CHAPTER 3 \qquad STAT/MATH 511, J. TEBBS Finally,

$$
V(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=\frac{1+q}{p^{2}}-\left(\frac{1}{p}\right)^{2}=\frac{q}{p^{2}} \cdot \square
$$

NOTE: WMS derive the geometric mean and variance using a different approach (not using the mf). See pp 116-117. \square

Example 3.17. At an orchard in Maine, "20-1b" bags of apples are weighed. Suppose that four percent of the bags are underweight and that each bag weighed is independent If Y denotes the the number of bags observed to find the first underweight bag, then $Y \sim \operatorname{geom}(p=0.04)$. The mean of Y is

$$
E(Y)=\frac{1}{p}=\frac{1}{0.04}=25 \text { bags. }
$$

The variance of Y is

$$
V(Y)=\frac{q}{p^{2}}=\frac{0.96}{(0.04)^{2}}=600(\text { bags })^{2} . \square
$$

3.8 Negative binomial distribution

NOTE: The negative binomial distribution can be motivated from two perspectives:

- as a generalization of the geometric
- as an "inverse" version of the binomial.

TERMINOLOGY: Imagine an experiment where Bernoulli trials are observed. If Y denotes the trial on which the r th success occurs, $r \geq 1$, then Y has a negative binomial distribution with waiting parameter r and probability of success p.

NEGATIVE BINOMIAL PMF: The mf for $Y \sim$ nib (r, p) is given by

$$
p_{V}(y)=\left\{\begin{array}{cl}
\binom{y-1}{r-1} p^{r}(1-p)^{v-r}, & y=r, r+1, r+2, \ldots \\
0, & \text { otherwise. }
\end{array}\right.
$$

Of course, when $r=1$, the nib (r, p) mf reduces to the geom (p) mf.

$$
\text { PAGE } 48
$$

$$
\sum_{y=r}^{\infty}\binom{y-1}{r-1} p^{r}\left(r p^{y-r}=1\right.
$$

CHAPTER 3 STAT/MATH 511, J. TEBBS
RATIONALE: The form of $p_{Y}(y)$ can be explained intuitively. If the r th success occurs
on the y th trial, then $r-1$ successes must have occurred during the 1 st $y-1$ trials. The
total number of sample points (in the underlying sample space S) where this occurs is
given by the binomial coefficient $\binom{y-1}{-1}$, which counts the number of ways you can choose
the locations of $r-1$ successes in a string of the dst $y-1$ trials. The probability of
any particular such ordering, by independence, is given by $p^{r^{-1}}(1-p)^{\mathrm{g-r}}$. Thus, the
probability of getting exactly $r-1$ successes in the $y-1$ trials is $\begin{gathered}\binom{p-1}{r-1}\end{gathered} p^{r-1}(1-p)^{y-r}$.
On the y th trial, we observe the rt success (this occurs with probability p). Because
the y th trial is independent of the previous $y-1$ trials, we have

$$
P(Y=y)=\underbrace{\binom{y-1}{r-1} p^{r-1}(1-p)^{y-r}}_{\text {pertains to lost } y-1 \text { urials }} \times p=\binom{y-1}{r-1} p^{r}(1-p)^{y-r} .
$$

Example 3.18. A
From past Treating each tree as a Bernoulli trial (ie., each tree is infected/not), what is the probebility that she will observe the 3rd infected tree $(r=3)$ on the 6 th or 7 th observed tree?
Step 1 . Stepution. $\operatorname{Lep}_{4} \frac{1}{Y}$: denote the tree on which she observes the ard infected tree. Then, Step 2: \sim nib $(r=3, p=0.3)$. We want to Stemplite $P(Y=6$ or $Y=7)$. The nib $(3,0.3) \mathrm{pmf}$,

$$
\begin{gathered}
\begin{array}{c}
\text { gives } \\
p_{7}(6)=P(Y=6)=\binom{6-1}{3-1}(0.3)^{3}(1-0.3)^{6-3}=0.0926
\end{array} \\
p_{Y}(7)=P(Y=7)=\binom{7-1}{3-1}(0.3)^{3}(1-0.3)^{7-3}=0.0972 \\
\text { Thus, } \quad P_{Y}(6)=0.3 \times \text { binomipd success" } f(6-1, .3,3-1) \\
P(Y=6 \text { or } Y=7)=P(Y=6)+P(Y=7)=0.0926+0.0972=0.1898 .
\end{gathered}
$$

RELATIONSHIP WITH THE BINOMIAL: Recall that in a binomial experiment, we fix the number of Bernoulli trials. n. and we observe the number of successes. In a

Geometric prot 15 success
Geometric torse (15s)sucess

Neg. Binomid

Y : \# of trials to obscene
the roth success
If $r=1$, Geometric.
the support $=\left\{r, r_{11}, r_{2}, \cdots \infty\right\}$

$$
P(Y=r)=P^{2}
$$

$$
{\underset{\text { among }}{ } r \text { trials }}_{p}^{p}
$$

there are $r-1$ successes

$$
P(Y=r+2)=P \times\binom{ r+1}{r-1} P^{r-1}(1-p)^{2}
$$

$$
r \text { th sconces }
$$

$$
\overbrace{r+i}^{-\cdots} \text { trials }^{-\cdots} \cdot \frac{\text { success }}{(r+2) \text { the trial }}
$$

$$
v-1 \text { successes }
$$

$$
P(Y=y)=P \times \frac{\left(\left.\frac{y-1}{r-1} \right\rvert\, P^{r-1}(1-P)(y-r-(-1-1)\right.}{y-2}
$$

$$
\begin{aligned}
& \text { "success" } \\
& \text { cubebs }
\end{aligned} \quad=P x\binom{y-1}{r-1} p^{r-1}(1-P)^{y-2}
$$

$$
\text { If } x \sim \operatorname{Binomial}(n, p)
$$

$$
\begin{gathered}
P(X=x)=\operatorname{binompd} f(n, p, x) \\
\text { For } Y \sim \operatorname{Neg} \operatorname{Binonid}(r, p) \\
P(Y=y)=P x \operatorname{binompd} f(y-1, p, r-1)
\end{gathered}
$$

RELATIONSHIP WITH THE BINOMIAL: Recall that in a binomial experiment, we fix the number of Bernoulli trials, n, and we observe the number of successes. In a negative binomial experiment, we fix the number of successes we are to observe, r, and we continue to observe Bernoulli trials until we reach that numbered success. In this sense, the negative binomial distribution is the "inverse" of the binomial distribution.

PAGE 49

$$
\begin{aligned}
& P(Y \leqslant y)=\sum_{a=r}^{y} P(Y=a) \\
& P(Y \leqslant 100)=\sum_{a=3}^{100} P(Y=a) \text { tedious }
\end{aligned}
$$

CHAPTER 3 STAT/MATH 511, J. TEBBS

RECALL: Suppose that the real function $f(x)$ is infinitely differentiable at $x=a$. The

$$
P(Y \leqslant y)=1-P(Y>y)=1-\operatorname{binomat} f(y, P, Y-1)
$$ Taylor series expansion of $f(x)$ about the point $x=a$ is given by

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\left[\frac{f^{\prime}(a)}{1!}\right](x-a)^{1}+\left[\frac{f^{\prime \prime}(a)}{2!}\right](x-a)^{2}+\cdots
\end{aligned}
$$

When $a=0$, this is called the McLaurin series expansion of $f(x)$. NEGATIVE BINOMLAL MGF: Suppose that: $Y \sim n i b(r, p)$. The mg f of Y is given by
where $q=1-p$, for all $t<-\ln q$. Before we prove this, let's state and prove a lemma. Lemma. Suppose that r is a nonnegative integer. Then,
$\sum_{y=r}^{\infty}\binom{y-1}{r-1}\left(q e^{c}\right)^{r-r}=\left(1-q e^{\prime}\right)^{-r}$
Proof of lemma. Consider the function $f(w)=(1-w)^{-r}$, where r is a nonnegative integer. It is easy to show that

$$
\begin{gathered}
f^{\prime}(w)=r(1-w)^{-(r+1)} \\
f^{\prime \prime}(w)=r(r+1)(1-w)^{-(r+2)}
\end{gathered}
$$

In general, $f^{(z)}(w)=r(r+1) \cdots(r+z-1)(1-w)^{-(r+z)}$, where $f^{(z)}(w)$ denotes the z th derivative of f with respect to w. Note that

$$
\left.f^{(z)}(w)\right|_{w=0}=r(r+1) \cdots(r+z-1)
$$

Now, consider writing the McLaurin Series expansion of $f(w)$; ie., a Taylor Series expassion of $f(w)$ about $w=0$; this expansion is given by
\qquad
Letting $w=q e^{t}$ and $z=y-r$, the lemma is proven for $0<q<1$. \square
PAGE 50

CHAPTER 3
Now that we are finished with the lemma, let's find the mf of $Y \sim$ nib (rap). With $q=1-p$, we have

$$
\begin{aligned}
m_{Y}(t)=E\left(e^{t y}\right) & =\sum_{j=r}^{\infty} e^{t v}\binom{y-1}{r-1} p^{r} q^{y-r} \\
& =\sum_{p=r}^{\infty} e^{t(p-r)} e^{t r}\binom{y-1}{r-1} p^{r} q^{y-r} \\
& =\left(p e^{t}\right)^{r} \sum_{y=r}^{\infty}\binom{y-1}{r-1}\left(q e^{t}\right)^{y-r}=\left(p e^{t}\right)^{r}\left(1-q e^{t}\right)^{-r}
\end{aligned}
$$

REMARK: Showing that the nib (r, p) pmf sums to one can be done by using a similar series expansion as above. We omit it for brevity.

MEAN AND VARIANCE: For $Y \sim \operatorname{uib}(r, p)$, with $q=1-p$,

1. definition of Neg bingen
3.9 Hypergeometric distribution 4. Mean, Variance 5. mg t

SETTING: Consider a collection of N objects (e.g., people, poker chips, plots of land, etc.) and suppose that we have two dichotomous classes, Class 1 and Class 2. For example, the objects and classes might be

Poker chips red/blue
2. $r \cdot p$
3. $P(Y=y) . P(Y \leq y)$ $P(\leq y \leq$)

$$
\begin{aligned}
& \text { For } \quad 1 \sim \text { My. } \\
& P(Y=y)=p \times \operatorname{binompdf}(y-1, p, r-1)
\end{aligned}
$$

$Y>y$: \# of trials to oherver
the rath sccueress is equivolave greater than y
$\stackrel{\downarrow}{\Leftrightarrow} \quad r$ th scisuess occurs after the yet trial
\Leftrightarrow among the y trials, there are at most $r-1$ successes
Define X to be the $\#$ of successes
arcing the y trials
$X \sim \operatorname{Binomin}(Y, P)$

$$
P(X \leq \gamma-1)=\text { binominal coff }(y, p, r-1)
$$

Negative Binomial MGF:

$$
\begin{aligned}
& M_{Y}(t)=E\left[e^{t Y}\right] \\
& =\sum_{y \in R} e^{t y} P_{Y}(y) \quad e^{t y}=e^{t^{r}} \times e^{t(y-r)}
\end{aligned}
$$

$$
=\sum_{y=r}^{\infty} \frac{e^{+y}\binom{y-1}{r-1} p^{r}(1-p)^{y-2}}{r-r}
$$

$$
y=r \quad \sum_{y=r}^{\infty}\binom{y-1}{r-1} z^{r}(1-z)^{y-r}=1 \text { for any } 0<z<1
$$

$=\sum_{y=2}^{\infty}\binom{y-1}{r-1}\left(e^{t r} p^{r}\right) \times\left(e^{t(y-r)} \times(1-p)^{y-r}\right)$

$$
=\sum_{y=r}^{\infty}\binom{y-1}{r-1}(\underbrace{\left.e^{t} p\right)^{r} \times[(\underbrace{e^{t}(1-p)}]^{y-r}}_{e^{t} q} \quad q=1-p
$$

$$
\cdots, 1, \quad, \quad, \quad, t_{n} \quad 1-7=0^{t} q
$$

etc.) and suppose that we have two dichotomous classes, Class 1 and Class 2. For example, the objects and classes might be

Poker chips red/blue
People infected/not infected
Plots of land respond to treatment/not.

From the collection of N objects, we sample n of them (without replacement), and record Y, the number of objects in Class 1.

REMARK: This sounds like a binomial setup! However, the difference here is that N, the population size, is finite (the population size, theoretically, is assumed to be infinite in the binomial model). Thus, if we sample from a population of objects without replacement, the "success" probability changes from trial to trial. This, violates the binomial PAGE 51

$$
\begin{array}{r}
=\sum_{y=r}^{\infty}\binom{e^{-q}}{r-1}\left(e^{t} q\right)^{y-r} \times\left(e^{t} p\right)^{r} \quad \begin{array}{r}
1-z=e^{t} q \\
z=1-e^{t} q
\end{array} \\
=\sum_{y=r}^{\infty}\binom{y-1}{r-1}(1-z)^{y-r} \times z^{r} \times \underbrace{r}_{\left.y-\frac{e^{t} p}{z}\right)^{r}} \\
=\left(\frac{e^{t} p}{z}\right)^{2} \underbrace{\sum_{y=r}^{\infty}\binom{y-1}{r-1}(1-z)^{r} z^{2}}_{1} \\
=\left(\frac{e^{t} p}{1-e^{t \imath}}\right)^{r} \quad \text { provided } \quad 0<z<1 \\
0<1-e^{t} q<1 \\
0<e^{t} q<1 \\
t<-\ln q
\end{array}
$$

