \leq 3$.
a Find the marginal probability distribution of Y_{1}, the number of married executives among the three selected for promotion.
b Find $P\left(Y_{1}=1 \mid Y_{2}=2\right)$.
c If we let Y_{3} denote the number of divorced executives among the three selected for promotion, then $Y_{3}=3-Y_{1}-Y_{2}$. Find $P\left(Y_{3}=1 \mid Y_{2}=1\right)$.

Ignore the words "In Exercise 5.3,"

