Section 4.1-4.2 Cumulative distribution functions

4 Continuous Distributions

Complementary reading from WMS: Chapter 4.

4.1 Introduction

RECALL: In Chapter 3, we focused on discrete random variables. A discrete random variable Y can assume a finite or (at most) a countable number of values. We also learned about probability mass functions (pms). These functions tell us what probabilities to assign to each of the support points in R (a countable set).

PREVIEW: Continuous random variables have support sets that are not countable. In fact, most often, the support set for a continuous random variable Y is an interval of real numbers; e.g., $R=\{y: 0 \leq y \leq 1\}, R=\{y: 0<y<\infty\}, R=\{y:-\infty<y<\infty\}$, etc. Thus, probabilities of events involving continuous random variables must be assigned in a different way.
4.2 Cumulative distribution functions (cdf) binancalf

TERMINOLOGY: The (cumulative) distribution function (cf) of a random sariable Y, denoted by $F_{Y}(y)$, is given by the probability
$y_{\rightarrow \rightarrow+\infty} \quad F_{i}(y)=P(Y \leqslant(g)) \rightarrow 1$

for all $-\infty<y<\infty$. Note that the ehf is defined for all $y \in \mathcal{R}$ (the set of all real numbers), not just for those values of $y \in R$ (the support of Y). Every random variable, discrete or continuous, has a cf.

Example 4.1. Suppose that the random variable Y has mf

$$
\begin{gathered}
p_{Y}(y)=\left\{\begin{array}{cl}
\frac{1}{6}(3-y), & y=0,1,2 \\
0, & \text { otherwise. }
\end{array}\right. \\
\text { PAGE 62 } \\
P_{<}(0)=\frac{3-0}{6}=\frac{1}{2} \\
P_{<}(1)=\frac{3-1}{6}=\frac{1}{3} \\
P_{-1}(2)=\frac{3-2}{6}=\frac{1}{6}
\end{gathered}
$$

Putting this all together, we have the cdf for Y :

It is instructive to plot the emf of Y and the cdf of Y side by side.

Figure 4.5: Probability mass function $p_{Y}(y)$ and cumulative distribution function $F_{Y}(y)$ in Example 4.1.

- PDF
- The height of the bar above y is the probability that Y assumes that value.
- For any y not equal to 0,1 , or $2, p_{Y}(y)=0$.
- CDF
- $F_{Y}(y)$ is a nondecreasing function.
$-0 \leq F_{Y}(y) \leq 1$; this makes sense since $F_{Y}(y)=P(Y \leq y)$ is a probability!
- The cdf $F_{Y}(y)$ in this example takes a "step" at the support points and stays constant otherwise. The height of the step at a particular point is equal to the probability associated with that point.

CDF PROPERTIES: Let Y be a random variable (discrete or continuous) and suppose that $F_{Y}(y)$ is the cdf for Y. Then
(i) $F_{Y}(y)$ satisfies the following:

$$
\lim _{y \rightarrow-\infty} F_{Y}(y)=0 \quad \text { and } \quad \lim _{y \rightarrow+\infty} F_{Y}(y)=1 .
$$

(ii) $F_{Y}(y)$ is a right continuous function; that is, for any real a,

(iii) $F_{Y}(y)$ is a non-decreasing function; that is,

$$
y_{1} \leq y_{2} \Longrightarrow F_{Y}\left(y_{1}\right) \leq F_{Y}\left(y_{2}\right) . \quad \text { non-decreensing. }
$$

