1. During one week, Joe will receive 7 text messages.
(a) What is the probability that Joe will receive exactly one text message each day? State any assumptions you need to answer this question. I would start by characterizing the underlying sample space.
(b) If 30 percent of all of Joe's text messages are from Polly, find the probability that at least 2 of the 7 text messages during one week are from Polly. State any assumptions you need to answer this question.
2. A normalized measurement of color for automotive paint is always guaranteed to fall between -1 and 1. Specifically, the measurement Y is a random variable with pdf

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{3}{4}\left(1-y^{2}\right), & -1<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Find the cumulative distribution function of Y and graph it.
(b) Find the probability that Y is greater than or equal to $1 / 2$.
3. Suppose that Y is a random variable with mean $\mu=E(Y)$, variance $\sigma^{2}=V(Y)$, and moment-generating function $m_{Y}(t)$. Define $Z=a+b Y$, where a and b are constants.
(a) Show that $E(Z)=a+b \mu$.
(b) Show that $V(Z)=b^{2} \sigma^{2}$.
(c) Show that $m_{Z}(t)=e^{a t} m_{Y}(b t)$.
4. A purchaser of electrical components buys them in lots of size 10 from two different suppliers. It is her policy to inspect 3 components randomly from the lot and to accept the lot only if all 3 are nondefective.

- The purchaser buys 30 percent of her lots from Supplier 1; Supplier 1 lots always contain 4 defectives out of 10 .
- The purchaser buys 70 percent of her lots from Supplier 2; Supplier 2 lots always contain 1 defective out of 10 .

What is the probability that the next lot will be accepted?
Hint: Define A to be the event that the lot is accepted, B_{1} to be the event that the next lot is from Supplier 1, and B_{2} to be the event that the next lot is from Supplier 2. There are only 2 suppliers, so $\left\{B_{1}, B_{2}\right\}$ partitions the space of possible suppliers. You want to compute $P(A)$.
5. The lifetime Y (in 1000 s of hours) of a certain type of 100 -watt industrial strength light bulb is a random variable with pdf

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{1}{2} e^{-y / 2}, & 0<y<\infty \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Find the probability that one randomly selected lightbulb will last longer than 3000 hours; that is, compute $P(Y>3)$.
(b) Suppose that we continue observing lightbulbs until we find the first one whose lifetime exceeds 3000 hours. What is the probability that we will need to observe no more than 4 lightbulbs?
(c) Suppose that we continue observing lightbulbs until we find the third one whose lifetime exceeds 3000 hours. What is the probability that we will have to observe at least 5 lightbulbs?
Note: In parts (b) and (c), assume that all lightbulbs are independent with the same probability from part (a).
6. Suppose that Y is a random variable with mean μ and variance σ^{2}. Recall that the skewness and kurtosis for a random variable Y are defined as

$$
\xi=E\left[(Y-\mu)^{3}\right] / \sigma^{3} \quad \text { (skewness) },
$$

and

$$
\kappa=E\left[(Y-\mu)^{4}\right] / \sigma^{4} \quad \text { (kurtosis) },
$$

respectively.
(a) If Y is a standard normal random variable; i.e., $Y \sim \mathcal{N}(0,1)$, show mathematically that $\xi=0$ and $\kappa=3$.
(b) For any random variable, describe to me, in words, what μ, σ^{2}, ξ, and κ measure. You can be brief.
7. The management at a fast-food outlet is interested in the joint behavior of the random variables Y_{1} and Y_{2}. The variable Y_{1} denotes the total time (in minutes) between a customers arrival at the store and his/her departure from the service window. The variable Y_{2} denotes the time (in minutes) a customer waits in line before reaching the service window. Both Y_{1} and Y_{2} are measured in minutes. The joint distribution of Y_{1} and Y_{2} is given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cl}
e^{-y_{1}}, & 0<y_{2}<y_{1}<\infty \\
0, & \text { otherwise } .
\end{array}\right.
$$

(a) Compute the probability that $Y_{1}-Y_{2}$, the time spent at the service window, is greater than 1 minute; that is, compute $P\left(Y_{1}-Y_{2}>1\right)$.
(b) Find both marginal distributions.
(c) Find the conditional distribution of Y_{1} for customers whose value of $Y_{2}=y_{2}=2.5$.
8. Let Y_{1} and Y_{2} denote the proportions of two different chemicals in a mixture of chemicals used as an insecticide. Suppose that $\left(Y_{1}, Y_{2}\right)$ has the joint probability density function

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\left\{\begin{array}{cl}
6 y_{1}, & 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1,0 \leq y_{1}+y_{2} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) The set $R=\left\{\left(y_{1}, y_{2}\right): 0 \leq y_{1} \leq 1,0 \leq y_{2} \leq 1,0 \leq y_{1}+y_{2} \leq 1\right\}$ is the twodimensional support set of $\left(Y_{1}, Y_{2}\right)$. Sketch a picture of R.
(b) Describe what $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$ looks like geometrically.
(c) Compute $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$.
(d) Are Y_{1} and Y_{2} independent?

