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Appealing to the variance computing formula, we have
VI(Y)=E(Y?) - [E(Y))? =n(n— 1)p? + np — (np)? = np(1 - p).

NOTE: WMS derive the binomial mean and variance using a different approach (not

using the mgf). See pp 107-108. [J

Example 3.15. Artichokes are a marine climate vegetable and thrive in the cooler
coastal climates. Most will grow in a wide range of soils, but produce best on a deep,
fertile, well-drained soil. Suppose that 15 artichoke seeds are planted in identical soils
and temperatures, and let ¥ denote the number of seeds that germinate. 1f 60 percent
of all seeds germinate (on average) and we assume a b(15,0.6) probability model for Y,

the mean munber of seeds that will germinate is
E(Y)=p=mnp=1506) =9,
The variance of ¥ is
V(Y)=a =np(l — p) = 15(0.6)(0.4) = 3.6 (seeds)®,
The standard deviation of ¥ is & = /3.6 & 1.9 seeds. O

BERNOULLI DISTRIBUTION: In the b(n,p) family, when n = 1, the binomial pmf

reduces to
pl—pity, =101
iyl =
0, otherwise,
This is called the Bernoulli distribution. Shorthand notation is ¥ ~ b(1,p) or ¥ ~

Bern(p).

3.7 Geometric distribution

TERMINOLOGY : Envision an experiment where Bernoulli trials are observed. If ¥
denotes the trial on which the first suecess occours, then ¥ is said to follow a geometric

distribution with parameter p, where p is the probability of success on any one trial.
\M
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GEOMETRIC PMF: The pmf for ¥ ~ geom(p) is given by \.A ’l
o Vet
12,3, . s~

RATIONALE: The form of this pmf makes intuitive sense: we first need y — 1 failures
(each of which ocowrs with probability 1 — p), and then a success on the yth trial (this

oecurs with probability p). By independence, we multiply
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(each of which ocowrs with probability 1 — p), and then a success on the yth trial (this

ocenrs with probability p). By independence, we multiply

(1=p)x (L=p)x - x (L=p)xp=(1-p)'p.

w—1 failures

o = st il (9 ki
PUE= ) =P (e 1t

NOTE: Clearly py(y) = 0 for all . Does py-(y) sum to one? Note that

: x=0
Sy = p S

x=0 '“ :I

— - &\—P\<\

In the last step, we realized that 77 (1 —p)* is an infinite geomdtric sum with common

ratio 1 —p. [J ‘9‘61\ 5\4 (@~ S

Example 3.16. Biology students arve checking the eve color of fruit flies. For each fly, ‘o/ '
the probability of observing white eyves is p — (025, What is the probability the first - ( l"' (.)} P

white-eyed H_vlwﬂ] be ahserved among the first five flies that are checked?

jc{ -f-o.':(uws .

)

SoLuTion: Let ¥ denote the number flies needed t yserve t st white-eyved fly

We can envision each fly as a Bernonlli trial (each flv either has white eves or not). If EY Sl‘ P ( Y < ,\j ) - Fx j-)
< AV
/«—_‘ﬂ

we assime that the fies are 'nult‘pt'uttf. i)l-u a geometric model s appropriate; Le.,

Y o~ geom(p = 0.25). We want to compute f 5). We use the pf to compute :’
— — T <«
PlY =1)=p(1)=(1-025"1025) = 025 = 2— P( =1 )
— —_— 1=
P(Y =2) =py(2) = (1 =0.25)* 1(0.25) = 0.19
gl 1 ) J

(1-0.25*10.25) = 0.14 ‘;9
o

A
o (-p P
P(Y =4) = py(4) = (1 = 0.25)71(0.25) = 0.11 P \
/ _— S|
P(Y =5) = py(5) = (1 -0.25°40.25) = 0.08,
— |

— J -
Adding these probabilities, we get P(Y < 5) = 0.77. The pmf for the geom(p = (.25) - P L ( "' P)
a: ~
330
) et k=1- 1

P[/)_;) =pyvid)

(1]
L

maodel 15 depicted in Figure
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Figure 3.3: Probability histogram for the number of flies needed to find the first white-eyed
- —l g k\

fly. This represents the geom(p = 0.25) model in Example 3.16.

GEOMETRIC MGF: Suppose that ¥ ~ geom(p). T : Y is given by \( < l 00

Proof. Tox _ :\s{ .Ii,-\\.J ?N"\M (\) \\({IO" ) g
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where g = 1 — p, for { Inyg. \ ‘\ ~ .)
Proof. Exercise. O \S{ »\\J \)W" o () \\({IOO ) ~ P k j
MEAN AND VARIANCE: Differentiating the mgf., we get = \ ? ({\( 5 Z>

d o d P‘_f B M_f(l —F.ff'f} —,w-’(—r,rr-’] \( < 00’)
mm\-[fj 0 (] —r;r") (1—qet)? - ~ ? \ s\ \).)
-~
Thus, - ‘9? ( \ - ( ‘—’ \?
-—
_ pe(1 — ge') — ;Jr.',r'(—ffr'”} _ pll—gq) —}"[—U] - (\’ ‘)\ l 00
(1 —gqe)? (1—q) - \
\ - *+ (\r ? )
\ -~

° - (v

eind E(X). V(Y)

d
FiY )= —myl(t)
—_— o

Similar {but lengthier) calculations show

E['lz]—mmyf_f,l‘ = QF('
L
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Finally,

e 14 1
V(Y) = B(Y?) - [E(Y))? = —2 () 0
m »

NOTE: WMS derive the geometrie mean and variance using a different approach (not

using the mgfl). See pp 116-117. O

Example 3.17. At an orchard in Maine, “20-1b" bags of apples are weighed. Suppose

that (four percent)of the bags are underweight and that each bag weighed is independent.

It @hwmtt's the the number of bags observed to find the first

Y o~ geom(p = 0.04). The mean of ¥ is ﬂ wg» ‘(’/1; “ls -to

I
) =2 = L 95 bags.
B(Y) =2 =557 = % baes

Suens

The variance of ¥ is

/ v
q (.96

viy) =2 = 22— 600 (bags)2. O
(V)= 22 = mogpe — 000 (bass)

3.8 Negative binomial distribution

NOTE: The negative binomial distribution can be motivated from two perspectives:
e as a generalization of the geometric
e as an “inverse” version of the binomial.

TERMINOLOGY : Imagine an experiment where Bernoulli trials are observed. If Y
denotes the trial on which the rth success oceurs, v = 1, then Y has a negative binomial
distribution with waiting parameter r and probability of success p.

NEGATIVE BINOMIAL PMF: The pmf for ¥ ~ nib{r, p) is given by

oy () (f‘f_ll]p"{l -, oy=ror+1lr+2,.
IV =
0, otherwise,

Of course, when r = 1, the nib{r, p) pmf reduces to the geom(p) pmf.
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