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We have used the well-known fact that 7" 2% = m(m + 1)(2m + 1)/6; this can be

proven by induction. The variance of X is equal to

0t = B(X?) - [E(X)
_ (m+1@2m+1) (m + 1)2 omP—1 0
6 2 12
ExERcISE: Find 02 = V(Y) in Examples 3.5 and 3.8 (notes).

IMPORTANT RESULT: Let Y be a random variable (not necessarily a discrete random
variable). Suppose that a and b are fixed constants. Then

Via+bY) = b0V(Y).
REMARK: Taking b = 0 above, we see that V(a) = 0, for any constant a. This makes
sense intuitively. The variance is a measure of variability for a random variable; a constant

(such as a) does not vary. Also, by taking a = 0, we see that V(bY) = B*V(Y).

3.5 Moment generating functions

TERMINOLOGY: Let Y be a discrete random variable with pmf py(y) and support R.

The moment generating function (mgf) for Y, denoted by my-(£), is given by
—_—

fr,r

my (1) = E(EE”-] =

provided E(e'") < oo for all £ in an open neighborhood about 0; i.e., there exists some

v (),
viy)

_— _
h = 0 such that E(e") < oo for all £ € (=h,h). If E(e') does not exist in an open

o
neighborhood of (0, we say that the moment generating function does not exist.

TERMINOLOGY : We call i, = E(Y*) the kth moment of the random variable ¥
o —

E(Y) 1st moment (mean!)
E(Y?) 2nd moment
——

E(Y?)  3rd moment

—

E(Y")  4th moment
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REMARK: The moment generating function (mgf) can be used to generate moments.
In fact, from the theory of Laplace transforms, it follows that if the mgf exists, it char-

acterizes an infinite set of moments. So, how do we generate moments?

RESULT: Let Y denote a random variable (not necessarily a diserete random variable)

with support R and mgf my-(t). Then,

Note that derivatives are taken with respect to {. At
Proof. A ithout 1 S that Y is discrete. With k=1 1 -
roafl. Assume, without loss, 14 15 discrete. Ath /= 1, we have
' 9) Ml4)= |

d d d

=2 ()= ﬁﬁi’py{y}% S ey () = E(ve™).

O e " yeR wen T " R R v

f -
Thus, 3m ( )
_ . ot !
dmy ()| piyen }‘ — E(Y). f{_ﬁf,- = M4
dt t=0 /
t=0 aL'f'

Continuing to take higher-order derivatives, we can prove that

for any integer k = 1. See pp 139-140 W' MS) for a slightly different proof. O

ASIDE: In the proof of the last result, we interchanged the derivative and (possibly

infinite) sum. This is permitted as long as my- (1) = B(e') exists.

MEANS AND VARIANCES: Suppose that Y is a random variable (not necessarily a

discrete random variable) with mgf my (t). We know that

L dmy(t)
By =20
=0

and

o dPmy(t)

E(Y?) = =2 o N
We can get V(Y) using V(Y) = E(Y?) — [E(Y)]% 2
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REMARK: Being able to find means and variances is important in mathematical statis-
tics. Thus, we can use the mgf as a tool to do this. This is helpful because
sometimes computing
E(Y) =Y ypv(y)
yeR

directly (or even higher order moments) may be extremely difficult, depending on the

form of py-(y).

Example 3.10. Suppose that Y is a random variable with pmf  J¢ 'dl:ﬂ 171'1]( va[ vl 1
- .
Hoy=1,2,3,..
myly) = (f_)_ Y o ‘R{lﬂ)? 0 Vv
0. otherwise.

— 2. 2 (v) =
5€KPY‘33 |\

—
SoLuTioN. Using the definition of expected value, the mean of Y is given by

Find the mean of Y.

2 (_')
20 1\ j:' 2
B0 =T mw =3 (3) Rl
yeR y=1 1
— oo
Finding this infinite sum is not obvious (at least, this sum is not a geometric sum). Z ay
Another option is to use moment generating functions! The mgf of Y is given by xX=0
T

my(t) = E(e") = Eéf"yi‘h'{y)

o S = -t
oS O i 01 R A

— e D t<in2

The series Z:io{:atf"z]” is an infinite geometric sum with common ratio r = ¢'/2. This

series converges as long as e'/2 < 1, in which case

+ t
1 2 2 2 _ e
my(t) = — < \) 1" — =< - <
-3 2-e 2-et ¢ 2-€
L
for ¢'/2 < 1 «=( < In2.|/ Note that (—h,h) with h = In2 is an open neighborhood ;
around zero for which my () exists. Now, ..f a2 ,S'( £) 5{{ )- ’}({) 3 H}
(€) ] -
1Ty i -
- ——— li=0 ///
—
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Example 3.11. Let the random variable Y have pmf py(y) given by

2 I Py SR A
13—y). y=0,1.2 2—?‘{('3)‘7,""3'~f 4 '|
prly)=q 2~ 40
- 0 otherwise.
Simple calculations show that E(Y') = 2/3 and V(Y') = 5/9 (verify!). Let’s “check” these
calculations using the mgf of Y. It is given by o€ ] at
) - oe
my(t) = E(e™) = Z epy(y) V
—
3 2 a1
= L4 DD
32, 1.,
= —+ e + e
6te" Tee v
Taking derivatives of my-(f) with respect to t, we get
1 2 2
;—tm,-{t} = —_(3£+—_{'i21
? 2,4y,
E'm-r{f.) = g(? +6f .
Thus,
oo dmy(B) 24 2 50
EY) = m =5° +6<. =4/6 =
t=0
d*my () 2 4
sy Y R () B
BE(Y?) = Gt g 1
t=0
so that

V(Y) = E(Y?) - [E(Y)) =1 (2/3)" = 5/9.

N —

In this example, it is easier to compute E(Y) and V(YY) directly (using the definition).

However, it nice to see that we get the same answer using the mgf approach. [J

REMARK: Not only is the mgf a tool for computing moments, but it also helps us to
characterize a probability distribution. How? When an mgf exists, it happens to be
unique. This means that if two random variables have same mgf, then they have the
same probability distribution! This is called the uniqueness property of mgfs (it is
based on the uniqueness of Laplace transforms). For now, however, it suffices to envision
the mgf as a “special expectation” that generates moments. This, in turn, helps us to

compute means and variances of random variables.
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