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Example 4.13. Suppose that customers arrive at a check-out according to a Poisson
process with mean A = 12 per hour. What is the probability that we will have to wait
longer than 10 minutes to see the first customer? NoTE: 10 minutes is 1/6th of an hour.
SoLuTion. The time until the first arrival, say W, follows an exponential distribution
with mean 3 = 1/A = 1/12, o that the edf of W, for w = 0, is Fyp(w) = 1 — e 17,

Thus, the desired probability is

PW = 1/6) =1—P(W < 1/6) =1 — Fe(1/6) = 1 — [1 — e V0] = ¢72 2 0.135. O

4.7.2 Gamina distribution

TERMINOLOGY: The gamma function is a real function of ¢, defined by

————

o .
lm:[*‘yr-lf.—w. r’(|): Sa J' (@—Uj:
L,

J0

for all £ = 0. The gamma function satisfies the recursive relationship

Fin) = (o = 1) ev — 1),

—————
for v = 1. From this fact, we can deduce that if & is an integer, then Po(j- .
— — o

Tiev) = (o0 — 1!

—

For example, ['(5) = 4! = 24,

TERMINOLOGY : A random variable Y is said to have a gamma distribution with

parameters o = 0 and 9 = 0if its pdf is given by

1 a—1—y/d
P Tl e Loy =i
Frly) = )
0. atherwise,

Shorthand notation is Y ~ gammalo. 7). The gamma distribution is indexed by two
|J<'I]':'l[tll’|i'l'h2

a = the shape parameter

3 = the scale parameter,
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Figure 4.12: Four gamma pdfs. Upper left: o =1, 3= 2. Upper vight: o =2, 3 =1.
Lower left: oo =3, 3 =4. Lower right: o =6, =13,

REMARRK: By changing the values of o and 4, the gamma pdf can assume many shapes.
This makes the gamma distribution popular for modeling lifetime data. Note that when
o = 1, the gamma pdf reduces to the exponential( ) pdf. That is, the exponential pdf

is a “special” gamma pdf.

w0
Example 4.14. Show that the gammalo, #) pdf integrates to 1. f {T(,)d3= ’

Sorurion.  Change the variable of integration to w = y/3 so that du = dy/3 and

dy = ddu. We have

. = ! =1 Fapy—1 ,—u_.f.i.
= ]_-((1::] /n- ﬁiﬂ-\(,— Gdu
= L ~ o=l
= P j:M’(P o r(ﬂ.);/.;/:i—;dil

duc £dy Ayeedla = T Pek( e
| a-l ,% PACE 86
¢ e ;

(/\d e—“ olq

|
s
3'3
~a
N
S
\

CHAPTER 4 STAT/MATH 511, J. TEBBS

GAMMA MGF: Suppose that ¥~ gamma(ea, 7). The mgf of ¥ is
N f 1N
my(t) ( = i.')

Proof. From the definition of the mgf, we have

my(t) = E(e') = f |:1—~{“ 3o TJ'“_I"_'W.';] dy
i
_ f ;u g ey

for t < 1/3.

Yo Lol

dy

— /1134
_/ r n}i" tag? ¢ dy

i ' 1 P —
_ ; rm
5 L

where 5 = [(1/3) —#]7". If n = 0 <=t = 1/, then the last integral equals 1, becanse
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where 5 = [(1/3) —#]7". If n = 0 <=t = 1/, then the last integral equals 1, becanse

the integrand is the gammala, ) pdf and integration is over 2 = {y : 0 < y < oo},

Thus, . a a
my (t) = (%) = {J[{lg’:li) —I]} - (1 —1_3:) '

Note that (—h, h) with & = 1/7 is an open neighborhood around 0 for which my ()

exists, [ E (\f )= =} F

MEAN AND VARIANCE: If Y ~ gamma(e, 3), then 2
ViN=ap

EY)=nd and WV(Y¥)=ai.
NOTE: Upon closer inspection, we see that the nonzero part of the gamma(a., J) pdf

1) =
He

consists of two parts:

o the kernel of the pdf: y*~'e—v/?
e a constant out front: 1/T ()4
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The kernel is the “guts™ of the formula, while the constant out front is simply the “right
quantity” that makes fy-(y) a valid pdf; i.e., the constant which makes fy-(y) integrate

to 1. Note that because

= l 1 /3
e Wy = 1,
/U Tag? ¢

it follows immediately that

This fact is extremely fascinating in its own right, and it is very helpful too; we will use
it repeatedly.

2 -Y d-l=29e3

Example 4.15. Suppose that ¥ has pdf given by 3 e 6 ?.
S,
- cyte Wy
.h.(”) = — —
1, otherwise,
——

Lf 2o C2o
2 S‘_‘:*Y“)J‘J = l
Glve |7 fol9rely= | fr ¢

SoLuTions., Note that e %" is a gamma kernel with & = 3 and 3 = 4. Thus, the
[,

constant out front is bo 2 3

_y (=4 g cde *dy:
\(,sc‘w"\(d’s'e (.11_=;=;=; ° 22
Tlo)ae T34 2(64) 128

, ¢ ,j? 3'[%:1_,; \

(a) What is the value of ¢ that makes this a valid pdf?
(b) What is the mgf of Y7

() What are the mean and variance of Y7

The mgf of ¥ is

L

128

G ) ) e
for t < 1/4. Finally,
E(Y) af = 3(4) = 12 (d) ?( [<Y<3)= |
ViY) a7 34 I5.

T1

{4

)

RELATIONSHIP WITH A POISSON PROCESS: Suppose that we are observing events /

according to a Poisson process with rate A = 1/, and let the random variable 117 denot

B

the time until the ath occurrence. Then,

PACE 88
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Froof: Clearly, W is a continmous random variable with nonnegative support. Thus, for

w > 0, we have W: Time ‘61” ¢¢ J“\ oQuminel

Fulw)=P(W <w) = 1- PV = w)
T )
1 — Pi{fewer than a events in [0, w]}) <—
e Jm'[/\it",l-"

m -
s g

— 1—
:
The pdf of W, fi(w), is equal to Fjy(w), provided that this derivative exists. Foraw = 0,
e

a-1T ., ; .
V=1 ay
fwlw) = Fp(w) = A — 20" JAwWPTA (A A}
i=1

J! i

telescoping sum

a1
(e —1)! w e
A[A“.]n—lr.—/\lr' w l
- (o —1)! - -~ 73_
; w e
Substituting A — 1
_
PTRS | a1 —wji -d F: —_
fwlw) = gz e, A=, by
for w > 0, which is the pdf for the gammalo, 3) distribution. OJ

Example 4.16. Suppose that customers arrive at a check-out according to a Poisson

process with mean A = 12 per hour. What is the probability that we will have to wait
longer than 10 minutes to see the third customer? NoTE: 10 minutes is 1/6th of an
hour,

SoLuTion. The time until the third arrival, say W, follows a gamma distribution with
parameters o = 3 and 7 = /A = 1/12, so that the pdf of W, for w = 0,

|
Furlw) = 86dw?e 12, W~ CM“‘ a (J:s,l‘-' “';)

Thus, the desired probability is

D‘M‘):‘fy —Jund-"n

P{W /6 = 1— P(W < 1/6)
= 1 /I]I'L'_-—I-gnm? (. - I‘{‘ 264 Jzéu,oy
——— —
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