Notes_2_1_Introduction

Thursday, August 18, 2016 12:37 PM

Notes_2_1_ Introducti...

CHAPTER 2

STAT/MATH 511, J. TEBBS

2 Probability

Complementary reading: Chapter 2 (WMS).

, Aren:

2.1 Introduction

TERMINOLOGY: The text defines **probability** as a measure of one's belief in the occurrence of a future (random) event. Probability is also known as "the mathematics of uncertainty."

REAL LIFE EVENTS: Here are some events we may wish to assign probabilities to:

- tomorrow's temperature exceeding 80 degrees
- getting a flat tire on my way home today
- a new policy holder making a claim in the next year
- the NASDAQ losing 5 percent of its value this week
- you being diagnosed with prostate/cervical cancer in the next 20 years.

ASSIGNING PROBABILITIES: How do we assign probabilities to events? There are three general approaches.

- -1. Subjective approach.
 - This approach is based on feeling and may not even be scientific.
- 2. Relative frequency approach.
 - This approach can be used when some random phenomenon is observed repeatedly under identical conditions.
- 3. Axiomatic/Model-based approach. This is the approach we will take in this course.

PAGE 1

Intersection of A AMB and B

Auß Lounion of A.B

Area(AUB)= Area(A)
+ Area(B)
-Avea(A 1B)

Ex flip a coin.

P(Heard) = 1

equal chance rule,

n times. n(head)

lim n(head) > 1/2

Figure 2.1: The relative frequency of die rolls which result in a "2"; each plot represents 1000 simulated rolls of a fair die.

Example 2.1. Relative frequency approach. Suppose that we roll a die 1000 times and record the number of times we observe a "2." Let A denote this event. The **relative** frequency approach says that

$$P(A) \approx \frac{\text{number of times } A \text{ occurs}}{\text{number of trials performed}} = \frac{n(A)}{n},$$

where n(A) denotes the **frequency** of the event, and n denotes the number of trials performed. The proportion n(A)/n is called the **relative frequency**. The symbol P(A) is shorthand for "the probability that A occurs."

RELATIVE FREQUENCY APPROACH: Continuing with our example, suppose that n(A) = 158. We would then estimate P(A) by 158/1000 = 0.158. If we performed the experiment of rolling a die repeatedly, the relative frequency approach says that

$$\frac{n(A)}{n} \to P(A)$$

as $n \to \infty$. Of course, if the die is fair, then $n(A)/n \to P(A) = 1/6$. \square

then $n(A)/n \to P(A) = 1/6$. \square PAGE 2

PlEvent | an

individual's information

= P(Event | X)

model

- f(X)