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2 Probability

Complementary reading: Chapter 2 (WMS).

2.1 Introduction

TERMINOLOGY : The text defines probability as a measure of one’s belief in the

occurrence of a future (random) event. Probability is also known as “the mathematics

of uncertainty.”

REAL LIFE EVENTS : Here are some events we may wish to assign probabilities to:

• tomorrow’s temperature exceeding 80 degrees

• getting a flat tire on my way home today

• a new policy holder making a claim in the next year

• the NASDAQ losing 5 percent of its value this week

• you being diagnosed with prostate/cervical cancer in the next 20 years.

ASSIGNING PROBABILITIES : How do we assign probabilities to events? There are

three general approaches.

1. Subjective approach.

• This approach is based on feeling and may not even be scientific.

2. Relative frequency approach.

• This approach can be used when some random phenomenon is observed re-

peatedly under identical conditions.

3. Axiomatic/Model-based approach. This is the approach we will take in this course.
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Figure 2.1: The relative frequency of die rolls which result in a “2”; each plot represents

1000 simulated rolls of a fair die.

Example 2.1. Relative frequency approach. Suppose that we roll a die 1000 times and

record the number of times we observe a “2.” Let A denote this event. The relative

frequency approach says that

P (A) ≈ number of times A occurs

number of trials performed
=

n(A)

n
,

where n(A) denotes the frequency of the event, and n denotes the number of trials

performed. The proportion n(A)/n is called the relative frequency. The symbol P (A)

is shorthand for “the probability that A occurs.”

RELATIVE FREQUENCY APPROACH : Continuing with our example, suppose that

n(A) = 158. We would then estimate P (A) by 158/1000 = 0.158. If we performed the

experiment of rolling a die repeatedly, the relative frequency approach says that

n(A)

n
→ P (A),

as n →∞. Of course, if the die is fair, then n(A)/n → P (A) = 1/6. ¤
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2.2 Sample spaces

TERMINOLOGY : Suppose that a random experiment is performed and that we

observe an outcome from the experiment (e.g., rolling a die). The set of all possible

outcomes for an experiment is called the sample space and is denoted by S.

Example 2.2. In each of the following random experiments, we write out a correspond-

ing sample space.

(a) The Michigan state lottery calls for a three-digit integer to be selected:

S = {000, 001, 002, ..., 998, 999}.

(b) A USC student is tested for chlamydia (0 = negative, 1 = positive):

S = {0, 1}.

(c) An industrial experiment consists of observing the lifetime of a battery, measured in

hours. Different sample spaces are:

S1 = {w : w ≥ 0} S2 = {0, 1, 2, 3, ..., } S3 = {defective, not defective}.

Sample spaces are not unique; in fact, how we describe the sample space has a direct

influence on how we assign probabilities to outcomes in this space. ¤

2.3 Basic set theory

TERMINOLOGY : A countable set A is a set whose elements can be put into a one-

to-one correspondence with N = {1, 2, ..., }, the set of natural numbers. A set that is

not countable is said to be uncountable.

TERMINOLOGY : Countable sets can be further divided up into two types.

• A countably infinite set has an infinite number of elements.

• A countably finite set has a finite number of elements.

PAGE 3



CHAPTER 2 STAT/MATH 511, J. TEBBS

Example 2.3. Say whether the following sets are countable (and, furthermore, finite or

infinite) or uncountable.

(a) A = {0, 1, 2, ..., 10}

(b) B = {1, 2, 3, ..., }

(c) C = {x : 0 < x < 2}.

TERMINOLOGY : Suppose that A and B are sets (events). We say that A is a subset

of B if every outcome in A is also in B, written A ⊂ B or A ⊆ B.

• Implication: In a random experiment, if the event A occurs, then so does B. The

converse is not necessarily true.

TERMINOLOGY : The null set, denoted by ∅, is the set that contains no elements.

TERMINOLOGY : The union of two sets A and B is the set of all elements in either A

or B (or both), written A ∪ B. The intersection of two sets A and B is the set of all

elements in both A and B, written A ∩B. Note that A ∩B ⊆ A ∪B.

• Remember: Union ←→ “or” Intersection ←→ “and”

EXTENSION : We extend the notion of unions and intersections to more than two sets.

Suppose that A1, A2, ..., An is a finite sequence of sets. The union of A1, A2, ..., An is

n⋃
j=1

Aj = A1 ∪ A2 ∪ · · · ∪ An,

that is, the set of all elements contained in at least one Aj. The intersection of

A1, A2, ..., An is
n⋂

j=1

Aj = A1 ∩ A2 ∩ · · · ∩ An,

the set of all elements contained in each of the sets Aj, j = 1, 2, ..., n.

PAGE 4
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EXTENSION : Suppose that A1, A2, ..., is a countable sequence of sets. The union and

intersection of this infinite collection of sets is denoted by

∞⋃
j=1

Aj and
∞⋂

j=1

Aj,

respectively. The interpretation is the same as before.

Example 2.4. Define the sequence of sets Aj = [1−1/j, 1+1/j), for j = 1, 2, ..., . Then,

∞⋃
j=1

Aj = [0, 2) and
∞⋂

j=1

Aj = {1}. ¤

TERMINOLOGY : Suppose that A is a subset of S (the sample space). The comple-

ment of a set A is the set of all elements not in A (but still in S). We denote the

complement by A.

Distributive Laws:

1. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

2. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

DeMorgans Laws:

1. A ∩B = A ∪B

2. A ∪B = A ∩B

TERMINOLOGY : We call two events A and B mutually exclusive, or disjoint, if

A ∩B = ∅, that is, A and B have no common elements.

Example 2.5. Suppose that a fair die is rolled. A sample space for this random exper-

iment is S = {1, 2, 3, 4, 5, 6}.

(a) If A = {1, 2, 3}, then A = {4, 5, 6}.

(b) If A = {1, 2, 3}, B = {4, 5}, and C = {2, 3, 6}, then A ∩ B = ∅ and B ∩ C = ∅.
Note that A ∩ C = {2, 3}. Note also that A ∩B ∩ C = ∅ and A ∪B ∪ C = S. ¤

PAGE 5
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2.4 Properties of probability

KOLMOLGOROV AXIOMS OF PROBABILITY : Given a nonempty sample space S,

the measure P (A) is a set function satisfying three axioms:

(1) P (A) ≥ 0, for every A ⊆ S

(2) P (S) = 1

(3) If A1, A2, ..., is a countable sequence of pairwise disjoint events (i.e., Ai∩Aj = ∅,
for i 6= j) in S, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

RESULTS : The following results are important properties of the probability set function

P (·), and each one follows from the Kolmolgorov axioms just stated. All events below

are assumed to be subsets of a nonempty sample space S.

1. Complement rule: For any event A,

P (A) = 1− P (A).

Proof. Note that S = A ∪ A. Thus, since A and A are disjoint, P (A ∪ A) =

P (A) + P (A) by Axiom 3. By Axiom 2, P (S) = 1. Thus,

1 = P (S) = P (A ∪ A) = P (A) + P (A). ¤

2. P (∅) = 0.

Proof. Take A = ∅ and A = S. Use the last result and Axiom 2. ¤

3. Monotonicity property: Suppose that A and B are two events such that A ⊂ B.

Then, P (A) ≤ P (B).

Proof. Write B = A ∪ (B ∩ A). Clearly, A and (B ∩ A) are disjoint. Thus, by

Axiom 3, P (B) = P (A) + P (B ∩ A). Because P (B ∩ A) ≥ 0, we are done. ¤
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4. For any event A, P (A) ≤ 1.

Proof. Since A ⊂ S, this follows from the monotonicity property and Axiom 2. ¤

5. Inclusion-exclusion: Suppose that A and B are two events. Then,

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. Write A ∪ B = A ∪ (A ∩ B). Then, since A and (A ∩ B) are disjoint, by

Axiom 3,

P (A ∪B) = P (A) + P (A ∩B).

Now, write B = (A ∩ B) ∪ (A ∩ B). Clearly, (A ∩ B) and (A ∩ B) are disjoint.

Thus, again, by Axiom 3,

P (B) = P (A ∩B) + P (A ∩B).

Combining the last expressions for P (A ∪B) and P (B) gives the result. ¤

Example 2.6. The probability that train 1 is on time is 0.95, and the probability that

train 2 is on time is 0.93. The probability that both are on time is 0.90.

(a) What is the probability that at least one train is on time?

Solution: Denote by Ai the event that train i is on time, for i = 1, 2. Then,

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2) = 0.95 + 0.93− 0.90 = 0.98.

(b) What is the probability that neither train is on time?

Solution: By DeMorgan’s Law,

P (A1 ∩ A2) = P (A1 ∪ A2) = 1− P (A1 ∪ A2) = 1− 0.98 = 0.02. ¤

EXTENSION : The inclusion-exclusion formula can be extended to any finite sequence

of sets A1, A2, ..., An. For example, if n = 3,

P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3)− P (A1 ∩ A2)− P (A1 ∩ A3)

− P (A2 ∩ A3) + P (A1 ∩ A2 ∩ A3).
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In general, the inclusion-exclusion formula can be written for any finite sequence:

P

(
n⋃

i=1

Aj

)
=

n∑
i=1

P (Ai)−
∑
i1<i2

P (Ai1 ∩ Ai2) +
∑

i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3)−

· · ·+ (−1)n+1P (A1 ∩ A2 ∩ · · · ∩ An).

Of course, if the sets A1, A2, ..., An are pairwise disjoint, then we arrive back at

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai),

a result implied by Axiom 3 by taking An+1 = An+2 = · · · = ∅.

2.5 Discrete probability models and events

TERMINOLOGY : If a sample space for an experiment contains a finite or countable

number of sample points, we call it a discrete sample space.

• Finite: “number of sample points < ∞.”

• Countable: “number of sample points may equal ∞, but can be counted; i.e.,

sample points may be put into a 1:1 correspondence with N = {1, 2, ..., }.”

Example 2.7. A standard roulette wheel contains an array of numbered compartments

referred to as “pockets.” The pockets are either red, black, or green. The numbers 1

through 36 are evenly split between red and black, while 0 and 00 are green pockets. On

the next play, we are interested in the following events:

A1 = {13}
A2 = {red}
A3 = {0, 00}.

TERMINOLOGY : A simple event is an event that can not be decomposed. That is,

a simple event corresponds to exactly one sample point. Compound events are those

events that contain more than one sample point. In Example 2.7, because A1 contains
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only one sample point, it is a simple event. The events A2 and A3 contain more than one

sample point; thus, they are compound events.

STRATEGY : Computing the probability of a compound event can be done by

(1) counting up all sample points associated with the event (this can be very easy or

very difficult)

(2) adding up the probabilities associated with each sample point.

NOTATION : Your authors use the symbol Ei to denote the ith sample point (i.e., ith

simple event). Thus, adopting the aforementioned strategy, if A denotes any compound

event,

P (A) =
∑

i:Ei∈A

P (Ei).

We simply sum up the simple event probabilities P (Ei) for all i such that Ei ∈ A.

Example 2.8. An equiprobability model. Suppose that a discrete sample space S contains

N < ∞ sample points, each of which are equally likely. If the event A consists of na

sample points, then P (A) = na/N .

Proof. Write S = E1 ∪ E2 ∪ · · · ∪ EN , where Ei corresponds to the ith sample point;

i = 1, 2, ..., N . Then,

1 = P (S) = P (E1 ∪ E2 ∪ · · · ∪ EN) =
N∑

i=1

P (Ei).

Now, as P (E1) = P (E2) = · · · = P (EN), we have that

1 =
N∑

i=1

P (Ei) = NP (E1),

and, thus, P (E1) = 1
N

= P (E2) = · · · = P (EN). Without loss of generality, take

A = E1 ∪ E2 ∪ · · · ∪ Ena . Then,

P (A) = P (E1 ∪ E2 ∪ · · · ∪ Ena) =
na∑
i=1

P (Ei) =
na∑
i=1

1

N
= na/N. ¤

PAGE 9
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Example 2.9. Two jurors are needed from a pool of 2 men and 2 women. The jurors

are randomly selected from the 4 individuals. A sample space for this experiment is

S = {(M1,M2), (M1,W1), (M1,W2), (M2,W1), (M2, W2), (W1,W2)}.

What is the probability that the two jurors chosen consist of 1 male and 1 female?

Solution. There are N = 6 sample points, denoted in order by E1, E2, ..., E6. Let the

event

A = {one male, one female} = {(M1,W1), (M1,W2), (M2,W1), (M2,W2)},

so that nA = 4. If the sample points are equally likely (probably true if the jurors are

randomly selected), then P (A) = 4/6. ¤

2.6 Tools for counting sample points

2.6.1 The multiplication rule

MULTIPLICATION RULE : Consider an experiment consisting of k ≥ 2 “stages,” where

n1 = number of ways stage 1 can occur

n2 = number of ways stage 2 can occur

...

nk = number of ways stage k can occur.

Then, there are
k∏

i=1

ni = n1 × n2 × · · · × nk

different outcomes in the experiment.

Example 2.10. An experiment consists of rolling two dice. Envision stage 1 as rolling

the first and stage 2 as rolling the second. Here, n1 = 6 and n2 = 6. By the multiplication

rule, there are n1 × n2 = 6× 6 = 36 different outcomes. ¤
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Example 2.11. In a controlled field experiment, I want to form all possible treatment

combinations among the three factors:

Factor 1: Fertilizer (60 kg, 80 kg, 100kg: 3 levels)

Factor 2: Insects (infected/not infected: 2 levels)

Factor 3: Precipitation level (low, high: 2 levels).

Here, n1 = 3, n2 = 2, and n3 = 2. Thus, by the multiplication rule, there are n1×n2×n3 =

12 different treatment combinations. ¤

Example 2.12. Suppose that an Iowa license plate consists of seven places; the first

three are occupied by letters; the remaining four with numbers. Compute the total

number of possible orderings if

(a) there are no letter/number restrictions.

(b) repetition of letters is prohibited.

(c) repetition of numbers is prohibited.

(d) repetitions of numbers and letters are prohibited.

Answers:

(a) 26× 26× 26× 10× 10× 10× 10 = 175, 760, 000

(b) 26× 25× 24× 10× 10× 10× 10 = 156, 000, 000

(c) 26× 26× 26× 10× 9× 8× 7 = 88, 583, 040

(d) 26× 25× 24× 10× 9× 8× 7 = 78, 624, 000

2.6.2 Permutations

TERMINOLOGY : A permutation is an arrangement of distinct objects in a particular

order. Order is important.
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PROBLEM : Suppose that we have n distinct objects and we want to order (or permute)

these objects. Thinking of n slots, we will put one object in each slot. There are

• n different ways to choose the object for slot 1,

• n− 1 different ways to choose the object for slot 2,

• n− 2 different ways to choose the object for slot 3,

and so on, down to

• 2 different ways to choose the object for slot (n− 1), and

• 1 way to choose for the last slot.

IMPLICATION : By the multiplication rule, there are n(n − 1)(n − 2) · · · (2)(1) = n!

different ways to order (permute) the n distinct objects.

Example 2.13. My bookshelf has 10 books on it. How many ways can I permute the

10 books on the shelf? Answer: 10! = 3, 628, 800. ¤

Example 2.14. Now, suppose that in Example 2.13 there are 4 math books, 2 chemistry

books, 3 physics books, and 1 statistics book. I want to order the 10 books so that all

books of the same subject are together. How many ways can I do this?

Solution: Use the multiplication rule.

Stage 1 Permute the 4 math books 4!

Stage 2 Permute the 2 chemistry books 2!

Stage 3 Permute the 3 physics books 3!

Stage 4 Permute the 1 statistics book 1!

Stage 5 Permute the 4 subjects {m, c, p, s} 4!

Thus, there are 4!× 2!× 3!× 1!× 4! = 6912 different orderings. ¤
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PERMUTATIONS : With a collection of n distinct objects, we now want to choose and

permute r of them (r ≤ n). The number of ways to do this is

Pn,r ≡ n!

(n− r)!
.

The symbol Pn,r is read “the permutation of n things taken r at a time.”

Proof. Envision r slots. There are n ways to fill the first slot, n−1 ways to fill the second

slot, and so on, until we get to the rth slot, in which case there are n− r + 1 ways to fill

it. Thus, by the multiplication rule, there are

n(n− 1) · · · (n− r + 1) =
n!

(n− r)!

different permutations. ¤

Example 2.15. With a group of 5 people, I want to choose a committee with three

members: a president, a vice-president, and a secretary. There are

P5,3 =
5!

(5− 3)!
=

120

2
= 60

different committees possible. Here, note that order is important. ¤

Example 2.16. What happens if the objects to permute are not distinct? Consider

the word PEPPER. How many permutations of the letters are possible?

Trick: Initially, treat all letters as distinct objects by writing, say,

P1E1P2P3E2R.

There are 6! = 720 different orderings of these distinct objects. Now, there are

3! ways to permute the P s

2! ways to permute the Es

1! ways to permute the Rs.

So, 6! is actually 3!× 2!× 1! times too large. That is, there are

6!

3! 2! 1!
= 60 possible permutations. ¤
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MULTINOMIAL COEFFICIENTS : Suppose that in a set of n objects, there are n1 that

are similar, n2 that are similar, ..., nk that are similar, where n1 +n2 + · · ·+nk = n. The

number of permutations (i.e., distinguishable permutations) of the n objects is given by

the multinomial coefficient

(
n

n1n2 · · ·nk

)
≡ n!

n1! n2! · · · nk!
.

NOTE : Multinomial coefficients arise in the algebraic expansion of the multinomial ex-

pression (x1 + x2 + · · ·+ xk)
n; i.e.,

(x1 + x2 + · · ·+ xk)
n =

∑
D

(
n

n1n2 · · ·nk

)
xn1

1 xn2
2 · · · xnk

k ,

where

D =

{
(n1, n2, ..., nk) :

k∑
j=1

ni = n

}
.

Example 2.17. How many signals, each consisting of 9 flags in a line, can be made from

4 white flags, 2 blue flags, and 3 yellow flags?

Answer:
9!

4! 2! 3!
= 1260. ¤

Example 2.18. In Example 2.17, assuming all permutations are equally likely, what is

the probability that all of the white flags are grouped together? We offer two solutions.

The solutions differ in the way we construct the sample space. Define

A = {all four white flags are grouped together}.

Solution 1. Work with a sample space that does not treat the flags as distinct objects,

but merely considers color. Then, we know from Example 2.17 that there are 1260

different orderings. Thus,

N = number of sample points in S = 1260.

Let na denote the number of ways that A can occur. We find na by using the multipli-

cation rule.
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Stage 1 Pick four adjacent slots n1 = 6

Stage 2 With the remaining 5 slots, permute

the 2 blues and 3 yellows n2 = 5!
2!3!

= 10

Thus, na = 6× 10 = 60. Finally, since we have equally likely outcomes, P (A) = na/N =

60/1260 ≈ 0.0476. ¤

Solution 2. Initially, treat all 9 flags as distinct objects; i.e.,

W1W2W3W4B1B2Y1Y2Y3,

and consider the sample space consisting of the 9! different permutations of these 9

distinct objects. Then,

N = number of sample points in S = 9!

Let na denote the number of ways that A can occur. We find na, again, by using the

multiplication rule.

Stage 1 Pick adjacent slots for W1,W2,W3,W4 n1 = 6

Stage 2 With the four chosen slots, permute W1,W2,W3,W4 n2 = 4!

Stage 3 With remaining 5 slots, permute B1, B2, Y1, Y2, Y3 n3 = 5!

Thus, na = 6× 4!× 5! = 17280. Finally, since we have equally likely outcomes, P (A) =

na/N = 17280/9! ≈ 0.0476. ¤

2.6.3 Combinations

COMBINATIONS : Given n distinct objects, the number of ways to choose r of them

(r ≤ n), without regard to order, is given by

Cn,r =

(
n

r

)
≡ n!

r! (n− r)!
.

The symbol Cn,r is read “the combination of n things taken r at a time.” By convention,

we take 0! = 1.
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Proof : Choosing r objects is equivalent to breaking the n objects into two distinguishable

groups:

Group 1 r chosen

Group 2 (n− r) not chosen.

There are Cn,r = n!
r!(n−r)!

ways to do this. ¤

REMARK : We will adopt the notation
(

n
r

)
, read “n choose r,” as the symbol for Cn,r. The

terms
(

n
r

)
are called binomial coefficients since they arise in the algebraic expansion

of a binomial; viz.,

(x + y)n =
n∑

r=0

(
n

r

)
xn−ryr.

Example 2.19. Return to Example 2.15. Now, suppose that we only want to choose

3 committee members from 5 (without designations for president, vice-president, and

secretary). Then, there are

(
5

3

)
=

5!

3! (5− 3)!
=

5× 4× 3!

3!× 2!
= 10

different committees. ¤

NOTE : From Examples 2.15 and 2.19, one should note that

Pn,r = r!× Cn,r.

Recall that combinations do not regard order as important. Thus, once we have

chosen our r objects (there are Cn,r ways to do this), there are then r! ways to permute

those r chosen objects. Thus, we can think of a permutation as simply a combination

times the number of ways to permute the r chosen objects.

Example 2.20. A company receives 20 hard drives. Five of the drives will be randomly

selected and tested. If all five are satisfactory, the entire lot will be accepted. Otherwise,

the entire lot is rejected. If there are really 3 defectives in the lot, what is the probability

of accepting the lot?
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Solution: First, the number of sample points in S is given by

N =

(
20

5

)
=

20!

5! (20− 5)!
= 15504.

Let A denote the event that the lot is accepted. How many ways can A occur? Use the

multiplication rule.

Stage 1 Choose 5 good drives from 17
(
17
5

)

Stage 2 Choose 0 bad drives from 3
(
3
0

)

By the multiplication rule, there are na =
(
17
5

)× (
3
0

)
= 6188 different ways A can occur.

Assuming an equiprobability model (i.e., each outcome is equally likely), P (A) = na/N =

6188/15504 ≈ 0.399. ¤

2.7 Conditional probability

MOTIVATION : In some problems, we may be fortunate enough to have prior knowledge

about the likelihood of events related to the event of interest. We may want to incorporate

this information into a probability calculation.

TERMINOLOGY : Let A and B be events in a nonempty sample space S. The condi-

tional probability of A, given that B has occurred, is given by

P (A|B) =
P (A ∩B)

P (B)
,

provided that P (B) > 0.

Example 2.21. A couple has two children.

(a) What is the probability that both are girls?

(b) What is the probability that both are girls, if the eldest is a girl?
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Solution: (a) The sample space is given by

S = {(M,M), (M, F ), (F, M), (F, F )}

and N = 4, the number of sample points in S. Define

A1 = {1st born child is a girl},
A2 = {2nd born child is a girl}.

Clearly, A1 ∩ A2 = {(F, F )} and P (A1 ∩ A2) = 1/4, assuming that the four outcomes in

S are equally likely.

Solution: (b) Now, we want P (A2|A1). Applying the definition of conditional proba-

bility, we get

P (A2|A1) =
P (A1 ∩ A2)

P (A1)
=

1/4

2/4
= 1/2. ¤

Example 2.22. In a certain community, 36 percent of the families own a dog, 22 percent

of the families that own a dog also own a cat, and 30 percent of the families own a cat.

A family is selected at random.

(a) Compute the probability that the family owns both a cat and dog.

(b) Compute the probability that the family owns a dog, given that it owns a cat.

Solution: Let C = {family owns a cat} and D = {family owns a dog}. From the

problem, we are given that P (D) = 0.36, P (C|D) = 0.22 and P (C) = 0.30. In (a), we

want P (C ∩D). We have

0.22 = P (C|D) =
P (C ∩D)

P (D)
=

P (C ∩D)

0.36
.

Thus,

P (C ∩D) = 0.36× 0.22 = 0.0792.

For (b), we want P (D|C). Simply use the definition of conditional probability:

P (D|C) =
P (C ∩D)

P (C)
=

0.0792

0.30
= 0.264. ¤
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RESULTS : It is interesting to note that conditional probability P (·|B) satisfies the ax-

ioms for a probability set function when P (B) > 0. In particular,

1. P (A|B) ≥ 0

2. P (B|B) = 1

3. If A1, A2, ... is a countable sequence of pairwise mutually exclusive events (i.e.,

Ai ∩ Aj = ∅, for i 6= j) in S, then

P

( ∞⋃
i=1

Ai

∣∣∣∣B
)

=
∞∑
i=1

P (Ai|B).

Exercise. Show that the measure P (·|B) satisfies the Kolmolgorov axioms when

P (B) > 0; i.e., establish the results above.

MULTIPLICATION LAW OF PROBABILITY : Suppose A and B are events in a non-

empty sample space S. Then,

P (A ∩B) = P (B|A)P (A)

= P (A|B)P (B).

Proof. As long as P (A) and P (B) are strictly positive, this follows directly from the

definition of conditional probability. ¤

EXTENSION : The multiplication law of probability can be extended to more than 2

events. For example,

P (A1 ∩ A2 ∩ A3) = P [(A1 ∩ A2) ∩ A3]

= P (A3|A1 ∩ A2)× P (A1 ∩ A2)

= P (A3|A1 ∩ A2)× P (A2|A1)× P (A1).

NOTE : This suggests that we can compute probabilities like P (A1 ∩ A2 ∩ A3) “sequen-

tially” by first computing P (A1), then P (A2|A1), then P (A3|A1 ∩ A2). The probability

of a k-fold intersection can be computed similarly; i.e.,

P

(
k⋂

i=1

Ai

)
= P (A1)× P (A2|A1)× P (A3|A1 ∩ A2)× · · · × P

(
Ak

∣∣∣∣
k−1⋂
i=1

Ai

)
.
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Example 2.23. I am dealt a hand of 5 cards. What is the probability that they are all

spades?

Solution. Define Ai to be the event that card i is a spade (i = 1, 2, 3, 4, 5). Then,

P (A1) =
13

52

P (A2|A1) =
12

51

P (A3|A1 ∩ A2) =
11

50

P (A4|A1 ∩ A2 ∩ A3) =
10

49

P (A5|A1 ∩ A2 ∩ A3 ∩ A4) =
9

48
,

so that

P (A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5) =
13

52
× 12

51
× 11

50
× 10

49
× 9

48
≈ 0.0005.

Note: As another way to solve this problem, a student recently pointed out that we could

simply regard the cards as belonging to two groups: spades and non-spades. There are
(
13
5

)
ways to draw 5 spades from 13. There are

(
52
5

)
possible hands. Thus, the probability

of drawing 5 spades (assuming that each hand is equally likely) is
(
13
5

)
/
(
52
5

) ≈ 0.0005. ¤

2.8 Independence

TERMINOLOGY : When the occurrence or non-occurrence of A has no effect on whether

or not B occurs, and vice versa, we say that the events A and B are independent.

Mathematically, we define A and B to be independent iff

P (A ∩B) = P (A)P (B).

Otherwise, A and B are called dependent events. Note that if A and B are independent,

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A)

and

P (B|A) =
P (B ∩ A)

P (A)
=

P (B)P (A)

P (A)
= P (B).
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Example 2.24. A red die and a white die are rolled. Let A = {4 on red die} and

B = {sum is odd}. Of the 36 outcomes in S, 6 are favorable to A, 18 are favorable to

B, and 3 are favorable to A ∩B. Assuming the outcomes are equally likely,

3

36
= P (A ∩B) = P (A)P (B) =

6

36
× 18

36
,

and the events A and B are independent. ¤

Example 2.25. In an engineering system, two components are placed in a series; that

is, the system is functional as long as both components are. Let Ai; i = 1, 2, denote

the event that component i is functional. Assuming independence, the probability the

system is functional is then P (A1 ∩ A2) = P (A1)P (A2). If P (Ai) = 0.95, for example,

then P (A1 ∩ A2) = 0.95 × 0.95 = 0.9025. If the events A1 and A2 are not independent,

we do not have enough information to compute P (A1 ∩ A2). ¤

INDEPENDENCE OF COMPLEMENTS : If A and B are independent events, so are

(a) A and B

(b) A and B

(c) A and B.

Proof. We will only prove (a). The other parts follow similarly.

P (A ∩B) = P (A|B)P (B) = [1− P (A|B)]P (B) = [1− P (A)]P (B) = P (A)P (B). ¤

EXTENSION : The concept of independence (and independence of complements) can be

extended to any finite number of events in S.

TERMINOLOGY : Let A1, A2, ..., An denote a collection of n ≥ 2 events in a nonempty

sample space S. The events A1, A2, ..., An are said to be mutually independent if for

any subcollection of events, say, Ai1 , Ai2 , ..., Aik , 2 ≤ k ≤ n, we have

P

(
k⋂

j=1

Aij

)
=

k∏
j=1

P (Aij).
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Challenge: Come up with a random experiment and three events which are pairwise

independent, but not mutually independent.

COMMON SETTING : Many experiments consist of a sequence of n trials that are viewed

as independent (e.g., flipping a coin 10 times). If Ai denotes the event associated with

the ith trial, and the trials are independent, then

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

P (Ai).

Example 2.26. An unbiased die is rolled six times. Let Ai = {i appears on roll i}, for

i = 1, 2, ..., 6. Then, P (Ai) = 1/6, and assuming independence,

P (A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6) =
6∏

i=1

P (Ai) =
(1

6

)6

.

Suppose that if Ai occurs, we will call it “a match.” What is the probability of at least

one match in the six rolls?

Solution: Let B denote the event that there is at least one match. Then, B denotes

the event that there are no matches. Now,

P (B) = P (A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6) =
6∏

i=1

P (Ai) =
(5

6

)6

= 0.335.

Thus, P (B) = 1− P (B) = 1− 0.335 = 0.665, by the complement rule.

Exercise: Generalize this result to an n sided die. What does this probability converge

to as n →∞? ¤

2.9 Law of Total Probability and Bayes Rule

SETTING : Suppose A and B are events in a nonempty sample space S. We can express

the event A as follows

A = (A ∩B) ∪ (A ∩B)︸ ︷︷ ︸
union of disjoint events

.
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By the third Kolmolgorov axiom,

P (A) = P (A ∩B) + P (A ∩B)

= P (A|B)P (B) + P (A|B)P (B),

where the last step follows from the multiplication law of probability. This is called the

Law of Total Probability (LOTP). The LOTP is helpful. Sometimes P (A|B), P (A|B),

and P (B) may be easily computed with available information whereas computing P (A)

directly may be difficult.

NOTE : The LOTP follows from the fact that B and B partition S; that is,

(a) B and B are disjoint, and

(b) B ∪B = S.

Example 2.27. An insurance company classifies people as “accident-prone” and “non-

accident-prone.” For a fixed year, the probability that an accident-prone person has an

accident is 0.4, and the probability that a non-accident-prone person has an accident

is 0.2. The population is estimated to be 30 percent accident-prone. (a) What is the

probability that a new policy-holder will have an accident?

Solution:

Define A = {policy holder has an accident} and B = {policy holder is accident-prone}.
Then, P (B) = 0.3, P (A|B) = 0.4, P (B) = 0.7, and P (A|B) = 0.2. By the LOTP,

P (A) = P (A|B)P (B) + P (A|B)P (B)

= (0.4)(0.3) + (0.2)(0.7) = 0.26. ¤

(b) Now suppose that the policy-holder does have an accident. What is the probability

that he was “accident-prone?”

Solution: We want P (B|A). Note that

P (B|A) =
P (A ∩B)

P (A)
=

P (A|B)P (B)

P (A)
=

(0.4)(0.3)

0.26
= 0.46. ¤
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NOTE : From this last part, we see that, in general,

P (B|A) =
P (A|B)P (B)

P (A)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|B)P (B)
.

This is a form of Bayes Rule.

Example 2.28. A lab test is 95 percent effective at detecting a certain disease when it

is present (sensitivity). When the disease is not present, the test is 99 percent effective at

declaring the subject negative (specificity). If 8 percent of the population has the disease

(prevalence), what is the probability that a subject has the disease given that (a) his test

is positive? (b) his test is negative?

Solution: Let D = {disease is present} and z = {test is positive}. We are given that

P (D) = 0.08 (prevalence), P (z|D) = 0.95 (sensitivity), and P (z|D) = 0.99 (specificity).

In part (a), we want to compute P (D|z). By Bayes Rule,

P (D|z) =
P (z|D)P (D)

P (z|D)P (D) + P (z|D)P (D)

=
(0.95)(0.08)

(0.95)(0.08) + (0.01)(0.92)
≈ 0.892.

In part (b), we want P (D|z). By Bayes Rule,

P (D|z) =
P (z|D)P (D)

P (z|D)P (D) + P (z|D)P (D)

=
(0.05)(0.08)

(0.05)(0.08) + (0.99)(0.92)
≈ 0.004.

Table 2.1: The general Bayesian scheme.

Measure before test Result Updated measure

P (D) F P (D|F )

0.08 −→ z −→ 0.892

0.08 −→ z −→ 0.004

NOTE : We have discussed the LOTP and Bayes Rule in the case of the partition {B, B}.
However, these rules hold for any partition of S.
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TERMINOLOGY : A sequence of sets B1, B2, ..., Bk is said to form a partition of the

sample space S if

(a) B1 ∪B2 ∪ · · · ∪Bk = S (exhaustive condition), and

(b) Bi ∩Bj = ∅, for all i 6= j (disjoint condition).

LAW OF TOTAL PROABILITY (restated): Suppose that B1, B2, ..., Bk form a partition

of S, and suppose P (Bi) > 0 for all i = 1, 2, ..., k. Then,

P (A) =
k∑

i=1

P (A|Bi)P (Bi).

Proof. Write

A = A ∩ S = A ∩ (B1 ∪B2 ∪ · · · ∪ Bk) =
k⋃

i=1

(A ∩Bi).

Thus,

P (A) = P

[
k⋃

i=1

(A ∩Bi)

]
=

k∑
i=1

P (A ∩Bi) =
k∑

i=1

P (A|Bi)P (Bi). ¤

BAYES RULE (restated): Suppose that B1, B2, ..., Bk form a partition of S, and suppose

that P (A) > 0 and P (Bi) > 0 for all i = 1, 2, ..., k. Then,

P (Bj|A) =
P (A|Bj)P (Bj)∑k
i=1 P (A|Bi)P (Bi)

.

Proof. Simply apply the definition of conditional probability and the multiplication law

of probability to get

P (Bj|A) =
P (A|Bj)P (Bj)

P (A)
.

Then, just apply LOTP to P (A) in the denominator to get the result. ¤

REMARK : Bayesians will call P (Bj) the prior probability for the event Bj; they call

P (Bj|A) the posterior probability of Bj, given the information in A.

Example 2.29. Suppose that a manufacturer buys approximately 60 percent of a raw

material (in boxes) from Supplier 1, 30 percent from Supplier 2, and 10 percent from
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Supplier 3. For each supplier, defective rates are as follows: Supplier 1: 0.01, Supplier 2:

0.02, and Supplier 3: 0.03. The manufacturer observes a defective box of raw material.

(a) What is the probability that it came from Supplier 2?

(b) What is the probability that the defective did not come from Supplier 3?

Solution: (a) Let A = {observe defective box}. Let B1, B2, and B3, respectively,

denote the events that the box comes from Supplier 1, 2, and 3. The prior probabilities

(ignoring the status of the box) are

P (B1) = 0.6

P (B2) = 0.3

P (B3) = 0.1.

Note that {B1, B2, B3} partitions the space of possible suppliers. Thus, by Bayes Rule,

P (B2|A) =
P (A|B2)P (B2)

P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
(0.02)(0.3)

(0.01)(0.6) + (0.02)(0.3) + (0.03)(0.1)
= 0.40.

This is the updated (posterior) probability that the box came from Supplier 2 (updated

to include the information that the box was defective).

Solution: (b) First, compute the posterior probability P (B3|A). By Bayes Rule,

P (B3|A) =
P (A|B3)P (B3)

P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
(0.03)(0.1)

(0.01)(0.6) + (0.02)(0.3) + (0.03)(0.1)
= 0.20.

Thus,

P (B3|A) = 1− P (B3|A) = 1− 0.20 = 0.80,

by the complement rule. ¤

NOTE : Read Sections 2.11 (Numerical Events and Random Variables) and 2.12 (Random

Sampling) in WMS.
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3 Discrete Distributions

Complementary reading: Chapter 3 (WMS), except § 3.10 and § 3.11.

3.1 Random variables

PROBABILISTIC DEFINITION : A random variable Y is a function whose domain is

the sample space S and whose range is the set of real numbers R = {y : −∞ < y < ∞}.
That is, Y : S →R takes sample points in S and assigns them a real number.

WORKING DEFINITION : In simpler terms, a random variable is a variable whose

observed value is determined by chance.

Example 3.1. Suppose that an experiment consists of flipping two fair coins. The

sample space is

S = {(H, H), (H, T ), (T, H), (T, T )}.

Let Y denote the number of heads observed. Before we perform the experiment, we do

not know, with certainty, the value of Y . We can, however, list out the possible values

of Y corresponding to each sample point:

Ei Y (Ei) = y Ei Y (Ei) = y

(H, H) 2 (T, H) 1

(H, T ) 1 (T, T ) 0

For each sample point Ei, Y takes on a numerical value specific to Ei. This is precisely

why we can think of Y as a function; i.e.,

Y [(H, H)] = 2 Y [(H, T )] = 1 Y [(T, H)] = 1 Y [(T, T )] = 0,

so that

P (Y = 2) = P [(H, H)] = 1/4

P (Y = 1) = P [(H, T )] + P [(T, H)] = 1/4 + 1/4 = 1/2

P (Y = 0) = P [(T, T )] = 1/4.
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NOTE : From these probability calculations; note that we can

• work on the sample space S and compute probabilities from S, or

• work on R and compute probabilities for events {Y ∈ B}, where B ⊂ R.

NOTATION : We denote a random variable Y using a capital letter. We denote an

observed value of Y by y, a lowercase letter. This is standard notation. For example,

if Y denotes the weight (in ounces) of the next newborn boy in Columbia, SC, then Y is

random variable. After the baby is born, we observe that the baby weighs y = 128 oz.

3.2 Probability distributions for discrete random variables

TERMINOLOGY : The support of a random variable Y is set of all possible values that

Y can assume. We will denote the support set by R.

TERMINOLOGY : If the random variable Y has a support set R that is countable

(finitely or infinitely), we call Y a discrete random variable.

Example 3.2. An experiment consists of rolling an unbiased die. Consider the two

random variables:

X = face value on the first roll

Y = number of rolls needed to observe a six.

The support of X is RX = {1, 2, 3, 4, 5, 6}. The support of Y is RY = {1, 2, 3, ...}. RX is

finitely countable and RY is infinitely countable; thus, both X and Y are discrete. ¤

GOAL: For a discrete random variable Y , we would like to find P (Y = y) for any y ∈ R.

Mathematically,

pY (y) ≡ P (Y = y) =
∑

P [Ei ∈ S : Y (Ei) = y],

for all y ∈ R.
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TERMINOLOGY : Suppose that Y is a discrete random variable. The function pY (y) =

P (Y = y) is called the probability mass function (pmf) for Y . The pmf pY (y)

consists of two parts:

(a) R, the support set of Y

(b) a probability assignment P (Y = y), for all y ∈ R.

PROPERTIES : A pmf pY (y) for a discrete random variable Y satisfies the following:

(1) pY (y) > 0, for all y ∈ R [note: if y /∈ R, then pY (y) = 0]

(2) The sum of the probabilities, taken over all support points, must equal one; i.e.,

∑
y∈R

pY (y) = 1.

IMPORTANT : Suppose that Y is a discrete random variable. The probability of an

event {Y ∈ B} is computed by adding the probabilities pY (y) for all y ∈ B; i.e.,

P (Y ∈ B) =
∑
y∈B

pY (y).

Example 3.3. An experiment consists of rolling two fair dice and observing the face on

each. The sample space consists of 6× 6 = 36 sample points:

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

Let the random variable Y record the sum of the two faces. Note that R = {2, 3, ..., 12}.
We now compute the probability associated with each support point y ∈ R:

P (Y = 2) = P ({all Ei ∈ S where Y (Ei) = y = 2})
= P [(1, 1)] = 1/36.
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P (Y = 3) = P ({all Ei ∈ S where Y (Ei) = y = 3})
= P [(1, 2)] + P [(2, 1)] = 2/36.

The calculation P (Y = y) is performed similarly for y = 4, 5, ..., 12. The pmf for Y can

be given as a formula, a table, or a graph. In tabular form, the pmf of Y is given by

y 2 3 4 5 6 7 8 9 10 11 12

pY (y) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

A probability histogram is a display which depicts a pmf in graphical form. In this

example, the probability histogram looks like

0 2 4 6 8 10 12

y

0.00

0.05

0.10

0.15

p(
y)

=P
(Y

=y
)

A closed-form formula for the pmf exists and is given by

pY (y) =





1
36

(6− |7− y|) , y = 2, 3, ..., 12

0, otherwise.

Define the event B = {3, 5, 7, 9, 11}; i.e., the sum Y is odd. We have

P (Y ∈ B) =
∑
y∈B

pY (y) = pY (3) + pY (5) + pY (7) + pY (9) + pY (11)

= 2/36 + 4/36 + 6/36 + 4/36 + 2/36 = 1/2. ¤
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Example 3.4. An experiment consists of rolling an unbiased die until the first “6”

is observed. Let Y denote the number of rolls needed. The support is R = {1, 2, ...}.
Assuming independent trials, we have

P (Y = 1) =
1

6

P (Y = 2) =
5

6
× 1

6

P (Y = 3) =
5

6
× 5

6
× 1

6
;

Recognizing the pattern, we see that the pmf for Y is given by

pY (y) =





1
6

(
5
6

)y−1
, y = 1, 2, ...

0, otherwise.

This pmf is depicted in a probability histogram below:

0 5 10 15 20 25 30

y

0.00

0.05

0.10

0.15

p(
y)

=P
(Y

=y
)

Question: Is this a valid pmf; i.e., do the probabilities pY (y) sum to one? Note that

∑
y∈R

pY (y) =
∞∑

y=1

1

6

(
5

6

)y−1

=
∞∑

x=0

1

6

(
5

6

)x

=

( 1
6

1− 5
6

)
= 1. ¤
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IMPORTANT : In the last calculation, we have used an important fact concerning infi-

nite geometric series; namely, if a is any real number and |r| < 1. Then,

∞∑
x=0

arx =
a

1− r
.

We will use this fact many times in this course!

Exercise: Find the probability that the first “6” is observed on (a) an odd-numbered

roll (b) an even-numbered roll. Which event is more likely? ¤

3.3 Mathematical expectation

TERMINOLOGY : Let Y be a discrete random variable with pmf pY (y) and support R.

The expected value of Y is given by

E(Y ) =
∑
y∈R

ypY (y).

The expected value for discrete random variable Y is simply a weighted average of the

possible values of Y . Each support point y is weighted by the probability pY (y).

ASIDE : When R is a countably infinite set, then the sum
∑

y∈R ypY (y) may not exist

(not surprising since sometimes infinite series do diverge). Mathematically, we require

the sum above to be absolutely convergent; i.e.,

∑
y∈R

|y|pY (y) < ∞.

If this is true, we say that E(Y ) exists. If this is not true, then we say that E(Y ) does

not exist. Note: If R is a finite set, then E(Y ) always exists, because a finite sum of

finite quantities is always finite.

Example 3.5. Let the random variable Y have pmf

pY (y) =





1
10

(5− y), y = 1, 2, 3, 4

0, otherwise.
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The expected value of Y is given by

E(Y ) =
∑
y∈R

ypY (y) =
4∑

y=1

y

[
1

10
(5− y)

]
= 1(4/10) + 2(3/10) + 3(2/10) + 4(1/10) = 2. ¤

INTERPRETATION : The quantity E(Y ) has many interpretations:

(a) the “center of gravity” of a probability distribution

(b) a long-run average

(c) the first moment of the random variable

(d) the mean of a population.

FUNCTIONS OF Y : Let Y be a discrete random variable with pmf pY (y) and support

R. Suppose that g is a real-valued function. Then, g(Y ) is a random variable and

E[g(Y )] =
∑
y∈R

g(y)pY (y).

The proof of this result is given on pp 93 (WMS). Again, we require that

∑
y∈R

|g(y)|pY (y) < ∞.

If this is not true, then E[g(Y )] does not exist.

Example 3.6. In Example 3.5, find E(Y 2) and E(eY ).

Solution: The functions g1(Y ) = Y 2 and g2(Y ) = eY are real functions of Y . From the

definition, we have

E(Y 2) =
∑
y∈R

y2pY (y)

=
4∑

y=1

y2

[
1

10
(5− y)

]
= 12(4/10) + 22(3/10) + 32(2/10) + 42(1/10) = 5.

Also,

E(eY ) =
∑
y∈R

eypY (y)

=
4∑

y=1

ey

[
1

10
(5− y)

]
= e1(4/10) + e2(3/10) + e3(2/10) + e4(1/10) ≈ 12.78. ¤
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Example 3.7. The discrete uniform distribution. Suppose that the random variable X

has pmf

pX(x) =





1/m, x = 1, 2, ..., m

0, otherwise,

where m is a positive integer larger than 1. Find the expected value of X.

Solution. The expected value of X is given by

E(X) =
∑
x∈R

xpX(x) =
m∑

x=1

x

(
1

m

)
=

1

m

m∑
x=1

x =
1

m

[
m(m + 1)

2

]
=

m + 1

2
.

We have used the well-known fact that
∑m

x=1 x = m(m + 1)/2; this can be proven by

induction. If m = 6, then the discrete uniform distribution serves as a probability model

for the outcome of an unbiased die:

x 1 2 3 4 5 6

pX(x) 1/6 1/6 1/6 1/6 1/6 1/6

The expected value of X is E(X) = (6 + 1)/2 = 3.5. ¤

PROPERTIES OF EXPECTATIONS : Let Y be a discrete random variable with pmf

pY (y) and support R. Suppose that g, g1, g2, ..., gk are real-valued functions, and let c be

any real constant. Expectations satisfy the following (linearity) properties:

(a) E(c) = c

(b) E[cg(Y )] = cE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].

Example 3.8. In a one-hour period, the number of gallons of a certain toxic chemical

that is produced at a local plant, say Y , has the following pmf:

y 0 1 2 3

pY (y) 0.2 0.3 0.3 0.2
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(a) Compute the expected number of gallons produced during a one-hour period.

(b) The cost (in hundreds of dollars) to produce Y gallons is given by the cost function

C(Y ) = 3 + 12Y + 2Y 2. What is the expected cost in a one-hour period?

Solution: (a) The expected value of Y is

E(Y ) =
∑
y∈R

ypY (y) = 0(0.2) + 1(0.3) + 2(0.3) + 3(0.2) = 1.5.

That is, we would expect 1.5 gallons of the toxic chemical to be produced per hour. For

(b), we first compute E(Y 2):

E(Y 2) =
∑
y∈R

y2pY (y) = 02(0.2) + 12(0.3) + 22(0.3) + 32(0.2) = 3.3.

Finally,

E[C(Y )] = E(3 + 12Y + 2Y 2)

= 3 + 12E(Y ) + 2E(Y 2) = 3 + 12(1.5) + 2(3.3) = 27.6.

The expected hourly cost is $2, 760.00. ¤

3.4 Variance

TERMINOLOGY : Let Y be a discrete random variable with pmf pY (y), support R, and

expected value E(Y ) = µ. The variance of Y is given by

σ2 ≡ V (Y ) ≡ E[(Y − µ)2] =
∑
y∈R

(y − µ)2pY (y).

The standard deviation of Y is given by the positive square root of the variance; i.e.,

σ =
√

σ2 =
√

V (Y ).

FACTS : The variance σ2 satisfies the following:

(a) σ2 ≥ 0.
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(b) σ2 = 0 if and only if the random variable Y has a degenerate distribution; i.e.,

all the probability mass is located at one support point.

(c) The larger (smaller) σ2 is, the more (less) spread in the possible values of Y about

the mean µ = E(Y ).

(d) σ2 is measured in (units)2 and σ is measured in the original units.

VARIANCE COMPUTING FORMULA: Let Y be a random variable with (finite) mean

E(Y ) = µ. Then

V (Y ) = E[(Y − µ)2] = E(Y 2)− [E(Y )]2.

Proof. Expand the (Y − µ)2 term and distribute the expectation operator as follows:

E[(Y − µ)2] = E(Y 2 − 2µY + µ2)

= E(Y 2)− 2µE(Y ) + µ2

= E(Y 2)− 2µ2 + µ2

= E(Y 2)− µ2. ¤

Example 3.9. The discrete uniform distribution. Suppose that the random variable X

has pmf

pX(x) =





1/m, x = 1, 2, ..., m

0, otherwise,

where m is a positive integer larger than 1. Find the variance of X.

Solution. We find σ2 = V (X) using the variance computing formula. In Example 3.7,

we computed

µ = E(X) =
m + 1

2
.

We first find E(X2):

E(X2) =
∑
x∈R

x2pX(x) =
m∑

x=1

x2

(
1

m

)
=

1

m

m∑
x=1

x2 =
1

m

[
m(m + 1)(2m + 1)

6

]

=
(m + 1)(2m + 1)

6
.
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We have used the well-known fact that
∑m

x=1 x2 = m(m + 1)(2m + 1)/6; this can be

proven by induction. The variance of X is equal to

σ2 = E(X2)− [E(X)]2

=
(m + 1)(2m + 1)

6
−

(
m + 1

2

)2

=
m2 − 1

12
. ¤

Exercise: Find σ2 = V (Y ) in Examples 3.5 and 3.8 (notes).

IMPORTANT RESULT : Let Y be a random variable (not necessarily a discrete random

variable). Suppose that a and b are fixed constants. Then

V (a + bY ) = b2V (Y ).

REMARK : Taking b = 0 above, we see that V (a) = 0, for any constant a. This makes

sense intuitively. The variance is a measure of variability for a random variable; a constant

(such as a) does not vary. Also, by taking a = 0, we see that V (bY ) = b2V (Y ).

3.5 Moment generating functions

TERMINOLOGY : Let Y be a discrete random variable with pmf pY (y) and support R.

The moment generating function (mgf) for Y , denoted by mY (t), is given by

mY (t) = E(etY ) =
∑
y∈R

etypY (y),

provided E(etY ) < ∞ for all t in an open neighborhood about 0; i.e., there exists some

h > 0 such that E(etY ) < ∞ for all t ∈ (−h, h). If E(etY ) does not exist in an open

neighborhood of 0, we say that the moment generating function does not exist.

TERMINOLOGY : We call µ′k ≡ E(Y k) the kth moment of the random variable Y :

E(Y ) 1st moment (mean!)

E(Y 2) 2nd moment

E(Y 3) 3rd moment

E(Y 4) 4th moment
...

...
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REMARK : The moment generating function (mgf) can be used to generate moments.

In fact, from the theory of Laplace transforms, it follows that if the mgf exists, it char-

acterizes an infinite set of moments. So, how do we generate moments?

RESULT : Let Y denote a random variable (not necessarily a discrete random variable)

with support R and mgf mY (t). Then,

E(Y k) =
dkmY (t)

dtk

∣∣∣∣∣
t=0

.

Note that derivatives are taken with respect to t.

Proof. Assume, without loss, that Y is discrete. With k = 1, we have

d

dt
mY (t) =

d

dt

∑
y∈R

etypY (y) =
∑
y∈R

d

dt
etypY (y) =

∑
y∈R

yetypY (y) = E(Y etY ).

Thus,

dmY (t)

dt

∣∣∣∣∣
t=0

= E(Y etY )
∣∣∣
t=0

= E(Y ).

Continuing to take higher-order derivatives, we can prove that

dkmY (t)

dtk

∣∣∣∣∣
t=0

= E(Y k),

for any integer k ≥ 1. See pp 139-140 (WMS) for a slightly different proof. ¤

ASIDE : In the proof of the last result, we interchanged the derivative and (possibly

infinite) sum. This is permitted as long as mY (t) = E(etY ) exists.

MEANS AND VARIANCES : Suppose that Y is a random variable (not necessarily a

discrete random variable) with mgf mY (t). We know that

E(Y ) =
dmY (t)

dt

∣∣∣∣∣
t=0

and

E(Y 2) =
d2mY (t)

dt2

∣∣∣∣∣
t=0

.

We can get V (Y ) using V (Y ) = E(Y 2)− [E(Y )]2.
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REMARK : Being able to find means and variances is important in mathematical statis-

tics. Thus, we can use the mgf as a tool to do this. This is helpful because

sometimes computing

E(Y ) =
∑
y∈R

ypY (y)

directly (or even higher order moments) may be extremely difficult, depending on the

form of pY (y).

Example 3.10. Suppose that Y is a random variable with pmf

pY (y) =





(
1
2

)y
, y = 1, 2, 3, ...

0, otherwise.

Find the mean of Y .

Solution. Using the definition of expected value, the mean of Y is given by

E(Y ) =
∑
y∈R

ypY (y) =
∞∑

y=1

y

(
1

2

)y

.

Finding this infinite sum is not obvious (at least, this sum is not a geometric sum).

Another option is to use moment generating functions! The mgf of Y is given by

mY (t) = E(etY ) =
∑
y∈R

etypY (y)

=
∞∑

y=1

ety

(
1

2

)y

=
∞∑

y=1

(
et

2

)y

=

[ ∞∑
y=0

(
et

2

)y
]
− 1.

The series
∑∞

y=0(e
t/2)y is an infinite geometric sum with common ratio r = et/2. This

series converges as long as et/2 < 1, in which case

mY (t) =
1

1− et

2

− 1 =
et

2− et
,

for et/2 < 1 ⇐⇒ t < ln 2. Note that (−h, h) with h = ln 2 is an open neighborhood

around zero for which mY (t) exists. Now,

E(Y ) =
dmY (t)

dt

∣∣∣∣∣
t=0

=
d

dt

(
et

2− et

)∣∣∣∣∣
t=0

=
et(2− et)− et(−et)

(2− et)2

∣∣∣∣∣
t=0

= 2. ¤
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Example 3.11. Let the random variable Y have pmf pY (y) given by

pY (y) =





1
6
(3− y), y = 0, 1, 2

0, otherwise.

Simple calculations show that E(Y ) = 2/3 and V (Y ) = 5/9 (verify!). Let’s “check” these

calculations using the mgf of Y . It is given by

mY (t) = E(etY ) =
∑
y∈R

etypY (y)

= et(0) 3

6
+ et(1) 2

6
+ et(2) 1

6

=
3

6
+

2

6
et +

1

6
e2t.

Taking derivatives of mY (t) with respect to t, we get

d

dt
mY (t) =

2

6
et +

2

6
e2t

d2

dt2
mY (t) =

2

6
et +

4

6
e2t.

Thus,

E(Y ) =
dmY (t)

dt

∣∣∣∣∣
t=0

=
2

6
e0 +

2

6
e2(0) = 4/6 = 2/3

E(Y 2) =
d2mY (t)

dt2

∣∣∣∣∣
t=0

=
2

6
e0 +

4

6
e2(0) = 1

so that

V (Y ) = E(Y 2)− [E(Y )]2 = 1− (2/3)2 = 5/9.

In this example, it is easier to compute E(Y ) and V (Y ) directly (using the definition).

However, it nice to see that we get the same answer using the mgf approach. ¤

REMARK : Not only is the mgf a tool for computing moments, but it also helps us to

characterize a probability distribution. How? When an mgf exists, it happens to be

unique. This means that if two random variables have same mgf, then they have the

same probability distribution! This is called the uniqueness property of mgfs (it is

based on the uniqueness of Laplace transforms). For now, however, it suffices to envision

the mgf as a “special expectation” that generates moments. This, in turn, helps us to

compute means and variances of random variables.
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3.6 Binomial distribution

BERNOULLI TRIALS : Many processes can be envisioned as consisting of a sequence of

“trials,” where

(i) each trial results in a “success” or a “failure,”

(ii) the trials are independent, and

(iii) the probability of “success,” denoted by p, 0 < p < 1, is the same on every trial.

TERMINOLOGY : In a sequence of n Bernoulli trials, denote by Y the number of suc-

cesses out of n (where n is fixed). We say that Y has a binomial distribution with

number of trials n and success probability p. Shorthand notation is Y ∼ b(n, p).

Example 3.12. Each of the following situations could be conceptualized as a binomial

experiment. Are you satisfied with the Bernoulli assumptions in each instance?

(a) We flip a fair coin 10 times and let Y denote the number of tails in 10 flips. Here,

Y ∼ b(n = 10, p = 0.5).

(b) Forty percent of all plots of land respond to a certain treatment. I have four plots

to be treated. If Y is the number of plots that respond to the treatment, then

Y ∼ b(n = 4, p = 0.4).

(c) In rural Kenya, the prevalence rate for HIV is estimated to be around 8 percent.

Let Y denote the number of HIV infecteds in a sample of 740 individuals. Here,

Y ∼ b(n = 740, p = 0.08).

(d) Parts produced by a certain company do not meet specifications (i.e., are defective)

with probability 0.001. Let Y denote the number of defective parts in a package of

40. Then, Y ∼ b(n = 40, p = 0.001). ¤

DERIVATION : We now derive the pmf of a binomial random variable. The support of

Y is R = {y : y = 0, 1, 2, ..., n}. We need to find an expression for pY (y) = P (Y = y) for

each value of y ∈ R.
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QUESTION : In a sequence of n trials, how can we get exactly y successes? Denoting

“success” and “failure” by S and F , respectively, one possible sample point might be

SSFSFSFFS · · ·FSF .

Because the trials are independent, the probability that we get a particular ordering of

y successes and n− y failures is py(1− p)n−y. Furthermore, there are
(

n
y

)
sample points

that contain exactly y successes. Thus, we add the term py(1− p)n−y a total of
(

n
y

)
times

to get P (Y = y). The pmf for Y is, for 0 < p < 1,

pY (y) =





(
n
y

)
py(1− p)n−y, y = 0, 1, 2, ..., n

0, otherwise.

Example 3.13. In Example 3.12(b), assume that Y ∼ b(n = 4, p = 0.4). Here are the

probability calculations for this binomial model:

P (Y = 0) = pY (0) =
(
4
0

)
(0.4)0(1− 0.4)4−0 = 1× (0.4)0 × (0.6)4 = 0.1296

P (Y = 1) = pY (1) =
(
4
1

)
(0.4)1(1− 0.4)4−1 = 4× (0.4)1 × (0.6)3 = 0.3456

P (Y = 2) = pY (2) =
(
4
2

)
(0.4)2(1− 0.4)4−2 = 6× (0.4)2 × (0.6)2 = 0.3456

P (Y = 3) = pY (3) =
(
4
3

)
(0.4)3(1− 0.4)4−3 = 4× (0.4)3 × (0.6)1 = 0.1536

P (Y = 4) = pY (4) =
(
4
4

)
(0.4)4(1− 0.4)4−4 = 1× (0.4)4 × (0.6)0 = 0.0256.

Exercise: What is the probability that at least 2 plots respond? at most one? What

are E(Y ) and V (Y )? ¤

Example 3.14. In a small clinical trial with 20 patients, let Y denote the number

of patients that respond to a new skin rash treatment. The physicians assume that a

binomial model is appropriate and that Y ∼ b(n = 20, p = 0.4). Under this model,

compute (a) P (Y = 5), (b) P (Y ≥ 5), and (c) P (Y < 10).

(a) P (Y = 5) = pY (5) =
(
20
5

)
(0.4)5(0.6)20−5 = 0.0746.

(b)

P (Y ≥ 5) =
20∑

y=5

P (Y = y) =
20∑

y=5

(
20

y

)
(0.4)y(0.6)20−y.
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Figure 3.2: Probability histogram for the number of patients responding to treatment.

This represents the b(n = 20, p = 0.4) model in Example 3.14.

This calculation involves using the binomial pmf 16 times and adding the results!

Trick: Instead of computing the sum
∑20

y=5

(
20
y

)
(0.4)y(0.6)20−y directly, we can

write

P (Y ≥ 5) = 1− P (Y ≤ 4),

by the complement rule. We do this because WMS’s Appendix III (Table 1, pp

839-841) contains binomial probability calculations of the form

P (Y ≤ a) =
a∑

y=0

(
n

y

)
py(1− p)n−y,

for different n and p. With n = 20 and p = 0.4, we see from Table 1 that

P (Y ≤ 4) = 0.051.

Thus, P (Y ≥ 5) = 1− 0.051 = 0.949.

(c) P (Y < 10) = P (Y ≤ 9) = 0.755, from Table 1. ¤
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REMARK : The function P (Y ≤ y) is called the cumulative distribution function of

a random variable Y ; we’ll talk more about this function in the next chapter.

RECALL: The binomial expansion of (a + b)n is given by

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk.

CURIOSITY : Is the binomial pmf a valid pmf? Clearly pY (y) > 0 for all y. To check

that the pmf sums to one, consider the binomial expansion

[(1− p) + p]n =
n∑

y=0

(
n

y

)
py(1− p)n−y.

The LHS clearly equals 1, and the RHS is the b(n, p) pmf. Thus, pY (y) is valid. ¤

BINOMIAL MGF : Suppose that Y ∼ b(n, p). The mgf of Y is given by

mY (t) = E(etY ) =
n∑

y=0

ety

(
n

y

)
py(1− p)n−y =

n∑
y=0

(
n

y

)
(pet)y(1− p)n−y = (q + pet)n,

where q = 1− p. The last step follows from noting that
∑n

y=0

(
n
y

)
(pet)y(1− p)n−y is the

binomial expansion of (q + pet)n. ¤

MEAN AND VARIANCE : We want to compute E(Y ) and V (Y ) where Y ∼ b(n, p). We

will use the mgf. Taking the derivative of mY (t) with respect t, we get

m′
Y (t) ≡ d

dt
mY (t) =

d

dt
(q + pet)n = n(q + pet)n−1pet.

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

= n(q + pe0)n−1pe0 = n(q + p)n−1p = np,

since q + p = 1. Now, we need to find the second moment. By using the product rule for

derivatives, we have

d2

dt2
mY (t) =

d

dt
n(q + pet)n−1pet

︸ ︷︷ ︸
m′

Y (t)

= n(n− 1)(q + pet)n−2(pet)2 + n(q + pet)n−1pet.

Thus,

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

= n(n−1)(q+pe0)n−2(pe0)2 +n(q+pe0)n−1pe0 = n(n−1)p2 +np.
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Appealing to the variance computing formula, we have

V (Y ) = E(Y 2)− [E(Y )]2 = n(n− 1)p2 + np− (np)2 = np(1− p).

NOTE : WMS derive the binomial mean and variance using a different approach (not

using the mgf). See pp 107-108. ¤

Example 3.15. Artichokes are a marine climate vegetable and thrive in the cooler

coastal climates. Most will grow in a wide range of soils, but produce best on a deep,

fertile, well-drained soil. Suppose that 15 artichoke seeds are planted in identical soils

and temperatures, and let Y denote the number of seeds that germinate. If 60 percent

of all seeds germinate (on average) and we assume a b(15, 0.6) probability model for Y ,

the mean number of seeds that will germinate is

E(Y ) = µ = np = 15(0.6) = 9.

The variance of Y is

V (Y ) = σ2 = np(1− p) = 15(0.6)(0.4) = 3.6 (seeds)2.

The standard deviation of Y is σ =
√

3.6 ≈ 1.9 seeds. ¤

BERNOULLI DISTRIBUTION : In the b(n, p) family, when n = 1, the binomial pmf

reduces to

pY (y) =





py(1− p)1−y, y = 0, 1

0, otherwise.

This is called the Bernoulli distribution. Shorthand notation is Y ∼ b(1, p) or Y ∼
Bern(p).

3.7 Geometric distribution

TERMINOLOGY : Envision an experiment where Bernoulli trials are observed. If Y

denotes the trial on which the first success occurs, then Y is said to follow a geometric

distribution with parameter p, where p is the probability of success on any one trial.
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GEOMETRIC PMF : The pmf for Y ∼ geom(p) is given by

pY (y) =





(1− p)y−1p, y = 1, 2, 3, ...

0, otherwise.

RATIONALE : The form of this pmf makes intuitive sense; we first need y − 1 failures

(each of which occurs with probability 1 − p), and then a success on the yth trial (this

occurs with probability p). By independence, we multiply

(1− p)× (1− p)× · · · × (1− p)︸ ︷︷ ︸
y−1 failures

×p = (1− p)y−1p.

NOTE : Clearly pY (y) > 0 for all y. Does pY (y) sum to one? Note that

∞∑
y=1

(1− p)y−1p = p

∞∑
x=0

(1− p)x =
p

1− (1− p)
= 1.

In the last step, we realized that
∑∞

x=0(1−p)x is an infinite geometric sum with common

ratio 1− p. ¤

Example 3.16. Biology students are checking the eye color of fruit flies. For each fly,

the probability of observing white eyes is p = 0.25. What is the probability the first

white-eyed fly will be observed among the first five flies that are checked?

Solution: Let Y denote the number of flies needed to observe the first white-eyed fly.

We can envision each fly as a Bernoulli trial (each fly either has white eyes or not). If

we assume that the flies are independent, then a geometric model is appropriate; i.e.,

Y ∼ geom(p = 0.25). We want to compute P (Y ≤ 5). We use the pmf to compute

P (Y = 1) = pY (1) = (1− 0.25)1−1(0.25) = 0.25

P (Y = 2) = pY (2) = (1− 0.25)2−1(0.25) ≈ 0.19

P (Y = 3) = pY (3) = (1− 0.25)3−1(0.25) ≈ 0.14

P (Y = 4) = pY (4) = (1− 0.25)4−1(0.25) ≈ 0.11

P (Y = 5) = pY (5) = (1− 0.25)5−1(0.25) ≈ 0.08.

Adding these probabilities, we get P (Y ≤ 5) ≈ 0.77. The pmf for the geom(p = 0.25)

model is depicted in Figure 3.3. ¤
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Figure 3.3: Probability histogram for the number of flies needed to find the first white-eyed

fly. This represents the geom(p = 0.25) model in Example 3.16.

GEOMETRIC MGF : Suppose that Y ∼ geom(p). The mgf of Y is given by

mY (t) =
pet

1− qet
,

where q = 1− p, for t < − ln q.

Proof. Exercise. ¤

MEAN AND VARIANCE : Differentiating the mgf, we get

d

dt
mY (t) =

d

dt

(
pet

1− qet

)
=

pet(1− qet)− pet(−qet)

(1− qet)2
.

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

=
pe0(1− qe0)− pe0(−qe0)

(1− qe0)2
=

p(1− q)− p(−q)

(1− q)2
=

1

p
.

Similar (but lengthier) calculations show

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

=
1 + q

p2
.
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Finally,

V (Y ) = E(Y 2)− [E(Y )]2 =
1 + q

p2
−

(
1

p

)2

=
q

p2
. ¤

NOTE : WMS derive the geometric mean and variance using a different approach (not

using the mgf). See pp 116-117. ¤

Example 3.17. At an orchard in Maine, “20-lb” bags of apples are weighed. Suppose

that four percent of the bags are underweight and that each bag weighed is independent.

If Y denotes the the number of bags observed to find the first underweight bag, then

Y ∼ geom(p = 0.04). The mean of Y is

E(Y ) =
1

p
=

1

0.04
= 25 bags.

The variance of Y is

V (Y ) =
q

p2
=

0.96

(0.04)2
= 600 (bags)2. ¤

3.8 Negative binomial distribution

NOTE : The negative binomial distribution can be motivated from two perspectives:

• as a generalization of the geometric

• as an “inverse” version of the binomial.

TERMINOLOGY : Imagine an experiment where Bernoulli trials are observed. If Y

denotes the trial on which the rth success occurs, r ≥ 1, then Y has a negative binomial

distribution with waiting parameter r and probability of success p.

NEGATIVE BINOMIAL PMF : The pmf for Y ∼ nib(r, p) is given by

pY (y) =





(
y−1
r−1

)
pr(1− p)y−r, y = r, r + 1, r + 2, ...

0, otherwise.

Of course, when r = 1, the nib(r, p) pmf reduces to the geom(p) pmf.
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RATIONALE : The form of pY (y) can be explained intuitively. If the rth success occurs

on the yth trial, then r− 1 successes must have occurred during the 1st y− 1 trials. The

total number of sample points (in the underlying sample space S) where this occurs is

given by the binomial coefficient
(

y−1
r−1

)
, which counts the number of ways you can choose

the locations of r − 1 successes in a string of the 1st y − 1 trials. The probability of

any particular such ordering, by independence, is given by pr−1(1 − p)y−r. Thus, the

probability of getting exactly r − 1 successes in the y − 1 trials is
(

y−1
r−1

)
pr−1(1 − p)y−r.

On the yth trial, we observe the rth success (this occurs with probability p). Because

the yth trial is independent of the previous y − 1 trials, we have

P (Y = y) =

(
y − 1

r − 1

)
pr−1(1− p)y−r

︸ ︷︷ ︸
pertains to 1st y−1 trials

×p =

(
y − 1

r − 1

)
pr(1− p)y−r.

Example 3.18. A botanist is observing oak trees for the presence of a certain disease.

From past experience, it is known that 30 percent of all trees are infected (p = 0.30).

Treating each tree as a Bernoulli trial (i.e., each tree is infected/not), what is the proba-

bility that she will observe the 3rd infected tree (r = 3) on the 6th or 7th observed tree?

Solution. Let Y denote the tree on which she observes the 3rd infected tree. Then,

Y ∼ nib(r = 3, p = 0.3). We want to compute P (Y = 6 or Y = 7). The nib(3, 0.3) pmf

gives

pY (6) = P (Y = 6) =

(
6− 1

3− 1

)
(0.3)3(1− 0.3)6−3 = 0.0926

pY (7) = P (Y = 7) =

(
7− 1

3− 1

)
(0.3)3(1− 0.3)7−3 = 0.0972.

Thus,

P (Y = 6 or Y = 7) = P (Y = 6) + P (Y = 7) = 0.0926 + 0.0972 = 0.1898. ¤

RELATIONSHIP WITH THE BINOMIAL: Recall that in a binomial experiment, we

fix the number of Bernoulli trials, n, and we observe the number of successes. In a

negative binomial experiment, we fix the number of successes we are to observe, r, and

we continue to observe Bernoulli trials until we reach that numbered success. In this

sense, the negative binomial distribution is the “inverse” of the binomial distribution.
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RECALL: Suppose that the real function f(x) is infinitely differentiable at x = a. The

Taylor series expansion of f(x) about the point x = a is given by

f(x) =
∞∑

n=0

f (n)(a)

n!
(x− a)n

= f(a) +

[
f ′(a)

1!

]
(x− a)1 +

[
f ′′(a)

2!

]
(x− a)2 + · · · .

When a = 0, this is called the McLaurin series expansion of f(x).

NEGATIVE BINOMIAL MGF : Suppose that Y ∼ nib(r, p). The mgf of Y is given by

mY (t) =

(
pet

1− qet

)r

,

where q = 1− p, for all t < − ln q. Before we prove this, let’s state and prove a lemma.

Lemma. Suppose that r is a nonnegative integer. Then,

∞∑
y=r

(
y − 1

r − 1

)
(qet)y−r = (1− qet)−r.

Proof of lemma. Consider the function f(w) = (1 − w)−r, where r is a nonnegative

integer. It is easy to show that

f ′(w) = r(1− w)−(r+1)

f ′′(w) = r(r + 1)(1− w)−(r+2)

...

In general, f (z)(w) = r(r + 1) · · · (r + z − 1)(1−w)−(r+z), where f (z)(w) denotes the zth

derivative of f with respect to w. Note that

f (z)(w)
∣∣∣
w=0

= r(r + 1) · · · (r + z − 1).

Now, consider writing the McLaurin Series expansion of f(w); i.e., a Taylor Series ex-

pansion of f(w) about w = 0; this expansion is given by

f(w) =
∞∑

z=0

f (z)(0)wz

z!
=

∞∑
z=0

r(r + 1) · · · (r + z − 1)

z!
wz =

∞∑
z=0

(
z + r − 1

r − 1

)
wz.

Letting w = qet and z = y − r, the lemma is proven for 0 < q < 1. ¤
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Now that we are finished with the lemma, let’s find the mgf of Y ∼ nib(r, p). With

q = 1− p, we have

mY (t) = E(etY ) =
∞∑

y=r

ety

(
y − 1

r − 1

)
prqy−r

=
∞∑

y=r

et(y−r)etr

(
y − 1

r − 1

)
prqy−r

= (pet)r

∞∑
y=r

(
y − 1

r − 1

)
(qet)y−r = (pet)r(1− qet)−r. ¤

REMARK : Showing that the nib(r, p) pmf sums to one can be done by using a similar

series expansion as above. We omit it for brevity.

MEAN AND VARIANCE : For Y ∼ nib(r, p), with q = 1− p,

E(Y ) =
r

p
and V (Y ) =

rq

p2
.

3.9 Hypergeometric distribution

SETTING : Consider a collection of N objects (e.g., people, poker chips, plots of land,

etc.) and suppose that we have two dichotomous classes, Class 1 and Class 2. For

example, the objects and classes might be

Poker chips red/blue

People infected/not infected

Plots of land respond to treatment/not.

From the collection of N objects, we sample n of them (without replacement), and record

Y , the number of objects in Class 1.

REMARK : This sounds like a binomial setup! However, the difference here is that N , the

population size, is finite (the population size, theoretically, is assumed to be infinite in

the binomial model). Thus, if we sample from a population of objects without replace-

ment, the “success” probability changes from trial to trial. This, violates the binomial
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model assumptions! If N is large (i.e., in a very large population), the hypergeometric

and binomial models will be similar, because the change in the probability of success

from trial to trial will be small (maybe so small that it is not of practical concern).

HYPERGEOMETRIC DISTRIBUTION : Envision a collection of n objects sampled (at

random and without replacement) from a population of size N , where r denotes the size

of Class 1 and N − r denotes the size of Class 2. Let Y denote the number of objects

in the sample that belong to Class 1. Then, Y has a hypergeometric distribution,

written Y ∼ hyper(N, n, r), where

N = total number of objects

r = number of the 1st class (e.g., “success”)

N − r = number of the 2nd class (e.g., “failure”)

n = number of objects sampled.

HYPERGEOMETRIC PMF : The pmf for Y ∼ hyper(N, n, r) is given by

pY (y) =





(r
y)(

N−r
n−y)

(N
n)

, y ∈ R

0, otherwise,

where the support set R = {y ∈ N : max(0, n−N + r) ≤ y ≤ min(n, r)}.

BREAKDOWN : In the hyper(N, n, r) pmf, we have three parts:

(
r
y

)
= number of ways to choose y Class 1 objects from r

(
N−r
n−y

)
= number of ways to choose n− y Class 2 objects from N − r

(
N
n

)
= number of sample points.

REMARK : The hypergeometric pmf pY (y) does sum to 1 over the support R, but we

omit this proof for brevity (see Exercise 3.216, pp 156, WMS).

Example 3.19. In my fish tank at home, there are 50 fish. Ten have been tagged. If I

catch 7 fish (and random, and without replacement), what is the probability that exactly

two are tagged?

Solution. Here, N = 50 (total number of fish), n = 7 (sample size), r = 10 (tagged
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fish; Class 1), N − r = 40 (untagged fish; Class 2), and y = 2 (number of tagged fish

caught). Thus,

P (Y = 2) = pY (2) =

(
10
2

)(
40
5

)
(
50
7

) = 0.2964.

What about the probability that my catch contains at most two tagged fish?

Solution. Here, we want

P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2)

=

(
10
0

)(
40
7

)
(
50
7

) +

(
10
1

)(
40
6

)
(
50
7

) +

(
10
2

)(
40
5

)
(
50
7

)
= 0.1867 + 0.3843 + 0.2964 = 0.8674. ¤

Example 3.20. A supplier ships parts to a company in lots of 25 parts. The company

has an acceptance sampling plan which adopts the following acceptance rule:

“....sample 5 parts at random and without replacement. If there are no de-

fectives in the sample, accept the entire lot; otherwise, reject the entire lot.”

Let Y denote the number of defectives in the sample. Then, Y ∼ hyper(25, 5, r), where

r denotes the number defectives in the lot (in real life, r would be unknown). Define

OC(p) = P (Y = 0) =

(
r
0

)(
25−r

5

)
(
25
5

) ,

where p = r/25 denotes the true proportion of defectives in the lot. The symbol OC(p)

denotes the probability of accepting the lot (which is a function of p). Consider the

following table, whose entries are computed using the above probability expression:

r p OC(p)

0 0 1.00

1 0.04 0.80

2 0.08 0.63

3 0.12 0.50

4 0.16 0.38

5 0.20 0.29

10 0.40 0.06

15 0.60 0.01
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REMARK : The graph of OC(p) versus p is called an operating characteristic curve.

For sensible sampling plans, OC(p) is a decreasing function of p. Acceptance sampling

is an important part of statistical process control, which is used in engineering and

manufacturing settings. ¤

MEAN AND VARIANCE : If Y ∼ hyper(N, n, r), then

E(Y ) = n
( r

N

)

V (Y ) = n
( r

N

) (
N − r

N

)(
N − n

N − 1

)
.

RELATIONSHIP WITH THE BINOMIAL: The binomial and hypergeometric models

are similar. The key difference is that in a binomial experiment, p does not change from

trial to trial, but it does in the hypergeometric setting. However, it can be shown that,

for y fixed,

lim
N→∞

(
r
y

)(
N−r
n−y

)
(

N
n

) =

(
n

y

)
py(1− p)n−y

︸ ︷︷ ︸
b(n,p) pmf

,

as r/N → p. The upshot is this: if N is large (i.e., the population size is large), a

binomial probability calculation, with p = r/N , closely approximates the corresponding

hypergeometric probability calculation.

Example 3.21. In a small town, there are 900 right-handed individuals and 100 left-

handed individuals. We take a sample of size n = 20 individuals from this town (at

random and without replacement). What is the probability that 4 or more people in the

sample are left-handed?

Solution. Let X denote the number of left-handed individuals in our sample. We

compute the probability P (X ≥ 4) using both the binomial and hypergeometric models.

• Hypergeometric: Here, N = 1000, r = 100, N − r = 900, and n = 20. Thus,

P (X ≥ 4) = 1− P (X ≤ 3) = 1−
3∑

x=0

(
100
x

)(
900

20−x

)
(
1000
20

) ≈ 0.130947.
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• Binomial: Here, n = 20 and p = r/N = 0.10. Thus,

P (X ≥ 4) = 1− P (X ≤ 3) = 1−
3∑

x=0

(
20

x

)
(0.1)x(0.9)20−x ≈ 0.132953. ¤

REMARK : Of course, since the binomial and hypergeometric models are similar when

N is large, their means and variances are similar too. Note the similarities; recall that

the quantity r/N → p, as N →∞:

E(Y ) = n
( r

N

)
≈ np

and

V (Y ) = n
( r

N

) (
N − r

N

)(
N − n

N − 1

)
≈ np(1− p).

3.10 Poisson distribution

TERMINOLOGY : Let the number of occurrences in a given continuous interval of time

or space be counted. A Poisson process enjoys the following properties:

(1) the number of occurrences in non-overlapping intervals are independent random

variables.

(2) The probability of an occurrence in a sufficiently short interval is proportional to

the length of the interval.

(3) The probability of 2 or more occurrences in a sufficiently short interval is zero.

GOAL: Suppose that a process satisfies the above three conditions, and let Y denote the

number of occurrences in an interval of length one. Our goal is to find an expression for

pY (y) = P (Y = y), the pmf of Y .

APPROACH : Envision partitioning the unit interval [0, 1] into n subintervals, each of

size 1/n. Now, if n is sufficiently large (i.e., much larger than y), then we can approximate

the probability that y events occur in this unit interval by finding the probability that

exactly one event (occurrence) occurs in exactly y of the subintervals.
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• By Property (2), we know that the probability of one event in any one subinterval

is proportional to the subinterval’s length, say λ/n, where λ is the proportionality

constant.

• By Property (3), the probability of more than one occurrence in any subinterval is

zero (for n large).

• Consider the occurrence/non-occurrence of an event in each subinterval as a

Bernoulli trial. Then, by Property (1), we have a sequence of n Bernoulli tri-

als, each with probability of “success” p = λ/n. Thus, a binomial (approximate)

calculation gives

P (Y = y) ≈
(

n

y

)(
λ

n

)y (
1− λ

n

)n−y

.

To improve the approximation for P (Y = y), we let n get large without bound. Then,

lim
n→∞

P (Y = y) = lim
n→∞

(
n

y

)(
λ

n

)y (
1− λ

n

)n−y

= lim
n→∞

n!

y!(n− y)!
λy

(
1

n

)y (
1− λ

n

)n
(

1

1− λ
n

)y

= lim
n→∞

n(n− 1) · · · (n− y + 1)

ny︸ ︷︷ ︸
an

λy

y!︸︷︷︸
bn

(
1− λ

n

)n

︸ ︷︷ ︸
cn

(
1

1− λ
n

)y

︸ ︷︷ ︸
dn

.

Now, the limit of the product is the product of the limits:

lim
n→∞

an = lim
n→∞

n(n− 1) · · · (n− y + 1)

ny
= 1

lim
n→∞

bn = lim
n→∞

λy

y!
=

λy

y!

lim
n→∞

cn = lim
n→∞

(
1− λ

n

)n

= e−λ

lim
n→∞

dn = lim
n→∞

(
1

1− λ
n

)y

= 1.

We have shown that

lim
n→∞

P (Y = y) =
λye−λ

y!
.
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POISSON PMF : A discrete random variable Y is said to follow a Poisson distribution

with rate λ if the pmf of Y is given by

pY (y) =





λye−λ

y!
, y = 0, 1, 2, ...

0, otherwise.

We write Y ∼ Poisson(λ).

NOTE : Clearly pY (y) > 0 for all y ∈ R. That pY (y) sums to one is easily seen as

∑
y∈R

pY (y) =
∞∑

y=0

λye−λ

y!

= e−λ

∞∑
y=0

λy

y!
= e−λeλ = 1,

since
∑∞

y=0 λy/y! is the McLaurin series expansion of eλ. ¤

EXAMPLES : Discrete random variables that might be modeled using a Poisson distri-

bution include

(1) the number of customers entering a post office in a given day.

(2) the number of α-particles discharged from a radioactive substance in one second.

(3) the number of machine breakdowns per month.

(4) the number of blemishes on a piece of artificial turf.

(5) the number of chocolate chips in a Chips-Ahoy cookie.

Example 3.22. The number of cars Y abandoned weekly on a highway is modeled using

a Poisson distribution with λ = 2.2. In a given week, what is the probability that

(a) no cars are abandoned?

(b) exactly one car is abandoned?

(c) at most one car is abandoned?

(d) at least one car is abandoned?
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Solutions. We have Y ∼ Poisson(λ = 2.2).

(a)

P (Y = 0) = pY (0) =
(2.2)0e−2.2

0!
= e−2.2 = 0.1108

(b)

P (Y = 1) = pY (1) =
(2.2)1e−2.2

1!
= 2.2e−2.2 = 0.2438

(c) P (Y ≤ 1) = P (Y = 0) + P (Y = 1) = pY (0) + pY (1) = 0.1108 + 0.2438 = 0.3456

(d) P (Y ≥ 1) = 1− P (Y = 0) = 1− pY (0) = 1− 0.1108 = 0.8892. ¤

0 2 4 6 8 10 12

y

0.00

0.05

0.10

0.15

0.20

0.25

p(
y)

=P
(Y

=y
)

Figure 3.4: Probability histogram for the number of abandoned cars. This represents the

Poisson(λ = 2.2) model in Example 3.22.

REMARK : WMS’s Appendix III, (Table 3, pp 843-847) includes an impressive table for

Poisson probabilities of the form

FY (a) = P (Y ≤ a) =
a∑

y=0

λye−λ

y!
.

Recall that this function is called the cumulative distribution function of Y . This

makes computing compound event probabilities much easier.
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POISSON MGF : Suppose that Y ∼ Poisson(λ). The mgf of Y , for all t, is given by

mY (t) = E(etY ) =
∞∑

y=0

ety

(
λye−λ

y!

)

= e−λ

∞∑
y=0

(λet)y

y!
︸ ︷︷ ︸
= exp(λet)

= e−λeλet

= exp[λ(et − 1)]. ¤

MEAN AND VARIANCE : With the mgf, we can derive the mean and variance. Differ-

entiating the mgf, we get

m′
Y (t) =

d

dt
mY (t) =

d

dt
exp[λ(et − 1)] = λet exp[λ(et − 1)].

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

= λe0 exp[λ(e0 − 1)] = λ.

Now, we need to find the second moment. Using the product rule, we have

d2

dt2
mY (t) =

d

dt
λet exp[λ(et − 1)]︸ ︷︷ ︸

m′
Y (t)

= λet exp[λ(et − 1)] + (λet)2 exp[λ(et − 1)].

Thus,

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

= λe0 exp[λ(e0 − 1)] + (λe0)2 exp[λ(e0 − 1)] = λ + λ2

so that

V (Y ) = E(Y 2)− [E(Y )]2

= λ + λ2 − λ2 = λ. ¤

REVELATION : The mean and variance of a Poisson random variable are always equal.

Example 3.23. Suppose that Y denotes the number of defects observed in one month

at an automotive plant. From past experience, engineers believe that a Poisson model is

appropriate and that E(Y ) = λ = 7 defects/month.
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Question 1: What is the probability that, in a given month, we observe 11 or more

defects?

Solution. We want to compute

P (Y ≥ 11) = 1− P (Y ≤ 10)︸ ︷︷ ︸
Table 3

= 1− 0.901 = 0.099.

Question 2: What is the probability that, in a given year, we have two or more months

with 11 or more defects?

Solution. First, we assume that the 12 months are independent (is this reasonable?),

and call the event A = {11 or more defects in a month} a “success.” Thus, under our

independence assumptions and viewing each month as a “trial,” we have a sequence of

12 Bernoulli trials with “success” probability p = P (A) = 0.099. Let X denote the

number of months where we observe 11 or more defects. Then, X ∼ b(12, 0.099) and

P (X ≥ 2) = 1− P (X = 0)− P (X = 1)

= 1−
(

12

0

)
(0.099)0(1− 0.099)12 −

(
12

1

)
(0.099)1(1− 0.099)11

= 1− 0.2862− 0.3774 = 0.3364. ¤

POISSON PROCESSES OF ARBITRARY LENGTH : If events or occurrences in a Pois-

son process occur at a rate of λ per unit time or space, then the number of occurrences

in an interval of length t follows a Poisson distribution with mean λt.

Example 3.24. Phone calls arrive at a call center according to a Poisson process, at a

rate of λ = 3 per minute. If Y represents the number of calls received in 5 minutes, then

Y ∼ Poisson(15). The probability that 8 or fewer calls come in during a 5-minute span

is

P (Y ≤ 8) =
8∑

y=0

15ye−15

y!
= 0.037,

using Table 3 (WMS). ¤

POISSON-BINOMIAL LINK : We have seen that the hypergeometric and binomial mod-

els are related; as it turns out, so are the Poisson and binomial models. This should not be

surprising because we derived the Poisson pmf by appealing to a binomial approximation.

PAGE 60



CHAPTER 3 STAT/MATH 511, J. TEBBS

RELATIONSHIP : Suppose that Y ∼ b(n, p). If n is large and p is small, then

pY (y) =

(
n

y

)
py(1− p)n−y ≈ λye−λ

y!
,

for y ∈ R = {0, 1, 2, ..., n}, where λ = np.

Example 3.25. Hepatitis C (HCV) is a viral infection that causes cirrhosis and cancer

of the liver. Since HCV is transmitted through contact with infectious blood, screening

donors is important to prevent further transmission. The World Health Organization has

projected that HCV will be a major burden on the US health care system before the year

2020. For public-health reasons, researchers take a sample of n = 1875 blood donors and

screen each individual for HCV. If 3 percent of the entire population is infected, what is

the probability that 50 or more are HCV-positive?

Solution. Let Y denote the number of HCV-infected individuals in our sample. We

compute the probability P (Y ≥ 50) using both the binomial and Poisson models.

• Binomial: Here, n = 1875 and p = 0.03. Thus,

P (Y ≥ 50) =
1875∑
y=50

(
1875

y

)
(0.03)y(0.97)1875−y ≈ 0.818783.

• Poisson: Here, λ = np = 1875(0.03) ≈ 56.25. Thus,

P (Y ≥ 50) =
∞∑

y=50

(56.25)ye−56.25

y!
≈ 0.814932.

As we can see, the Poisson approximation is quite good. ¤

RELATIONSHIP : One can see that the hypergeometric, binomial, and Poisson models

are related in the following way:

hyper(N,n, r) ←→ b(n, p) ←→ Poisson(λ).

The first link results when N is large and r/N → p. The second link results when n is

large and p is small so that λ/n → p. When these situations are combined, as you might

suspect, one can approximate the hypergeometric model with a Poisson model!
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4 Continuous Distributions

Complementary reading from WMS: Chapter 4.

4.1 Introduction

RECALL: In Chapter 3, we focused on discrete random variables. A discrete random

variable Y can assume a finite or (at most) a countable number of values. We also learned

about probability mass functions (pmfs). These functions tell us what probabilities to

assign to each of the support points in R (a countable set).

PREVIEW : Continuous random variables have support sets that are not countable.

In fact, most often, the support set for a continuous random variable Y is an interval of

real numbers; e.g., R = {y : 0 ≤ y ≤ 1}, R = {y : 0 < y < ∞}, R = {y : −∞ < y < ∞},
etc. Thus, probabilities of events involving continuous random variables must be assigned

in a different way.

4.2 Cumulative distribution functions

TERMINOLOGY : The (cumulative) distribution function (cdf) of a random vari-

able Y , denoted by FY (y), is given by the probability

FY (y) = P (Y ≤ y),

for all −∞ < y < ∞. Note that the cdf is defined for all y ∈ R (the set of all real

numbers), not just for those values of y ∈ R (the support of Y ). Every random variable,

discrete or continuous, has a cdf.

Example 4.1. Suppose that the random variable Y has pmf

pY (y) =





1
6
(3− y), y = 0, 1, 2

0, otherwise.
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We now compute probabilities of the form P (Y ≤ y):

• for y < 0, FY (y) = P (Y ≤ y) = 0

• for 0 ≤ y < 1, FY (y) = P (Y ≤ y) = P (Y = 0) = 3
6

• for 1 ≤ y < 2, FY (y) = P (Y ≤ y) = P (Y = 0) + P (Y = 1) = 3
6

+ 2
6

= 5
6

• for y ≥ 2, FY (y) = P (Y ≤ y) = P (Y = 0)+P (Y = 1)+P (Y = 2) = 3
6
+ 2

6
+ 1

6
= 1.

Putting this all together, we have the cdf for Y :

FY (y) =





0, y < 0

3
6
, 0 ≤ y < 1

5
6
, 1 ≤ y < 2

1, y ≥ 2.

It is instructive to plot the pmf of Y and the cdf of Y side by side.
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1.
0
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F
(y

)

pmf, pY (y) cdf, FY (y)

Figure 4.5: Probability mass function pY (y) and cumulative distribution function FY (y)

in Example 4.1.

• PMF

– The height of the bar above y is the probability that Y assumes that value.

– For any y not equal to 0, 1, or 2, pY (y) = 0.
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• CDF

– FY (y) is a nondecreasing function.

– 0 ≤ FY (y) ≤ 1; this makes sense since FY (y) = P (Y ≤ y) is a probability!

– The cdf FY (y) in this example takes a “step” at the support points and stays

constant otherwise. The height of the step at a particular point is equal to

the probability associated with that point. ¤

CDF PROPERTIES : Let Y be a random variable (discrete or continuous) and suppose

that FY (y) is the cdf for Y . Then

(i) FY (y) satisfies the following:

lim
y→−∞

FY (y) = 0 and lim
y→+∞

FY (y) = 1.

(ii) FY (y) is a right continuous function; that is, for any real a,

lim
y→a+

FY (y) = FY (a).

(iii) FY (y) is a non-decreasing function; that is,

y1 ≤ y2 =⇒ FY (y1) ≤ FY (y2).

Exercise: Graph the cdf for (a) Y ∼ b(5, 0.2) and (b) Y ∼ Poisson(2).

4.3 Continuous random variables

TERMINOLOGY : A random variable Y is said to be continuous if its cdf FY (y) is a

continuous function of y.

REMARK : The cdfs associated with discrete random variables are step functions (see

Example 4.1). Such functions are not continuous; however, they are still right continuous.
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OBSERVATION : We can immediately deduce that if Y is a continuous random variable,

then

P (Y = y) = 0,

for all y. That is, specific points are assigned zero probability in continuous

probability models. This must be true. If this was not true, and P (Y = y) = p0 > 0,

then FY (y) would take a step of height p0 at the point y. This would then imply that

FY (y) is not a continuous function.

TERMINOLOGY : Let Y be a continuous random variable with cdf FY (y). The prob-

ability density function (pdf) for Y , denoted by fY (y), is given by

fY (y) =
d

dy
FY (y),

provided that d
dy

FY (y) ≡ F ′
Y (y) exists. Appealing to the Fundamental Theorem of Cal-

culus, we know that

FY (y) =

∫ y

−∞
fY (t)dt.

These are important facts that describe how the pdf and cdf of a continuous random

variable are related. Because FY (y) = P (Y ≤ y), it should be clear that probabilities

in continuous models are found by integration (compare this with how probabilities are

obtained in discrete models).

PROPERTIES OF CONTINUOUS PDFs : Suppose that Y is a continuous random vari-

able with pdf fY (y) and support R. Then

(1) fY (y) > 0, for all y ∈ R;

(2) The function fY (y) satisfies ∫

R

fY (y)dy = 1.

CONTINUOUS MODELS : Probability density functions serve as theoretical models

for continuous data (just as probability mass functions serve as models for discrete data).

These models can be used to find probabilities associated with future (random) events.
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Figure 4.6: Canadian male birth weight data. The histogram (left) is constructed from

a sample of n = 1250 subjects. A normal probability density function has been fit to the

empirical distribution (right).

Example 4.2. A team of Montreal researchers who studied the birth weights of five

million Canadian babies born between 1981 and 2003 say environmental contaminants

may be to blame for a drop in the size of newborn baby boys. A subset (n = 1250

subjects) of the birth weights, measured in lbs, is given in Figure 4.6. ¤

IMPORTANT : Suppose Y is a continuous random variable with pdf fY (y) and cdf FY (y).

The probability of an event {Y ∈ B} is computed by integrating fY (y) over B, that is,

P (Y ∈ B) =

∫

B

fY (y)dy,

for any B ⊂ R. If B = {y : a ≤ y ≤ b}; i.e., B = [a, b], then

P (Y ∈ B) = P (a ≤ Y ≤ b) =

∫ b

a

fY (y)dy

=

∫ b

−∞
fY (y)dy −

∫ a

−∞
fY (y)dy

= FY (b)− FY (a).

Compare these to the analogous results for the discrete case (see page 29 in the notes).

In the continuous case, fY (y) replaces pY (y) and integrals replace sums.
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RECALL: We have already discovered that if Y is a continuous random variable, then

P (Y = a) = 0 for any constant a. This can be also seen by writing

P (Y = a) = P (a ≤ Y ≤ a) =

∫ a

a

fY (y)dy = 0,

where fY (y) is the pdf of Y . An immediate consequence of this is that if Y is continuous,

P (a ≤ Y ≤ b) = P (a ≤ Y < b) = P (a < Y ≤ b) = P (a < Y < b) =

∫ b

a

fY (y)dy.

Example 4.3. Suppose that Y has the pdf

fY (y) =





2y, 0 < y < 1

0, otherwise.

Find the cdf of Y .

Solution. We need to compute FY (y) = P (Y ≤ y) for all y ∈ R. There are three cases

to consider:

• when y ≤ 0,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

−∞
0dt = 0;

• when 0 < y < 1,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ 0

−∞
0dt +

∫ y

0

2tdt = 0 + t2
∣∣∣
y

0
= y2;

• when y ≥ 1,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ 0

−∞
0dt +

∫ 1

0

2tdt +

∫ y

1

0dt = 0 + 1 + 0 = 1.

Putting this all together, we have

FY (y) =





0, y < 0

y2, 0 ≤ y < 1

1, y ≥ 1.

The pdf fY (y) and the cdf FY (y) are plotted side by side in Figure 4.7.

Exercise: Find (a) P (0.3 < Y < 0.7), (b) P (Y = 0.3), and (c) P (Y > 0.7). ¤
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Figure 4.7: Probability density function fY (y) and cumulative distribution function FY (y)

in Example 4.3.

Example 4.4. From the onset of infection, the survival time Y (measured in years) of

patients with chronic active hepatitis receiving prednisolone is modeled with the pdf

fY (y) =





1
10

e−y/10, y > 0

0, otherwise.

Find the cdf of Y .

Solution. We need to compute FY (y) = P (Y ≤ y) for all y ∈ R. There are two cases

to consider:

• when y ≤ 0,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

−∞
0dt = 0;

• when y > 0,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ 0

−∞
0dt +

∫ y

0

1

10
e−t/10dt

= 0 +
1

10

(−10e−t/10
)
∣∣∣∣∣

y

0

= 1− e−y/10.

PAGE 68



CHAPTER 4 STAT/MATH 511, J. TEBBS

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

y

f(y
)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

F(
y)

pdf, fY (y) cdf, FY (y)

Figure 4.8: Probability density function fY (y) and cumulative distribution function FY (y)

in Example 4.4.

Putting this all together, we have

FY (y) =





0, y ≤ 0

1− e−y/10, y > 0.

The pdf fY (y) and the cdf FY (y) are plotted side by side in Figure 4.8.

Exercise: What is the probability a patient survives 15 years after being diagnosed?

less than 5 years? between 10 and 20 years? ¤

Example 4.5. Suppose that Y has the pdf

fY (y) =





cye−y/2, y ≥ 0

0, otherwise.

Find the value of c that makes this a valid pdf.

Solution. Because fY (y) is a pdf, we know that

∫ ∞

0

fY (y)dy =

∫ ∞

0

cye−y/2dy = 1.
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Using integration by parts with u = cy and dv = e−y/2dy, we have

1 =

∫ ∞

0

cye−y/2dy = −2cye−y/2

∣∣∣∣
∞

0︸ ︷︷ ︸
= 0

+

∫ ∞

0

2ce−y/2dy

= 2c(−2)e−y/2

∣∣∣∣
∞

0

= 0− (−4c) = 4c.

Solving for c, we get c = 1/4. ¤

QUANTILES : Suppose that Y is a continuous random variable with cdf FY (y) and let

0 < p < 1. The pth quantile of the distribution of Y , denoted by φp, solves

FY (φp) = P (Y ≤ φp) =

∫ φp

−∞
fY (y)dy = p.

The median of the distribution of Y is the p = 0.5 quantile. That is, the median φ0.5

solves

FY (φ0.5) = P (Y ≤ φ0.5) =

∫ φ0.5

−∞
fY (y)dy = 0.5.

Another name for the pth quantile is the 100pth percentile.

Exercise. Find the median of Y in Examples 4.3, 4.4, and 4.5.

REMARK : For Y discrete, there are some potential problems with the definition that

φp solves FY (φp) = P (Y ≤ φp) = p. The reason is that there may be many values of

φp that satisfy this equation. For example, in Example 4.1, it is easy to see that the

median φ0.5 = 0 because FY (0) = P (Y ≤ 0) = 0.5. However, φ0.5 = 0.5 also satisfies

FY (φ0.5) = 0.5. By convention, in discrete distributions, the pth quantile φp is taken to

be the smallest value satisfying FY (φp) = P (Y ≤ φp) ≥ p.

4.4 Mathematical expectation

4.4.1 Expected value

TERMINOLOGY : Let Y be a continuous random variable with pdf fY (y) and support

R. The expected value of Y is given by

E(Y ) =

∫

R

yfY (y)dy.

PAGE 70



CHAPTER 4 STAT/MATH 511, J. TEBBS

Mathematically, we require that
∫

R

|y|fY (y)dy < ∞.

If this is not true, we say that E(Y ) does not exist. If g is a real-valued function, then

g(Y ) is a random variable and

E[g(Y )] =

∫

R

g(y)fY (y)dy,

provided that this integral exists.

Example 4.6. Suppose that Y has pdf given by

fY (y) =





2y, 0 < y < 1

0, otherwise.

Find E(Y ), E(Y 2), and E(ln Y ).

Solution. The expected value of Y is given by

E(Y ) =

∫ 1

0

yfY (y)dy

=

∫ 1

0

y(2y)dy

=

∫ 1

0

2y2dy = 2

(
y3

3

∣∣∣∣
1

0

)
= 2

(
1

3
− 0

)
= 2/3.

The second moment is

E(Y 2) =

∫ 1

0

y2fY (y)dy

=

∫ 1

0

y2(2y)dy

=

∫ 1

0

2y3dy = 2

(
y4

4

∣∣∣∣
1

0

)
= 2

(
1

4
− 0

)
= 1/2.

Finally,

E(ln Y ) =

∫ 1

0

ln y(2y)dy.

To solve this integral, use integration by parts with u = ln y and dv = 2ydy:

E(ln Y ) = y2 ln y

∣∣∣∣
1

0︸ ︷︷ ︸
= 0

−
∫ 1

0

ydy = −
(

y2

2

∣∣∣∣
1

0

)
= −1

2
. ¤
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PROPERTIES OF EXPECTATIONS : Let Y be a continuous random variable with pdf

fY (y) and support R, suppose that g, g1, g2, ..., gk are real-valued functions, and let c be

any real constant. Then,

(a) E(c) = c

(b) E[cg(Y )] = cE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].

These properties are identical to those we discussed in the discrete case.

4.4.2 Variance

TERMINOLOGY : Let Y be a continuous random variable with pdf fY (y), support R,

and mean E(Y ) = µ. The variance of Y is given by

σ2 ≡ V (Y ) ≡ E[(Y − µ)2] =

∫

R

(y − µ)2fY (y)dy.

The variance computing formula still applies in the continuous case, that is,

V (Y ) = E(Y 2)− [E(Y )]2.

Example 4.7. Suppose that Y has pdf given by

fY (y) =





2y, 0 < y < 1

0, otherwise.

Find σ2 = V (Y ).

Solution. We computed E(Y ) = µ = 2/3 in Example 4.6. Using the definition above,

V (Y ) =

∫ 1

0

(
y − 2

3

)2

(2y)dy.

Instead of doing this integral, it is easier to use the variance computing formula V (Y ) =

E(Y 2)− [E(Y )]2. In Example 4.6, we computed the second moment E(Y 2) = 1/2. Thus,

V (Y ) = E(Y 2)− [E(Y )]2 =
1

2
−

(
2

3

)2

= 1/18. ¤
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4.4.3 Moment generating functions

TERMINOLOGY : Let Y be a continuous random variable with pdf fY (y) and support

R. The moment generating function (mgf) for Y , denoted by mY (t), is given by

mY (t) = E(etY ) =

∫

R

etyfY (y)dy,

provided E(etY ) < ∞ for all t in an open neighborhood about 0; i.e., there exists some

h > 0 such that E(etY ) < ∞ for all t ∈ (−h, h). If E(etY ) does not exist in an open

neighborhood of 0, we say that the moment generating function does not exist.

Example 4.8. Suppose that the pdf of Y is given by

fY (y) =





e−y, y > 0

0, otherwise.

Find the mgf of Y and use it to compute E(Y ) and V (Y ).

Solution.

mY (t) = E(etY ) =

∫ ∞

0

etyfY (y)dy

=

∫ ∞

0

etye−ydy

=

∫ ∞

0

ety−ydy

=

∫ ∞

0

e−y(1−t)dy = −
(

1

1− t

)
e−y(1−t)

∣∣∣∣∣

∞

y=0

.

In the last expression, note that

lim
y→∞

e−y(1−t) < ∞

if and only if 1− t > 0, i.e., t < 1. Thus, for t < 1, we have

mY (t) = −
(

1

1− t

)
e−y(1−t)

∣∣∣∣∣

∞

y=0

= 0 +

(
1

1− t

)
=

1

1− t
.

Note that (−h, h) with h = 1 is an open neighborhood around zero for which mY (t)

exists. With the mgf, we can calculate the mean and variance. Differentiating the mgf,
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we get

m′
Y (t) =

d

dt
mY (t) =

d

dt

(
1

1− t

)
=

(
1

1− t

)2

so that

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

=

(
1

1− 0

)2

= 1.

To find the variance, we first find the second moment. The second derivative of mY (t) is

d2

dt2
mY (t) =

d

dt

(
1

1− t

)2

︸ ︷︷ ︸
m′

Y (t)

= 2

(
1

1− t

)3

.

The second moment is

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

= 2

(
1

1− 0

)3

= 2.

The computing formula gives

V (Y ) = E(Y 2)− [E(Y )]2 = 2− (1)2 = 1.

Exercise: Find E(Y ) and V (Y ) without using the mgf. ¤

4.5 Uniform distribution

TERMINOLOGY : A random variable Y is said to have a uniform distribution from

θ1 to θ2 if its pdf is given by

fY (y) =





1
θ2−θ1

, θ1 < y < θ2

0, otherwise.

Shorthand notation is Y ∼ U(θ1, θ2). Note that this is a valid density because fY (y) > 0

for all y ∈ R = {y : θ1 < y < θ2} and

∫ θ2

θ1

fY (y)dy =

∫ θ2

θ1

(
1

θ2 − θ1

)
dy =

y

θ2 − θ1

∣∣∣∣
θ2

θ1

=
θ2 − θ1

θ2 − θ1

= 1.

STANDARD UNIFORM : A popular member of the U(θ1, θ2) family is the U(0, 1) dis-

tribution; i.e., a uniform distribution with parameters θ1 = 0 and θ2 = 1. This model is

used extensively in computer programs to simulate random numbers.
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Example 4.9. Derive the cdf of Y ∼ U(θ1, θ2).

Solution. We need to compute FY (y) = P (Y ≤ y) for all y ∈ R. There are three cases

to consider:

• when y ≤ θ1,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

−∞
0dt = 0;

• when θ1 < y < θ2,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ θ1

−∞
0dt +

∫ y

θ1

(
1

θ2 − θ1

)
dt

= 0 +
t

θ2 − θ1

∣∣∣∣
y

θ1

=
y − θ1

θ2 − θ1

;

• when y ≥ θ2,

FY (y) =

∫ y

−∞
fY (t)dt =

∫ θ1

−∞
0dt +

∫ θ2

θ1

(
1

θ2 − θ1

)
dt +

∫ y

θ2

0dt = 0 + 1 + 0 = 1.

Putting this all together, we have

FY (y) =





0, y ≤ θ1

y−θ1

θ2−θ1
, θ1 < y < θ2

1, y ≥ θ2.

The U(0, 1) pdf fY (y) and cdf FY (y) are plotted side by side in Figure 4.9.

Exercise: If Y ∼ U(0, 1), find (a) P (0.2 < Y < 0.4) and (b) P (Y > 0.75). ¤

MEAN AND VARIANCE : If Y ∼ U(θ1, θ2), then

E(Y ) =
θ1 + θ2

2
and V (Y ) =

(θ2 − θ1)
2

12
.

UNIFORM MGF : If Y ∼ U(θ1, θ2), then

mY (t) =





eθ2t−eθ1t

t(θ2−θ1)
, t 6= 0

1, t = 0

Exercise: Derive the formulas for E(Y ) and V (Y ).
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Figure 4.9: The U(0, 1) probability density function and cumulative distribution function.

4.6 Normal distribution

TERMINOLOGY : A random variable Y is said to have a normal distribution if its

pdf is given by

fY (y) =





1√
2πσ

e−
1
2

(
y−µ

σ

)2

, −∞ < y < ∞
0, otherwise.

Shorthand notation is Y ∼ N (µ, σ2). There are two parameters in the normal distribu-

tion: the mean E(Y ) = µ and the variance V (Y ) = σ2.

FACTS :

(a) The N (µ, σ2) pdf is symmetric about µ; that is, for any a ∈ R,

fY (µ− a) = fY (µ + a).

(b) The N (µ, σ2) pdf has points of inflection located at y = µ± σ (verify!).

(c) limy→±∞ fY (y) = 0.
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TERMINOLOGY : A normal distribution with mean µ = 0 and variance σ2 = 1 is

called the standard normal distribution. It is conventional to let Z denote a random

variable that follows a standard normal distribution; we write Z ∼ N (0, 1).

IMPORTANT : Tabled values of the standard normal probabilities are given in Appendix

III (Table 4, pp 848) of WMS. This table turns out to be helpful since the integral

FY (y) = P (Y ≤ y) =

∫ y

−∞

1√
2πσ

e−
1
2

(
t−µ

σ

)2

dt

does not exist in closed form. Specifically, the table provides values of

1− FZ(z) = P (Z > z) =

∫ ∞

z

fZ(u)du,

where fZ(u) denotes the nonzero part of the standard normal pdf; i.e.,

fZ(u) =
1√
2π

e−u2/2.

To use the table, we need to first prove that any N (µ, σ2) distribution can be “trans-

formed” to the (standard) N (0, 1) distribution (we’ll see how to do this later). Once we

do this, we will see that there is only a need for one table of probabilities. Of course,

probabilities like FY (y) = P (Y ≤ y) can be obtained using software too.

Example 4.10. Show that the N (µ, σ2) pdf integrates to 1.

Proof. Let z = (y − µ)/σ so that dz = dy/σ and dy = σdz. Define

I =

∫ ∞

−∞

1√
2πσ

e−
1
2

(
y−µ

σ

)2

dy

=

∫ ∞

−∞

1√
2π

e−z2/2dz.

We want to show that I = 1. Since I > 0, it suffices to show that I2 = 1. Note that

I2 =

∫ ∞

−∞

1√
2π

e−x2/2dx

∫ ∞

−∞

1√
2π

e−y2/2dy

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
exp

[
−

(
x2 + y2

2

)]
dxdy.

Switching to polar coordinates; i.e., letting x = r cos θ and y = r sin θ, we get x2 + y2 =

r2(cos2 θ + sin2 θ) = r2, and dxdy = rdrdθ; i.e., the Jacobian of the transformation from
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(x, y) space to (r, θ) space. Thus, we write

I2 =
1

2π

∫ 2π

θ=0

∫ ∞

r=0

e−r2/2rdrdθ

=
1

2π

∫ 2π

θ=0

[∫ ∞

r=0

re−r2/2dr

]
dθ

=
1

2π

∫ 2π

θ=0

[
− e−r2/2

∣∣∣∣
∞

r=0

]
dθ

=
1

2π

∫ 2π

θ=0

1dθ =
θ

2π

∣∣∣
2π

θ=0
= 1. ¤

NORMAL MGF : Suppose that Y ∼ N (µ, σ2). The mgf of Y is

mY (t) = exp

(
µt +

σ2t2

2

)
.

Proof. Using the definition of the mgf, we have

mY (t) = E(etY ) =

∫ ∞

−∞
ety 1√

2πσ
e−

1
2

(
y−µ

σ

)2

dy

=
1√
2πσ

∫ ∞

−∞
ety− 1

2

(
y−µ

σ

)2

dy.

Define b = ty − 1
2

(
y−µ

σ

)2
, the exponent in the last integral. We are going to rewrite b in

the following way:

b = ty − 1

2

(
y − µ

σ

)2

= ty − 1

2σ2
(y2 − 2µy + µ2)

= − 1

2σ2
(y2 − 2µy − 2σ2ty + µ2)

= − 1

2σ2

[
y2 − 2(µ + σ2t)y︸ ︷︷ ︸
complete the square

+µ2
]

= − 1

2σ2

[
y2 − 2(µ + σ2t)y + (µ + σ2t)2 − (µ + σ2t)2

︸ ︷︷ ︸
add and subtract

+µ2
]

= − 1

2σ2

{
[y − (µ + σ2t)]2

}
+

1

2σ2

[
(µ + σ2t)2 − µ2

]

= − 1

2σ2
(y − a)2 +

1

2σ2
(µ2 + 2µσ2t + σ4t2 − µ2)

= − 1

2σ2
(y − a)2 + µt + σ2t2/2︸ ︷︷ ︸

= c, say

,
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where a = µ + σ2t. Noting that c = µt + σ2t2/2 is free of y, we have

mY (t) =
1√
2πσ

∫ ∞

−∞
ebdy

=
1√
2πσ

∫ ∞

−∞
e−

1
2σ2 (y−a)2+cdy

= ec

(∫ ∞

−∞

1√
2πσ

e−
1

2σ2 (y−a)2

︸ ︷︷ ︸
N (a,σ2) density

dy

)
= ec,

since the N (a, σ2) pdf integrates to 1. Now, finally note

ec ≡ exp(c) = exp

(
µt +

σ2t2

2

)
. ¤

Exercise: Use the mgf to verify that E(Y ) = µ and V (Y ) = σ2.

IMPORTANT : Suppose that Y ∼ N (µ, σ2). The random variable

Z =
Y − µ

σ
∼ N (0, 1).

Proof. Let Z = (Y − µ)/σ. The mgf of Z is given by

mZ(t) = E(etZ) = E

{
exp

[
t

(
Y − µ

σ

)]}

= E(etY/σ−µt/σ)

= e−µt/σE(etY/σ)

= e−µt/σmY (t/σ)

= e−µt/σ exp

[
µ(t/σ) +

σ2(t/σ)2

2

]
= et2/2,

which is the mgf of a N (0, 1) random variable. Thus, by the uniqueness of moment

generating functions, we know that Z ∼ N (0, 1). ¤

USEFULNESS : From the last result, we know that if Y ∼ N (µ, σ2), then the event

{y1 < Y < y2} =

{
y1 − µ

σ
<

Y − µ

σ
<

y2 − µ

σ

}
=

{
y1 − µ

σ
< Z <

y2 − µ

σ

}
.

As a result,

P (y1 < Y < y2) = P

(
y1 − µ

σ
< Z <

y2 − µ

σ

)

= FZ

(
y2 − µ

σ

)
− FZ

(
y1 − µ

σ

)
,
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Figure 4.10: Probability density function, fY (y), in Example 4.11. A model for mercury

contamination in large-mouth bass.

where FZ(·) is the cdf of the N (0, 1) distribution. Note also that FZ(−z) = 1−FZ(z), for

z > 0 (verify!). The standard normal table (Table 4, pp 848) gives values of 1 − FZ(z),

for z > 0.

Example 4.11. Young large-mouth bass were studied to examine the level of mercury

contamination, Y (measured in parts per million), which varies according to a normal

distribution with mean µ = 18 and variance σ2 = 16, depicted in Figure 4.10.

(a) What proportion of contamination levels are between 11 and 21 parts per million?

Solution. We want P (11 < Y < 21). By standardizing, we see that

P (11 < Y < 21) = P

(
11− 18

4
<

Y − 18

4
<

21− 18

4

)

= P

(
11− 18

4
< Z <

21− 18

4

)

= P (−1.75 < Z < 0.75)

= FZ(0.75)− FZ(−1.75) = 0.7734− 0.0401 = 0.7333.
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(b) For this model, ninety percent of all contamination levels are above what mercury

level?

Solution. We want to find φY
0.10, the 10th percentile of Y ∼ N (18, 16); i.e., φY

0.10 solves

FY (φY
0.10) = P (Y ≤ φY

0.10) = 0.10.

We’ll start by finding φZ
0.10, the 10th percentile of Z ∼ N (0, 1); i.e., φZ

0.10 solves

FZ(φZ
0.10) = P (Z ≤ φZ

0.10) = 0.10.

From the standard normal table (Table 4), we see that

φZ
0.10 ≈ −1.28.

We are left to solve the equation:

φY
0.10 − 18

4
= φZ

0.10 ≈ −1.28 =⇒ φY
0.10 ≈ −1.28(4) + 18 = 12.88.

Thus, 90 percent of all contamination levels are greater than 12.88 parts per million. ¤

4.7 The gamma family of distributions

INTRODUCTION : In this section, we examine an important family of probability dis-

tributions; namely, those in the gamma family. There are three well-known “named

distributions” in this family:

• the exponential distribution

• the gamma distribution

• the χ2 distribution.

NOTE : The exponential and gamma distributions are popular models for lifetime ran-

dom variables; i.e., random variables that record “time to event” measurements, such as

the lifetimes of an electrical component, death times for human subjects, waiting times

in Poisson processes, etc. Other lifetime distributions include the lognormal, Weibull,

loggamma, among others.

PAGE 81



CHAPTER 4 STAT/MATH 511, J. TEBBS

4.7.1 Exponential distribution

TERMINOLOGY : A random variable Y is said to have an exponential distribution

with parameter β > 0 if its pdf is given by

fY (y) =





1
β
e−y/β, y > 0

0, otherwise.

Shorthand notation is Y ∼ exponential(β). The value of β determines the scale of the

distribution, so it is called a scale parameter.

Exercise: Show that the exponential pdf integrates to 1.

EXPONENTIAL MGF : Suppose that Y ∼ exponential(β). The mgf of Y is given by

mY (t) =
1

1− βt
,

for t < 1/β.

Proof. From the definition of the mgf, we have

mY (t) = E(etY ) =

∫ ∞

0

ety

(
1

β
e−y/β

)
dy =

1

β

∫ ∞

0

ety−y/βdy

=
1

β

∫ ∞

0

e−y[(1/β)−t]dy

=
1

β

{
−

(
1

1
β
− t

)
e−y[(1/β)−t]

}∣∣∣∣∣

∞

y=0

=

(
1

1− βt

) {
e−y[(1/β)−t]

∣∣∣∣
0

y=∞

}
.

In the last expression, note that

lim
y→∞

e−y[(1/β)−t] < ∞

if and only if (1/β)− t > 0, i.e., t < 1/β. Thus, for t < 1/β, we have

mY (t) =

(
1

1− βt

)
e−y[(1/β)−t]

∣∣∣∣∣

0

y=∞
=

(
1

1− βt

)
− 0 =

1

1− βt
.

Note that (−h, h) with h = 1/β is an open neighborhood around 0 for which mY (t)

exists. ¤
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Figure 4.11: The probability density function, fY (y), in Example 4.12. A model for

electrical component lifetimes.

MEAN AND VARIANCE : Suppose that Y ∼ exponential(β). The mean and variance

of Y are given by

E(Y ) = β and V (Y ) = β2.

Proof: Exercise. ¤

Example 4.12. The lifetime of an electrical component has an exponential distribution

with mean β = 500 hours. What is the probability that a randomly selected component

fails before 100 hours? lasts between 250 and 750 hours?

Solution. With β = 500, the pdf for Y is given by

fY (y) =





1
500

e−y/500, y > 0

0, otherwise.

This pdf is depicted in Figure 4.11. Thus, the probability of failing before 100 hours is

P (Y < 100) =

∫ 100

0

1

500
e−y/500dy ≈ 0.181.
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Similarly, the probability of failing between 250 and 750 hours is

P (250 < Y < 750) =

∫ 750

250

1

500
e−y/500dy ≈ 0.383. ¤

EXPONENTIAL CDF : Suppose that Y ∼ exponential(β). Then, the cdf of Y exists in

closed form and is given by

FY (y) =





0, y ≤ 0

1− e−y/β, y > 0.

Proof. Exercise. ¤

THE MEMORYLESS PROPERTY : Suppose that Y ∼ exponential(β), and let r and s

be positive constants. Then

P (Y > r + s|Y > r) = P (Y > s).

That is, given that the lifetime Y has exceeded r, the probability that Y exceeds r+s (i.e.,

an additional s units) is the same as if we were to look at Y unconditionally lasting until

time s. Put another way, that Y has actually “made it” to time r has been forgotten.

The exponential random variable is the only continuous random variable that possesses

the memoryless property.

RELATIONSHIP WITH A POISSON PROCESS : Suppose that we are observing events

according to a Poisson process with rate λ = 1/β, and let the random variable W denote

the time until the first occurrence. Then, W ∼ exponential(β).

Proof: Clearly, W is a continuous random variable with nonnegative support. Thus, for

w ≥ 0, we have

FW (w) = P (W ≤ w) = 1− P (W > w)

= 1− P ({no events in [0, w]})
= 1− e−λw(λw)0

0!

= 1− e−λw.

Substituting λ = 1/β, we have FW (w) = 1 − e−w/β, the cdf of an exponential random

variable with mean β. Thus, the result follows. ¤

PAGE 84



CHAPTER 4 STAT/MATH 511, J. TEBBS

Example 4.13. Suppose that customers arrive at a check-out according to a Poisson

process with mean λ = 12 per hour. What is the probability that we will have to wait

longer than 10 minutes to see the first customer? Note: 10 minutes is 1/6th of an hour.

Solution. The time until the first arrival, say W , follows an exponential distribution

with mean β = 1/λ = 1/12, so that the cdf of W , for w > 0, is FW (w) = 1 − e−12w.

Thus, the desired probability is

P (W > 1/6) = 1− P (W ≤ 1/6) = 1− FW (1/6) = 1− [1− e−12(1/6)] = e−2 ≈ 0.135. ¤

4.7.2 Gamma distribution

TERMINOLOGY : The gamma function is a real function of t, defined by

Γ(t) =

∫ ∞

0

yt−1e−ydy,

for all t > 0. The gamma function satisfies the recursive relationship

Γ(α) = (α− 1)Γ(α− 1),

for α > 1. From this fact, we can deduce that if α is an integer, then

Γ(α) = (α− 1)!

For example, Γ(5) = 4! = 24.

TERMINOLOGY : A random variable Y is said to have a gamma distribution with

parameters α > 0 and β > 0 if its pdf is given by

fY (y) =





1
Γ(α)βα yα−1e−y/β, y > 0

0, otherwise.

Shorthand notation is Y ∼ gamma(α, β). The gamma distribution is indexed by two

parameters:

α = the shape parameter

β = the scale parameter.
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Figure 4.12: Four gamma pdfs. Upper left: α = 1, β = 2. Upper right: α = 2, β = 1.

Lower left: α = 3, β = 4. Lower right: α = 6, β = 3.

REMARK : By changing the values of α and β, the gamma pdf can assume many shapes.

This makes the gamma distribution popular for modeling lifetime data. Note that when

α = 1, the gamma pdf reduces to the exponential(β) pdf. That is, the exponential pdf

is a “special” gamma pdf.

Example 4.14. Show that the gamma(α, β) pdf integrates to 1.

Solution. Change the variable of integration to u = y/β so that du = dy/β and

dy = βdu. We have

∫ ∞

0

fY (y)dy =

∫ ∞

0

1

Γ(α)βα
yα−1e−y/βdy

=
1

Γ(α)

∫ ∞

0

1

βα
(βu)α−1e−βu/ββdu

=
1

Γ(α)

∫ ∞

0

uα−1e−udu

=
Γ(α)

Γ(α)
= 1. ¤
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GAMMA MGF : Suppose that Y ∼ gamma(α, β). The mgf of Y is

mY (t) =

(
1

1− βt

)α

,

for t < 1/β.

Proof. From the definition of the mgf, we have

mY (t) = E(etY ) =

∫ ∞

0

ety

[
1

Γ(α)βα
yα−1e−y/β

]
dy

=

∫ ∞

0

1

Γ(α)βα
yα−1ety−y/βdy

=

∫ ∞

0

1

Γ(α)βα
yα−1e−y[(1/β)−t]dy

=

∫ ∞

0

1

Γ(α)βα
yα−1e−y/[(1/β)−t]−1

dy

=
ηα

βα

∫ ∞

0

1

Γ(α)ηα
yα−1e−y/ηdy,

where η = [(1/β) − t]−1. If η > 0 ⇐⇒ t < 1/β, then the last integral equals 1, because

the integrand is the gamma(α, η) pdf and integration is over R = {y : 0 < y < ∞}.
Thus,

mY (t) =

(
η

β

)α

=

{
1

β[(1/β)− t]

}α

=

(
1

1− βt

)α

.

Note that (−h, h) with h = 1/β is an open neighborhood around 0 for which mY (t)

exists. ¤

MEAN AND VARIANCE : If Y ∼ gamma(α, β), then

E(Y ) = αβ and V (Y ) = αβ2.

NOTE : Upon closer inspection, we see that the nonzero part of the gamma(α, β) pdf

fY (y) =
1

Γ(α)βα
yα−1e−y/β

consists of two parts:

• the kernel of the pdf: yα−1e−y/β

• a constant out front: 1/Γ(α)βα.
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The kernel is the “guts” of the formula, while the constant out front is simply the “right

quantity” that makes fY (y) a valid pdf; i.e., the constant which makes fY (y) integrate

to 1. Note that because ∫ ∞

0

1

Γ(α)βα
yα−1e−y/βdy = 1,

it follows immediately that

∫ ∞

0

yα−1e−y/βdy = Γ(α)βα.

This fact is extremely fascinating in its own right, and it is very helpful too; we will use

it repeatedly.

Example 4.15. Suppose that Y has pdf given by

fY (y) =





cy2e−y/4, y > 0

0, otherwise.

(a) What is the value of c that makes this a valid pdf?

(b) What is the mgf of Y ?

(c) What are the mean and variance of Y ?

Solutions. Note that y2e−y/4 is a gamma kernel with α = 3 and β = 4. Thus, the

constant out front is

c =
1

Γ(α)βα
=

1

Γ(3)43
=

1

2(64)
=

1

128
.

The mgf of Y is

mY (t) =

(
1

1− βt

)α

=

(
1

1− 4t

)3

,

for t < 1/4. Finally,

E(Y ) = αβ = 3(4) = 12

V (Y ) = αβ2 = 3(42) = 48.

RELATIONSHIP WITH A POISSON PROCESS : Suppose that we are observing events

according to a Poisson process with rate λ = 1/β, and let the random variable W denote

the time until the αth occurrence. Then, W ∼ gamma(α, β).
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Proof: Clearly, W is a continuous random variable with nonnegative support. Thus, for

w ≥ 0, we have

FW (w) = P (W ≤ w) = 1− P (W > w)

= 1− P ({fewer than α events in [0, w]})

= 1−
α−1∑
j=0

e−λw(λw)j

j!
.

The pdf of W , fW (w), is equal to F ′
W (w), provided that this derivative exists. For w > 0,

fW (w) = F ′
W (w) = λe−λw − e−λw

α−1∑
j=1

[
j(λw)j−1λ

j!
− (λw)jλ

j!

]

︸ ︷︷ ︸
telescoping sum

= λe−λw − e−λw

[
λ− λ(λw)α−1

(α− 1)!

]

=
λ(λw)α−1e−λw

(α− 1)!
=

λα

Γ(α)
wα−1e−λw.

Substituting λ = 1/β,

fW (w) =
1

Γ(α)βα
wα−1e−w/β,

for w > 0, which is the pdf for the gamma(α, β) distribution. ¤

Example 4.16. Suppose that customers arrive at a check-out according to a Poisson

process with mean λ = 12 per hour. What is the probability that we will have to wait

longer than 10 minutes to see the third customer? Note: 10 minutes is 1/6th of an

hour.

Solution. The time until the third arrival, say W , follows a gamma distribution with

parameters α = 3 and β = 1/λ = 1/12, so that the pdf of W , for w > 0,

fW (w) = 864w2e−12w.

Thus, the desired probability is

P (W > 1/6) = 1− P (W ≤ 1/6)

= 1−
∫ 1/6

0

864w2e−12wdw ≈ 0.677. ¤
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4.7.3 χ2 distribution

TERMINOLOGY : Let ν be a positive integer. In the gamma(α, β) family, when

α = ν/2

β = 2,

we call the resulting distribution a χ2 distribution with ν degrees of freedom. We write

Y ∼ χ2(ν).

NOTE : At this point, it suffices to accept the fact that the χ2 distribution is simply a

“special” gamma distribution. However, it should be noted that the χ2 distribution is

used extensively in applied statistics. In fact, many statistical procedures used in practice

are valid because of this model.

χ2 PDF : If Y ∼ χ2(ν), then the pdf of Y is

fY (y) =





1
Γ( ν

2
)2ν/2 y

(ν/2)−1e−y/2, y > 0

0, otherwise.

χ2 MGF : Suppose that Y ∼ χ2(ν). The mgf of Y is

mY (t) =

(
1

1− 2t

)ν/2

,

for t < 1/2.

MEAN AND VARIANCE : If Y ∼ χ2(ν), then

E(Y ) = ν and V (Y ) = 2ν.

TABLED VALUES FOR CDF : Because the χ2 distribution is so pervasive in applied

statistics, tables of probabilities are common. Appendix III, Table 6 (WMS, pp 850-851)

provides the upper α quantiles χ2
α which satisfy

α = P (Y > χ2
α) =

∫ ∞

χ2
α

1

Γ(ν
2
)2ν/2

y(ν/2)−1e−y/2dy

for different values of α and degrees of freedom ν.
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4.8 Beta distribution

TERMINOLOGY : A random variable Y is said to have a beta distribution with

parameters α > 0 and β > 0 if its pdf is given by

fY (y) =





Γ(α+β)
Γ(α)Γ(β)

yα−1(1− y)β−1, 0 < y < 1

0, otherwise.

Since the support of Y is R = {y : 0 < y < 1}, the beta distribution is a popular

probability model for proportions. Shorthand notation is Y ∼ beta(α, β).

NOTE : Upon closer inspection, we see that the nonzero part of the beta(α, β) pdf

fY (y) =
Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1

consists of two parts:

• the kernel of the pdf: yα−1(1− y)β−1

• a constant out front: Γ(α + β)/Γ(α)Γ(β).

Again, the kernel is the “guts” of the formula, while the constant out front is simply

the “right quantity” that makes fY (y) a valid pdf; i.e., the constant which makes fY (y)

integrate to 1. Note that because

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1dy = 1,

it follows immediately that

∫ 1

0

yα−1(1− y)β−1dy =
Γ(α)Γ(β)

Γ(α + β)
.

BETA PDF SHAPES : The beta pdf is very flexible. That is, by changing the values of

α and β, we can come up with many different pdf shapes. See Figure 4.13 for examples.

• When α = β, the pdf is symmetric about the line y = 1
2
.

• When α < β, the pdf is skewed right (i.e., smaller values of y are more likely).

PAGE 91



CHAPTER 4 STAT/MATH 511, J. TEBBS

Beta(2,1)

f(y
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Beta(2,2)

f(y
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Beta(3,2)

f(y
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Beta(1,14)
f(y

)
0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
14

Figure 4.13: Four beta pdfs. Upper left: α = 2, β = 1. Upper right: α = 2, β = 2. Lower

left: α = 3, β = 2. Lower right: α = 1, β = 14.

• When α > β, the pdf is skewed left (i.e., larger values of y are more likely).

• When α = β = 1, the beta pdf reduces to the U(0, 1) pdf!

BETA MGF : The beta(α, β) mgf exists, but not in closed form. Hence, we’ll compute

moments directly.

MEAN AND VARIANCE : If Y ∼ beta(α, β), then

E(Y ) =
α

α + β
and V (Y ) =

αβ

(α + β)2(α + β + 1)
.

Proof. We will derive E(Y ) only. From the definition of expected value, we have

E(Y ) =

∫ 1

0

yfY (y)dy =

∫ 1

0

y

[
Γ(α + β)

Γ(α)Γ(β)
yα−1(1− y)β−1

]
dy

=
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

y(α+1)−1(1− y)β−1

︸ ︷︷ ︸
beta(α+1,β) kernel

dy.
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Note that the last integrand is a beta kernel with parameters α + 1 and β. Because

integration is over R = {y : 0 < y < 1}, we have
∫ 1

0

y(α+1)−1(1− y)β−1 =
Γ(α + 1)Γ(β)

Γ(α + 1 + β)

and thus

E(Y ) =
Γ(α + β)

Γ(α)Γ(β)

Γ(α + 1)Γ(β)

Γ(α + 1 + β)

=
Γ(α + β)

Γ(α)

Γ(α + 1)

Γ(α + 1 + β)

=
Γ(α + β)

Γ(α)

αΓ(α)

(α + β)Γ(α + β)
=

α

α + β
.

To derive V (Y ), first find E(Y 2) using similar calculations. Use the variance computing

formula V (Y ) = E(Y 2)− [E(Y )]2 and simplify. ¤

Example 4.17. At a health clinic, suppose that Y , the proportion of individuals infected

with a new flu virus (e.g., H1N1, etc.), varies daily according to a beta distribution with

pdf

fY (y) =





20(1− y)19, 0 < y < 1

0, otherwise.

This distribution is displayed in Figure 4.14.

Questions.

(a) What are the parameters in this distribution; i.e., what are α and β?

(b) What is the mean proportion of individuals infected?

(c) Find φ0.95, the 95th percentile of this distribution.

(d) Treating daily infection counts as independent (from day to day), what is the prob-

ability that during any given 5-day span, there is are at least 2 days where the infection

proportion is above 10 percent?

Solutions.

(a) α = 1 and β = 20.

(b) E(Y ) = 1/(1 + 20) ≈ 0.048.

(c) The 95th percentile φ0.95 solves

P (Y ≤ φ0.95) =

∫ φ0.95

0

20(1− y)19dy = 0.95.
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Figure 4.14: The probability density function, fY (y), in Example 4.17. A model for the

proportion of infected individuals.

Let u = 1− y so that du = −dy. The limits on the integral must change:

y : 0 −→ φ0.95

u : 1 −→ 1− φ0.95

Thus, we are left to solve

0.95 = −
∫ 1−φ0.95

1

20u19du = u20
∣∣∣
1

1−φ0.95

= 1− (1− φ0.95)
20

for φ0.95. We get

φ0.95 = 1− (0.05)1/20 ≈ 0.139.

(d) First, we compute

P (Y > 0.1) =

∫ 1

0.1

20(1− y)19dy =

∫ 0.9

0

20u19du = u20
∣∣∣
0.9

0
= (0.9)20 ≈ 0.122.

This is the probability that the infection proportion exceeds 0.10 on any given day.

Now, we treat each day as a “trial,” and let X denote the number of days where “the
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infection proportion is above 10 percent” (i.e., a “success”). Because days are assumed

independent, X ∼ b(5, 0.122) and

P (X ≥ 2) = 1− P (X = 0)− P (X = 1)

= 1−
(

5

0

)
(0.122)0(1− 0.122)5 −

(
5

1

)
(0.122)1(1− 0.122)4 ≈ 0.116. ¤

4.9 Chebyshev’s Inequality

MARKOV’S INEQUALITY : Suppose that X is a nonnegative random variable with pdf

(pmf) fX(x) and let c be a positive constant. Markov’s Inequality puts a bound on the

upper tail probability P (X > c); that is,

P (X > c) ≤ E(X)

c
.

Proof. First, define the event B = {x : x > c}. We know that

E(X) =

∫ ∞

0

xfX(x)dx =

∫

B

xfX(x)dx +

∫

B

xfX(x)dx

≥
∫

B

xfX(x)dx

≥
∫

B

cfX(x)dx = cP (X > c). ¤

CHEBYSHEV’S INEQUALITY : Let Y be any random variable, discrete or continuous,

with mean µ and variance σ2 < ∞. For k > 0,

P (|Y − µ| > kσ) ≤ 1

k2
.

Proof. Applying Markov’s Inequality with X = (Y − µ)2 and c = k2σ2, we have

P (|Y − µ| > kσ) = P [(Y − µ)2 > k2σ2] ≤ E[(Y − µ)2]

k2σ2
=

σ2

k2σ2
=

1

k2
. ¤

REMARK : The beauty of Chebyshev’s result is that it applies to any random variable Y .

In words, P (|Y − µ| > kσ) is the probability that the random variable Y will differ from

the mean µ by more than k standard deviations. If we do not know how Y is distributed,
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we can not compute P (|Y − µ| > kσ) exactly, but, at least we can put an upper bound

on this probability; this is what Chebyshev’s result allows us to do. Note that

P (|Y − µ| > kσ) = 1− P (|Y − µ| ≤ kσ) = 1− P (µ− kσ ≤ Y ≤ µ + kσ).

Thus, it must be the case that

P (|Y − µ| ≤ kσ) = P (µ− kσ ≤ Y ≤ µ + kσ) ≥ 1− 1

k2
.

Example 4.18. Suppose that Y represents the amount of precipitation (in inches)

observed annually in Barrow, AK. The exact probability distribution for Y is unknown,

but, from historical information, it is posited that µ = 4.5 and σ = 1. What is a lower

bound on the probability that there will be between 2.5 and 6.5 inches of precipitation

during the next year?

Solution: We want to compute a lower bound for P (2.5 ≤ Y ≤ 6.5). Note that

P (2.5 ≤ Y ≤ 6.5) = P (|Y − µ| ≤ 2σ) ≥ 1− 1

22
= 0.75.

Thus, we know that P (2.5 ≤ Y ≤ 6.5) ≥ 0.75. The chances are good that the annual

precipitation will be between 2.5 and 6.5 inches.

4.10 Expectations of piecewise functions and mixed distribu-

tions

4.10.1 Expectations of piecewise functions

RECALL: Suppose that Y is a continuous random variable with pdf fY (y) and support

R. Let g(Y ) be a function of Y . The expected value of g(Y ) is given by

E[g(Y )] =

∫

R

g(y)fY (y)dy,

provided that this integral exists.

REMARK : In mathematical expectation examples up until now, we have always consid-

ered functions g which were continuous and differentiable everywhere; e.g., g(y) = y2,
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g(y) = ety, g(y) = ln y, etc. We now extend the notion of mathematical expectation to

handle piecewise functions (which may not even be continuous).

EXTENSION : Suppose that Y is a continuous random variable with pdf fY (y) and

support R, where R can be expressed as the union of k disjoint sets; i.e.,

R = B1 ∪B2 ∪ · · · ∪Bk,

where Bi ⊂ R and Bi ∩ Bj = ∅, for i 6= j. Let g : R → R be a function which can be

written as

g(y) =
k∑

i=1

gi(y)IBi
(y),

where gi : Bi → R is a continuous function and IBi
: Bi → {0, 1} is the indicator

function that y ∈ Bi; i.e.,

IBi
(y) =





1, y ∈ Bi

0, y /∈ Bi.

The expected value of the function

g(Y ) =
k∑

i=1

gi(Y )IBi
(Y ),

is equal to

E[g(Y )] =

∫

R

g(y)fY (y)dy =

∫

R

k∑
i=1

gi(y)IBi
(y)fY (y)dy

=
k∑

i=1

∫

R

gi(y)IBi
(y)fY (y)dy

=
k∑

i=1

∫

Bi

gi(y)fY (y)dy.

That is, to compute the expectation for a piecewise function g(Y ), we simply compute

the expectation of each gi(Y ) over each set Bi and add up the results. Note that if Y is

discrete, the same formula applies except integration is replaced by summation and the

pdf fY (y) is replaced by a pmf pY (y).

Example 4.19. An insurance policy reimburses a policy holder up to a limit of 10,000

dollars. If the loss exceeds 10,000 dollars, the insurance company will pay 10,000 dollars
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Figure 4.15: Left: The probability density function for the loss incurred in Example 4.19.

Right: The function which describes the amount of benefit paid.

plus 80 percent of the loss that exceeds 10,000 dollars. Suppose that the policy holder’s

loss Y (measured in $1,000s) is a random variable with pdf

fY (y) =





2/y3, y > 1

0, otherwise.

This pdf is plotted in Figure 4.15 (left). What is the expected value of the benefit paid

to the policy holder?

Solution. Let g(Y ) denote the benefit paid to the policy holder; i.e.,

g(Y ) =





Y, 1 < Y < 10

10 + 0.8(Y − 10), Y ≥ 10.

This function is plotted in Figure 4.15 (right). We have

E[g(Y )] =

∫ ∞

1

g(y)fY (y)dy

=

∫ 10

1

y

(
2

y3

)
dy +

∫ ∞

10

[10 + 0.8(y − 10)]

(
2

y3

)
dy = 1.98.

Thus, the expected benefit paid to the policy holder is $1,980.

Exercise: Find V [g(Y )], the variance of the benefit paid to the policy holder.
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4.10.2 Mixed distributions

TERMINOLOGY : We define a mixed distribution as one with discrete and continuous

parts (more general definitions are available). In particular, suppose that Y1 is a discrete

random variable with cdf FY1(y) and that Y2 is a continuous random variable with cdf

FY2(y). A mixed random variable Y has cdf

FY (y) = c1FY1(y) + c2FY2(y),

for all y ∈ R, where the constants c1 and c2 satisfy c1 + c2 = 1. These constants are

called mixing constants. It is straightforward to show that the function FY (y) satisfies

the cdf requirements (see pp 64, notes).

RESULT : Let Y have the mixed distribution

FY (y) = c1FY1(y) + c2FY2(y),

where Y1 is a discrete random variable with cdf FY1(y) and Y2 is a continuous random

variable with cdf FY2(y). Let g(Y ) be a function of Y . Then,

E[g(Y )] = c1E[g(Y1)] + c2E[g(Y2)],

where each expectation is taken with respect to the appropriate distribution.

Example 4.20. A standard experiment in the investigation of carcinogenic substances

is one in which laboratory animals (e.g., rats, etc.) are exposed to a toxic substance.

Suppose that the time from exposure until death follows an exponential distribution

with mean β = 10 hours. Suppose additionally that the animal is sacrificed after 24

hours if death has not been observed. Let Y denote the death time for an animal in this

experiment. Find the cdf for Y and compute E(Y ).

Solution. Let Y2 denote the time until death for animals who die before 24 hours. We

are given that Y2 ∼ exponential(10); the cdf of Y2 is

FY2(y) =





0, y ≤ 0

1− e−y/10, y > 0.
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The probability that an animal has not died before 24 hours is

P (Y2 < 24) = FY2(24) = 1− e−24/10 ≈ 0.909.

There is one discrete point in the distribution for Y , namely, at the value y = 24 which

occurs with probability

1− P (Y1 < 24) ≈ 1− 0.909 = 0.091.

Define Y1 to be a random variable with cdf

FY1(y) =





0, y < 24

1, y ≥ 24,

that is, Y1 has a degenerate distribution at the value y = 24. Here are the cdfs of Y1

and Y2, plotted side by side.
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The cdf of Y is

FY (y) = c1FY1(y) + c2FY2(y),

where c1 = 0.091 and c2 = 0.909. The mean of Y is

E(Y ) = 0.091E(Y1) + 0.909E(Y2) = 0.091(24) + 0.909(10) = 11.274 hours. ¤

Exercise: Find V (Y ).
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5 Multivariate Distributions

Complementary reading from WMS: Chapter 5.

5.1 Introduction

REMARK : Up until now, we have discussed univariate random variables (and their as-

sociated probability distributions, moment generating functions, means, variances, etc.).

In practice, however, one is often interested in multiple random variables. Consider the

following examples:

• In an educational assessment program, we want to predict a student’s posttest score

(Y2) from her pretest score (Y1).

• In a clinical trial, physicians want to characterize the concentration of a drug (Y )

in one’s body as a function of the time (X) from injection.

• An insurance company wants to estimate the amount of loss related to collisions

Y1 and liability Y2 (both measured in 1000s of dollars).

• Agronomists want to understand the relationship between yield (Y , measured in

bushels/acre) and the nitrogen content of the soil (X).

• In a marketing study, the goal is to forecast next month’s sales, say Yn, based on

sales figures from the previous n− 1 periods, say Y1, Y2, ..., Yn−1.

NOTE : In each of these examples, it is natural to posit a relationship between (or among)

the random variables that are involved. This relationship can be described mathemati-

cally through a probabilistic model. This model, in turn, allows us to make probability

statements involving the random variables (just as univariate models allow us to do this

with a single random variable).
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TERMINOLOGY : If Y1 and Y2 are random variables, then

Y = (Y1, Y2)

is called a bivariate random vector. If Y1, Y2, ..., Yn denote n random variables, then

Y = (Y1, Y2, ..., Yn)

is called an n-variate random vector.

5.2 Discrete random vectors

TERMINOLOGY : Let Y1 and Y2 be discrete random variables. Then, (Y1, Y2) is called

a discrete random vector, and the joint probability mass function (pmf) of Y1

and Y2 is given by

pY1,Y2(y1, y2) = P (Y1 = y1, Y2 = y2),

for all (y1, y2) ∈ R. The set R ⊆ R2 is the two dimensional support of (Y1, Y2). The

function pY1,Y2(y1, y2) has the following properties:

(1) pY1,Y2(y1, y2) > 0, for all (y1, y2) ∈ R

(2)
∑

R pY1,Y2(y1, y2) = 1.

RESULT : Suppose that (Y1, Y2) is a discrete random vector with pmf pY1,Y2(y1, y2). Then,

P [(Y1, Y2) ∈ B] =
∑
B

pY1,Y2(y1, y2),

for any set B ⊂ R2. That is, the probability of the event {(Y1, Y2) ∈ B} is obtained

by adding up the probability (mass) associated with each support point in B. If B =

(−∞, y1]× (−∞, y2], then

P [(Y1, Y2) ∈ B] = P (Y1 ≤ y1, Y2 ≤ y2) ≡ FY1,Y2(y1, y2) =
∑
t1≤y1

∑
t2≤y2

pY1,Y2(t1, t2)

is called the joint cumulative distribution function (cdf) of (Y1, Y2).
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Example 5.1. Tornados are natural disasters that cause millions of dollars in damage

each year. An actuary determines that the annual numbers of tornadoes in two Iowa

counties (Lee and Van Buren) are jointly distributed as indicated in the table below. Let

Y1 and Y2 denote the number of tornados seen each year in Lee and Van Buren counties,

respectively.

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 y2 = 3

y1 = 0 0.12 0.06 0.05 0.02

y1 = 1 0.13 0.15 0.12 0.03

y1 = 2 0.05 0.15 0.10 0.02

(a) What is the probability that there is no more than one tornado seen in the two

counties combined?

Solution. We want to compute P (Y1 + Y2 ≤ 1). Note that the support points which

correspond to the event {Y1 + Y2 ≤ 1} are (0, 0), (0, 1) and (1, 0). Thus,

P (Y1 + Y2 ≤ 1) = pY1,Y2(0, 0) + pY1,Y2(1, 0) + pY1,Y2(0, 1)

= 0.12 + 0.13 + 0.06 = 0.31.

(b) What is the probability that there are two tornadoes in Lee County?

Solution. We want to compute P (Y1 = 2). Note that the support points which

correspond to the event {Y1 = 2} are (2, 0), (2, 1), (2, 2) and (2, 3). Thus,

P (Y1 = 2) = pY1,Y2(2, 0) + pY1,Y2(2, 1) + pY1,Y2(2, 2) + pY1,Y2(2, 3)

= 0.05 + 0.15 + 0.10 + 0.02 = 0.32. ¤

5.3 Continuous random vectors

TERMINOLOGY : Let Y1 and Y2 be continuous random variables. Then, (Y1, Y2) is called

a continuous random vector, and the joint probability density function (pdf) of

Y1 and Y2 is denoted by fY1,Y2(y1, y2). The joint pdf fY1,Y2(y1, y2) is a three-dimensional

function whose domain is R, the two-dimensional support of (Y1, Y2).
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PROPERTIES : The function fY1,Y2(y1, y2) has the following properties:

(1) fY1,Y2(y1, y2) > 0, for all (y1, y2) ∈ R

(2) The function fY1,Y2(y1, y2) integrates to 1 over its support R; i.e.,
∫

R

fY1,Y2(y1, y2)dy1dy2 = 1.

We realize this is a double integral since R is a two-dimensional set.

RESULT : Suppose that (Y1, Y2) is a continuous random vector with joint pdf fY1,Y2(y1, y2).

Then,

P [(Y1, Y2) ∈ B] =

∫

B

fY1,Y2(y1, y2)dy1dy2,

for any set B ⊂ R2. We realize that this is a double integral since B is a two-dimensional

set in the (y1, y2) plane. Therefore, geometrically, P [(Y1, Y2) ∈ B] is the volume under

the three-dimensional function fY1,Y2(y1, y2) over the two-dimensional set B.

TERMINOLOGY : Suppose that (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2). The joint cumulative distribution function (cdf) for (Y1, Y2) is given

by

FY1,Y2(y1, y2) ≡ P (Y1 ≤ y1, Y2 ≤ y2) =

∫ y2

−∞

∫ y1

−∞
fY1,Y2(t1, t2)dt1dt2,

for all (y1, y2) ∈ R2. It follows upon differentiation that the joint pdf is given by

fY1,Y2(y1, y2) =
∂2

∂y1∂y2

FY1,Y2(y1, y2),

wherever these mixed partial derivatives are defined.

Example 5.2. A bank operates with a drive-up facility and a walk-up window. On a

randomly selected day, let

Y1 = proportion of time the drive-up facility is in use

Y2 = proportion of time the walk-up facility is in use.

Suppose that the joint pdf of (Y1, Y2) is given by

fY1,Y2(y1, y2) =





6
5
(y1 + y2

2), 0 < y1 < 1, 0 < y2 < 1

0, otherwise.
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Note that the support in this example is

R = {(y1, y2) : 0 < y1 < 1, 0 < y2 < 1}.

It is very helpful to plot the support of (Y1, Y2) in the (y1, y2) plane.

(a) What is the probability that neither facility is busy more than 1/4 of the day? That

is, what is P (Y1 ≤ 1/4, Y2 ≤ 1/4)?

Solution. Here, we want to integrate the joint pdf fY1,Y2(y1, y2) over the set

B = {(y1, y2) : 0 < y1 < 1/4, 0 < y2 < 1/4}.

The desired probability is

P (Y1 ≤ 1/4, Y2 ≤ 1/4) =

∫ 1/4

y1=0

∫ 1/4

y2=0

6

5
(y1 + y2

2)dy2dy1

=
6

5

∫ 1/4

y1=0

[(
y1y2 +

y3
2

3

)∣∣∣∣
1/4

y2=0

]
dy1

=
6

5

∫ 1/4

y1=0

(
y1

4
+

1

192

)
dy1

=
6

5

[(
y2

1

8
+

y1

192

)∣∣∣∣
1/4

y1=0

]
=

6

5

(
1

128
+

1

768

)
≈ 0.0109.

(b) Find the probability that the proportion of time the drive-up facility is in use is less

than the proportion of time the walk-up facility is in use; i.e., compute P (Y1 < Y2).

Solution. Here, we want to integrate the joint pdf fY1,Y2(y1, y2) over the set

B = {(y1, y2) : 0 < y1 < y2 < 1}.

The desired probability is

P (Y1 < Y2) =

∫ 1

y2=0

∫ y2

y1=0

6

5
(y1 + y2

2)dy1dy2

=
6

5

∫ 1

y2=0

[(
y2

1

2
+ y1y

2
2

)∣∣∣∣
y2

y1=0

]
dy2

=
6

5

∫ 1

y2=0

(
y2

2

2
+ y3

2

)
dy2

=
6

5

[(
y3

2

6
+

y4
2

4

)∣∣∣∣
1

y2=0

]
=

6

5

(
1

6
+

1

4

)
= 0.5. ¤
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5.4 Marginal distributions

DISCRETE CASE : The joint pmf of (Y1, Y2) in Example 5.1 is depicted below (in the in-

ner rectangular part of the table). The marginal distributions of Y1 and Y2 are catalogued

in the margins of the table.

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 y2 = 3 pY1(y1)

y1 = 0 0.12 0.06 0.05 0.02 0.25

y1 = 1 0.13 0.15 0.12 0.03 0.43

y1 = 2 0.05 0.15 0.10 0.02 0.32

pY2(y2) 0.30 0.36 0.27 0.07 1

TERMINOLOGY : Let (Y1, Y2) be a discrete random vector with pmf pY1,Y2(y1, y2). The

marginal pmf of Y1 is

pY1(y1) =
∑
y2

pY1,Y2(y1, y2)

and the marginal pmf of Y2 is

pY2(y2) =
∑
y1

pY1,Y2(y1, y2).

MAIN POINT : In the two-dimensional discrete case, marginal pmfs are obtained by

“summing over” the other variable.

TERMINOLOGY : Let (Y1, Y2) be a continuous random vector with pdf fY1,Y2(y1, y2).

Then the marginal pdf of Y1 is

fY1(y1) =

∫ ∞

−∞
fY1,Y2(y1, y2)dy2

and the marginal pdf of Y2 is

fY2(y2) =

∫ ∞

−∞
fY1,Y2(y1, y2)dy1.

MAIN POINT : In the two-dimensional continuous case, marginal pdfs are obtained by

“integrating over” the other variable.
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Example 5.3. In a simple genetics model, the proportion, say Y1, of a population with

trait 1 is always less than the proportion, say Y2, of a population with trait 2. Suppose

that the random vector (Y1, Y2) has joint pdf

fY1,Y2(y1, y2) =





6y1, 0 < y1 < y2 < 1

0, otherwise.

(a) Find the marginal distributions fY1(y1) and fY2(y2).

Solution. To find fY1(y1), we integrate fY1,Y2(y1, y2) over y2. For 0 < y1 < 1,

fY1(y1) =

∫ 1

y2=y1

6y1dy2 = 6y1(1− y1).

Thus, the marginal distribution of Y1 is given by

fY1(y1) =





6y1(1− y1), 0 < y1 < 1

0, otherwise.

That is, Y1 ∼ beta(2, 2). To find fY2(y2), we integrate fY1,Y2(y1, y2) over y1. For values of

0 < y2 < 1,

fY2(y2) =

∫ y2

y1=0

6y1dy1 = 3y2
1

∣∣∣
y2

0
= 3y2

2.

Thus, the marginal distribution of Y2 is given by

fY2(y2) =





3y2
2, 0 < y2 < 1

0, otherwise.

That is, Y2 ∼ beta(3, 1).

(b) Find the probability that the proportion of individuals with trait 2 exceeds 1/2.

Solution. Here, we want to find P (B), where the set

B = {(y1, y2) : 0 < y1 < y2, y2 > 1/2}.

This probability can be computed two different ways:

(i) using the joint distribution fY1,Y2(y1, y2) and computing

P [(Y1, Y2) ∈ B] =

∫ 1

y2=1/2

∫ y2

y1=0

6y1 dy1dy2.

PAGE 107



CHAPTER 5 STAT/MATH 511, J. TEBBS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

y1

f(y
1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y2

f(y
2)

Y1 ∼ beta(2, 2) Y2 ∼ beta(3, 1)

Figure 5.16: Marginal distributions in Example 5.3.

(ii) using the marginal distribution fY2(y2) and computing

P (Y2 > 1/2) =

∫ 1

y2=1/2

3y2
2dy2.

Either way, you will get the same answer! Notice that in (i), you are computing the

volume under fY1,Y2(y1, y2) over the set B. In (ii), you are finding the area under fY2(y2)

over the set {y2 : y2 > 1/2}.

(c) Find the probability that the proportion of individuals with trait 2 is at least twice

that of the proportion of individuals with trait 1.

Solution. Here, we want to compute P (Y2 ≥ 2Y1); i.e., we want to compute P (D),

where the set

D = {(y1, y2) : y2 ≥ 2y1}.

This equals

P [(Y1, Y2) ∈ D] =

∫ 1

y2=0

∫ y2/2

y1=0

6y1dy1dy2 = 0.25.

This is the volume under fY1,Y2(y1, y2) over the set D. ¤
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5.5 Conditional distributions

RECALL: For events A and B in a non-empty sample space S, we defined

P (A|B) =
P (A ∩B)

P (B)
,

for P (B) > 0. Now, suppose that (Y1, Y2) is a discrete random vector. If we let B =

{Y2 = y2} and A = {Y1 = y1}, we obtain

P (A|B) =
P (Y1 = y1, Y2 = y2)

P (Y2 = y2)
=

pY1,Y2(y1, y2)

pY2(y2)
.

This leads to the definition of a discrete conditional distribution.

TERMINOLOGY : Suppose that (Y1, Y2) is a discrete random vector with joint pmf

pY1,Y2(y1, y2). We define the conditional probability mass function (pmf) of Y1,

given Y2 = y2, as

pY1|Y2(y1|y2) =
pY1,Y2(y1, y2)

pY2(y2)
,

whenever pY2(y2) > 0. Similarly, the conditional probability mass function of Y2, given

Y1 = y1, is

pY2|Y1(y2|y1) =
pY1,Y2(y1, y2)

pY1(y1)
,

whenever pY1(y1) > 0.

Example 5.4. The joint pmf of (Y1, Y2) in Example 5.1 is depicted below (in the inner

rectangular part of the table). The marginal distributions of Y1 and Y2 are catalogued in

the margins of the table.

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 y2 = 3 pY1(y1)

y1 = 0 0.12 0.06 0.05 0.02 0.25

y1 = 1 0.13 0.15 0.12 0.03 0.43

y1 = 2 0.05 0.15 0.10 0.02 0.32

pY2(y2) 0.30 0.36 0.27 0.07 1

Question: What is the conditional pmf of Y1, given Y2 = 1?
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Solution. Straightforward calculations show that

pY1|Y2(y1 = 0|y2 = 1) =
pY1,Y2(y1 = 0, y2 = 1)

pY2(y2 = 1)
=

0.06

0.36
= 2/12

pY1|Y2(y1 = 1|y2 = 1) =
pY1,Y2(y1 = 1, y2 = 1)

pY2(y2 = 1)
=

0.15

0.36
= 5/12

pY1|Y2(y1 = 2|y2 = 1) =
pY1,Y2(y1 = 2, y2 = 1)

pY2(y2 = 1)
=

0.15

0.36
= 5/12.

Thus, the conditional pmf of Y1, given Y2 = 1, is given by

y1 0 1 2

pY1|Y2(y1|y2 = 1) 2/12 5/12 5/12

This conditional pmf tells us how Y1 is distributed if we are given that Y2 = 1.

Exercise. Find the conditional pmf of Y2, given Y1 = 0. ¤

TERMINOLOGY : Suppose that (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2). We define the conditional probability density function (pdf) of Y1,

given Y2 = y2, as

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
.

Similarly, the conditional probability density function of Y2, given Y1 = y1, is

fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
.

Example 5.5. Consider the bivariate pdf in Example 5.3,

fY1,Y2(y1, y2) =





6y1, 0 < y1 < y2 < 1

0, otherwise.

This model describes the distribution of the random vector (Y1, Y2), where Y1, the pro-

portion of a population with trait 1, is always less than Y2, the proportion of a population

with trait 2. Derive the conditional distributions fY1|Y2(y1|y2) and fY2|Y1(y2|y1).

Solution. In Example 5.3, we derived the marginal pdfs to be

fY1(y1) =





6y1(1− y1), 0 < y1 < 1

0, otherwise
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and

fY2(y2) =





3y2
2, 0 < y2 < 1

0, otherwise.

First, we derive fY1|Y2(y1|y2), so fix Y2 = y2. Remember, once we condition on Y2 = y2

(i.e., once we fix Y2 = y2), we then regard y2 as simply a constant. This is an important

point to understand! For values of 0 < y1 < y2, it follows that

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
=

6y1

3y2
2

=
2y1

y2
2

,

and, thus, this is the value of fY1|Y2(y1|y2) when 0 < y1 < y2. For values of y1 /∈ (0, y2),

the conditional density fY1|Y2(y1|y2) = 0. Summarizing,

fY1|Y2(y1|y2) =





2y1/y
2
2, 0 < y1 < y2

0, otherwise.

To reiterate, in this (conditional) pdf, the value of y2 is fixed and known. It is

Y1 that is varying. This function describes how Y1 is distributed for y2 fixed.

Now, to derive the conditional pdf of Y2 given Y1, we fix Y1 = y1; then, for all values of

y1 < y2 < 1, we have

fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
=

6y1

6y1(1− y1)
=

1

1− y1

.

This is the value of fY2|Y1(y2|y1) when y1 < y2 < 1. When y2 /∈ (y1, 1), the conditional

pdf is fY2|Y1(y2|y1) = 0. Remember, once we condition on Y1 = y1, then we regard y1

simply as a constant. Summarizing,

fY2|Y1(y2|y1) =





1
1−y1

, y1 < y2 < 1

0, otherwise.

That is, conditional on Y1 = y1, Y2 ∼ U(y1, 1). Again, in this (conditional) pdf, the

value of y1 is fixed and known. It is Y2 that is varying. This function describes

how Y2 is distributed for y1 fixed. ¤

RESULT : The use of conditional distributions allows us to define conditional probabilities

of events associated with one random variable when we know the value of another random
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variable. If Y1 and Y2 are jointly discrete, then for any set B ⊂ R,

P (Y1 ∈ B|Y2 = y2) =
∑
B

pY1|Y2(y1|y2)

P (Y2 ∈ B|Y1 = y1) =
∑
B

pY2|Y1(y2|y1).

If Y1 and Y2 are jointly continuous, then for any set B ⊂ R,

P (Y1 ∈ B|Y2 = y2) =

∫

B

fY1|Y2(y1|y2)dy1

P (Y2 ∈ B|Y1 = y1) =

∫

B

fY2|Y1(y2|y1)dy2.

Example 5.6. A health-food store stocks two different brands of grain. Let Y1 denote

the amount of brand 1 in stock and let Y2 denote the amount of brand 2 in stock (both

Y1 and Y2 are measured in 100s of lbs). The joint distribution of Y1 and Y2 is given by

fY1,Y2(y1, y2) =





24y1y2, y1 > 0, y2 > 0, 0 < y1 + y2 < 1

0, otherwise.

(a) Find the conditional pdf fY1|Y2(y1|y2).

(b) Compute P (Y1 > 0.5|Y2 = 0.3).

(c) Find P (Y1 > 0.5).

Solutions. (a) To find the conditional pdf fY1|Y2(y1|y2), we first need to find the

marginal pdf of Y2. The marginal pdf of Y2, for 0 < y2 < 1, is

fY2(y2) =

∫ 1−y2

y1=0

24y1y2 dy1 = 24y2

(
y2

1

2

∣∣∣∣
1−y2

0

)
= 12y2(1− y2)

2,

and 0, otherwise. We recognize this as a beta(2, 3) pdf; i.e., Y2 ∼ beta(2, 3). The

conditional pdf of Y1, given Y2 = y2, is

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
=

24y1y2

12y2(1− y2)2

=
2y1

(1− y2)2
,

for 0 < y1 < 1− y2, and 0, otherwise. Summarizing,

fY1|Y2(y1|y2) =





2y1

(1−y2)2
, 0 < y1 < 1− y2

0, otherwise.
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(b) To compute P (Y1 > 0.5|Y2 = 0.3), we work with the conditional pdf fY1|Y2(y1|y2),

which for y2 = 0.3, is given by

fY1|Y2(y1|y2) =





(
200
49

)
y1, 0 < y1 < 0.7

0, otherwise.

Thus,

P (Y1 > 0.5|Y2 = 0.3) =

∫ 0.7

0.5

(
200

49

)
y1dy1 ≈ 0.489.

(c) To compute P (Y1 > 0.5), we can either use the marginal pdf fY1(y1) or the joint pdf

fY1,Y2(y1, y2). Marginally, it turns out that Y1 ∼ beta(2, 3) as well (verify!). Thus,

P (Y1 > 0.5) =

∫ 1

0.5

12y1(1− y1)
2dy1 ≈ 0.313.

REMARK : Notice how P (Y1 > 0.5|Y2 = 0.3) 6= P (Y1 > 0.5); that is, knowledge of the

value of Y2 has affected the way that we assign probability to events involving Y1. Of

course, one might expect this because of the support in the joint pdf fY1,Y2(y1, y2). ¤

5.6 Independent random variables

TERMINOLOGY : Suppose (Y1, Y2) is a random vector (discrete or continuous) with

joint cdf FY1,Y2(y1, y2), and denote the marginal cdfs of Y1 and Y2 by FY1(y1) and FY2(y2),

respectively. We say the random variables Y1 and Y2 are independent if and only if

FY1,Y2(y1, y2) = FY1(y1)FY2(y2)

for all values of y1 and y2. Otherwise, we say that Y1 and Y2 are dependent.

RESULT : Suppose that (Y1, Y2) is a random vector (discrete or continuous) with joint

pdf (pmf) fY1,Y2(y1, y2), and denote the marginal pdfs (pmfs) of Y1 and Y2 by fY1(y1) and

fY2(y2), respectively. Then, Y1 and Y2 are independent if and only if

fY1,Y2(y1, y2) = fY1(y1)fY2(y2)

for all values of y1 and y2. Otherwise, Y1 and Y2 are dependent.

Proof. Exercise. ¤
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Example 5.7. Suppose that the pmf for the discrete random vector (Y1, Y2) is given by

pY1,Y2(y1, y2) =





1
18

(y1 + 2y2), y1 = 1, 2, y2 = 1, 2

0, otherwise.

The marginal distribution of Y1, for values of y1 = 1, 2, is given by

pY1(y1) =
2∑

y2=1

pY1,Y2(y1, y2) =
2∑

y2=1

1

18
(y1 + 2y2) =

1

18
(2y1 + 6),

and pY1(y1) = 0, otherwise. Similarly, the marginal distribution of Y2, for values of

y2 = 1, 2, is given by

pY2(y2) =
2∑

y1=1

pY1,Y2(y1, y2) =
2∑

y1=1

1

18
(y1 + 2y2) =

1

18
(3 + 4y2),

and pY2(y2) = 0, otherwise. Note that, for example,

3

18
= pY1,Y2(1, 1) 6= pY1(1)pY2(1) =

8

18
× 7

18
=

14

81
;

thus, the random variables Y1 and Y2 are dependent. ¤

Example 5.8. Let Y1 and Y2 denote the proportions of time (out of one workday) during

which employees I and II, respectively, perform their assigned tasks. Suppose that the

random vector (Y1, Y2) has joint pdf

fY1,Y2(y1, y2) =





y1 + y2, 0 < y1 < 1, 0 < y2 < 1

0, otherwise.

It is straightforward to show (verify!) that

fY1(y1) =





y1 + 1
2
, 0 < y1 < 1

0, otherwise
and fY2(y2) =





y2 + 1
2
, 0 < y2 < 1

0, otherwise.

Thus, since

fY1,Y2(y1, y2) = y1 + y2 6=
(

y1 +
1

2

)(
y2 +

1

2

)
= fY1(y1)fY2(y2),

for 0 < y1 < 1 and 0 < y2 < 1, Y1 and Y2 are dependent. ¤
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A CONVENIENT RESULT : Let (Y1, Y2) be a random vector (discrete or continuous)

with pdf (pmf) fY1,Y2(y1, y2), If the support set R does not constrain y1 by y2 (or y2 by

y1), and additionally, we can factor the joint pdf (pmf) fY1,Y2(y1, y2) into two nonnegative

expressions

fY1,Y2(y1, y2) = g(y1)h(y2),

then Y1 and Y2 are independent. Note that g(y1) and h(y2) are simply functions; they

need not be pdfs (pmfs), although they sometimes are. The only requirement is that

g(y1) is a function of y1 only, h(y2) is a function of y2 only, and that both are nonnegative.

If the support involves a constraint, the random variables are automatically dependent.

Example 5.9. In Example 5.6, Y1 denoted the amount of brand 1 grain in stock and Y2

denoted the amount of brand 2 grain in stock. Recall that the joint pdf of (Y1, Y2) was

given by

fY1,Y2(y1, y2) =





24y1y2, y1 > 0, y2 > 0, 0 < y1 + y2 < 1

0, otherwise.

Here, the support is R = {(y1, y2) : y1 > 0, y2 > 0, 0 < y1 + y2 < 1}. Since knowledge of

y1 affects the value of y2, and vice versa, the support involves a constraint, and Y1 and

Y2 are dependent. ¤

Example 5.10. Suppose that the random vector (X, Y ) has joint pdf

fX,Y (x, y) =





[Γ(α)Γ(β)]−1λe−λx(λx)α+β−1yα−1(1− y)β−1, x > 0, 0 < y < 1

0, otherwise.

for λ > 0, α > 0, and β > 0. Since R = {(x, y) : x > 0, 0 < y < 1} does not involve a

constraint, it follows immediately that X and Y are independent, since we can write

fX,Y (x, y) = λe−λx(λx)α+β−1

︸ ︷︷ ︸
g(x)

× yα−1(1− y)β−1

Γ(α)Γ(β)︸ ︷︷ ︸
h(y)

,

where g(x) and h(y) are nonnegative functions. Note that we are not saying that g(x)

and h(y) are marginal distributions of X and Y , respectively (in fact, they are not the

marginal distributions, although they are proportional to the marginals). ¤
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EXTENSION : We generalize the notion of independence to n-variate random vectors.

We use the conventional notation

Y = (Y1, Y2, ..., Yn)

and

y = (y1, y2, ..., yn).

We denote the joint cdf of Y by FY (y) and the joint pdf (pmf) of Y by fY (y).

TERMINOLOGY : Suppose that the random vector Y = (Y1, Y2, ..., Yn) has joint cdf

FY (y), and suppose that the random variable Yi has cdf FYi
(yi), for i = 1, 2, ..., n. Then,

Y1, Y2, ..., Yn are independent random variables if and only if

FY (y) =
n∏

i=1

FYi
(yi);

that is, the joint cdf can be factored into the product of the marginal cdfs. Alternatively,

Y1, Y2, ..., Yn are independent random variables if and only if

fY (y) =
n∏

i=1

fYi
(yi);

that is, the joint pdf (pmf) can be factored into the product of the marginals.

Example 5.11. In a small clinical trial, n = 20 patients are treated with a new drug.

Suppose that the response from each patient is a measurement Y ∼ N (µ, σ2). Denot-

ing the 20 responses by Y = (Y1, Y2, ..., Y20), then, assuming independence, the joint

distribution of the 20 responses is, for y ∈ R20,

fY (y) =
20∏
i=1

1√
2πσ

e−
1
2(

yi−µ

σ )
2

︸ ︷︷ ︸
fYi

(yi)

=

(
1√
2πσ

)20

e−
1
2

∑20
i=1(

yi−µ

σ )
2

.

What is the probability that at least one patient’s response is greater than µ + 2σ?

Solution. Define the event

B = {at least one patient’s response exceeds µ + 2σ}.
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We want to compute P (B). Note that

B = {all 20 responses are less than µ + 2σ}

and recall that P (B) = 1 − P (B). We will compute P (B) because it is easier. The

probability that the first patient’s response Y1 is less than µ + 2σ is given by

FY1(µ + 2σ) = P (Y1 < µ + 2σ) = P (Z < 2) = FZ(2) = 0.9772,

where Z ∼ N (0, 1) and FZ(·) denotes the standard normal cdf. This probability is same

for each patient, because each patient’s response follows the same N (µ, σ2) distribution.

Because the patients’ responses are independent random variables,

P (B) = P (Y1 < µ + 2σ, Y2 < µ + 2σ, ..., Y20 < µ + 2σ)

=
20∏
i=1

FYi
(µ + 2σ)

= [FZ(2)]20 ≈ 0.63.

Finally, P (B) = 1− P (B) ≈ 1− 0.63 = 0.37. ¤

5.7 Expectations of functions of random variables

RESULT : Suppose that Y = (Y1, Y2, ..., Yn) has joint pdf fY (y), or joint pmf pY (y), and

suppose that g(Y ) = g(Y1, Y2, ..., Yn) is a real vector valued function of Y1, Y2, ..., Yn; i.e.,

g : Rn →R. Then,

• if Y is discrete,

E[g(Y )] =
∑
y1

∑
y2

· · ·
∑
yn

g(y)pY (y),

• and if Y is continuous,

E[g(Y )] =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(y)fY (y)dy.

If these quantities are not finite, then we say that E[g(Y )] does not exist.
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PROPERTIES OF EXPECTATIONS : Let Y = (Y1, Y2, ..., Yn) be a discrete or contin-

uous random vector, suppose that g, g1, g2, ..., gk are real vector valued functions from

Rn → R, and let c be any real constant. Then,

(a) E(c) = c

(b) E[cg(Y )] = cE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].

Example 5.12. In Example 5.6, Y1 denotes the amount of grain 1 in stock and Y2

denotes the amount of grain 2 in stock. Both Y1 and Y2 are measured in 100s of lbs. The

joint distribution of Y1 and Y2 is

fY1,Y2(y1, y2) =





24y1y2, y1 > 0, y2 > 0, 0 < y1 + y2 < 1

0, otherwise.

What is the expected total amount of grain (Y1 + Y2) in stock?

Solution. Let the function g : R2 → R be defined by g(y1, y2) = y1 + y2. We would

like to compute E[g(Y1, Y2)] = E(Y1 + Y2). From the last result, we know that

E(Y1 + Y2) =

∫ 1

y1=0

∫ 1−y1

y2=0

(y1 + y2)× 24y1y2 dy2dy1

=

∫ 1

y1=0

∫ 1−y1

y2=0

(24y2
1y2 + 24y1y

2
2) dy2dy1

=

∫ 1

y1=0

[(
24y2

1

y2
2

2

∣∣∣∣
1−y1

0

)
+

(
24y1

y3
2

3

∣∣∣∣
1−y1

0

)]
dy1

=

∫ 1

y1=0

12y2
1(1− y1)

2dy1 +

∫ 1

y1=0

8y1(1− y1)
3dy1

= 12

∫ 1

y1=0

y2
1(1− y1)

2dy1 + 8

∫ 1

y1=0

y1(1− y1)
3dy1

= 12

[
Γ(3)Γ(3)

Γ(6)

]
+ 8

[
Γ(2)Γ(4)

Γ(6)

]
= 4/5.

The expected total amount of grain in stock is 80 lbs.

REMARK : In the calculation above, we twice used the fact that
∫ 1

0

yα−1(1− y)β−1dy =
Γ(α)Γ(β)

Γ(α + β)
.
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ANOTHER SOLUTION : To compute E(Y1 +Y2), we could have taken a different route.

In Example 5.6, we discovered that the marginal distributions were

Y1 ∼ beta(2, 3)

Y2 ∼ beta(2, 3)

so that

E(Y1) = E(Y2) =
2

2 + 3
=

2

5
.

Because expectations are linear, we have

E(Y1 + Y2) =
2

5
+

2

5
=

4

5
. ¤

RESULT : Suppose that Y1 and Y2 are independent random variables. Let g(Y1) be a

function of Y1 only, and let h(Y2) be a function of Y2 only. Then,

E[g(Y1)h(Y2)] = E[g(Y1)]E[h(Y2)],

provided that all expectations exist.

Proof. Without loss, assume that (Y1, Y2) is a continuous random vector (the discrete

case is analogous). Suppose that (Y1, Y2) has joint pdf fY1,Y2(y1, y2) with support R ⊂ R2.

Note that

E[g(Y1)h(Y2)] =

∫

R2

g(y1)h(y2)fY1,Y2(y1, y2)dy2dy1

=

∫

R

∫

R
g(y1)h(y2)fY1(y1)fY2(y2)dy2dy1

=

∫

R
g(y1)fY1(y1)dy1

∫

R
h(y2)fY2(y2)dy2

= E[g(Y1)]E[h(Y2)]. ¤

COROLLARY : If Y1 and Y2 are independent random variables, then

E(Y1Y2) = E(Y1)E(Y2).

This is a special case of the previous result obtained by taking g(Y1) = Y1 and h(Y2) = Y2.
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5.8 Covariance and correlation

5.8.1 Covariance

TERMINOLOGY : Suppose that Y1 and Y2 are random variables (discrete or continuous)

with means E(Y1) = µ1 and E(Y2) = µ2, respectively. The covariance between Y1 and

Y2 is given by

Cov(Y1, Y2) ≡ E[(Y1 − µ1)(Y2 − µ2)]

= E(Y1Y2)− E(Y1)E(Y2).

The latter expression is often easier to work with and is called the covariance comput-

ing formula. The covariance is a numerical measure that describes how two variables

are linearly related.

• If Cov(Y1, Y2) > 0, then Y1 and Y2 are positively linearly related.

• If Cov(Y1, Y2) < 0, then Y1 and Y2 are negatively linearly related.

• If Cov(Y1, Y2) = 0, then Y1 and Y2 are not linearly related.

RESULT : If Y1 and Y2 are independent, then Cov(Y1, Y2) = 0.

Proof. Suppose that Y1 and Y2 are independent. Using the covariance computing formula,

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2)

= E(Y1)E(Y2)− E(Y1)E(Y2) = 0. ¤

IMPORTANT : If two random variables are independent, then they have zero covariance.

However, zero covariance does not necessarily imply independence, as we see now.

Example 5.13. An example of two dependent variables with zero covariance. Suppose

that Y1 ∼ U(−1, 1), and let Y2 = Y 2
1 . It is straightforward to show that

E(Y1) = 0

E(Y1Y2) = E(Y 3
1 ) = 0

E(Y2) = E(Y 2
1 ) = V (Y1) = 1/3.

PAGE 120



CHAPTER 5 STAT/MATH 511, J. TEBBS

Thus,

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) = 0− 0(1/3) = 0.

However, clearly Y1 and Y2 are not independent; in fact, they are perfectly related! It is

just that the relationship is not linear (it is quadratic). The covariance only measures

linear relationships. ¤

Example 5.14. Gasoline is stocked in a tank once at the beginning of each week and

then sold to customers. Let Y1 denote the proportion of the capacity of the tank that

is available after it is stocked. Let Y2 denote the proportion of the capacity of the bulk

tank that is sold during the week. Suppose that the random vector (Y1, Y2) has joint pdf

fY1,Y2(y1, y2) =





3y1, 0 < y2 < y1 < 1

0, otherwise.

Compute Cov(Y1, Y2).

Solution. It is perhaps easiest to use the covariance computing formula

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2).

The marginal distribution of Y1 is beta(3, 1). The marginal distribution of Y2 is

fY2(y2) =





3
2
(1− y2

2), 0 < y2 < 1

0, otherwise.

Thus, the marginal first moments are

E(Y1) =
3

3 + 1
= 0.75

E(Y2) =

∫ 1

0

y2 × 3

2
(1− y2

2)dy = 0.375.

Now, we need to compute E(Y1Y2). This is given by

E(Y1Y2) =

∫ 1

y1=0

∫ y1

y2=0

y1y2 × 3y1dy2dy1 = 0.30.

Thus, the covariance is

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) = 0.30− (0.75)(0.375) = 0.01875. ¤
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IMPORTANT : Suppose that Y1 and Y2 are random variables (discrete or continuous).

V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2)

V (Y1 − Y2) = V (Y1) + V (Y2)− 2Cov(Y1, Y2).

Proof. Suppose that Y1 and Y2 are random variables with means E(Y1) = µ1 and E(Y2) =

µ2, respectively. Let Z = Y1 + Y2. From the definition of variance, we have

V (Z) = E[(Z − µZ)2]

= E{[(Y1 + Y2)− E(Y1 + Y2)]
2}

= E[(Y1 + Y2 − µ1 − µ2)
2]

= E{[(Y1 − µ1) + (Y2 − µ2)]
2}

= E[(Y1 − µ1)
2 + (Y2 − µ2)

2 + 2 (Y1 − µ1)(Y2 − µ2)︸ ︷︷ ︸
cross product

]

= E[(Y1 − µ1)
2] + E[(Y2 − µ2)

2] + 2E[(Y1 − µ1)(Y2 − µ2)]

= V (Y1) + V (Y2) + 2Cov(Y1, Y2).

That V (Y1 − Y2) = V (Y1) + V (Y2)− 2Cov(Y1, Y2) is shown similarly. ¤

RESULT : Suppose that Y1 and Y2 are independent random variables (discrete or con-

tinuous).

V (Y1 + Y2) = V (Y1) + V (Y2)

V (Y1 − Y2) = V (Y1) + V (Y2).

Proof. In the light of the last result, this is obvious. ¤

Example 5.15. A small health-food store stocks two different brands of grain. Let Y1

denote the amount of brand 1 in stock and let Y2 denote the amount of brand 2 in stock

(both Y1 and Y2 are measured in 100s of lbs). The joint distribution of Y1 and Y2 is

fY1,Y2(y1, y2) =





24y1y2, y1 > 0, y2 > 0, 0 < y1 + y2 < 1

0, otherwise.

What is the variance for the total amount of grain in stock? That is, find V (Y1 + Y2).
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Solution: We know that

V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2).

Marginally, Y1 and Y2 are both beta(2, 3); see Example 5.6. Thus,

E(Y1) = E(Y2) =
2

2 + 3
=

2

5

and

V (Y1) = V (Y2) =
2(3)

(2 + 3 + 1)(2 + 3)2
=

1

25
.

We need to compute Cov(Y1, Y2). Note that

E(Y1Y2) =

∫ 1

y1=0

∫ 1−y1

y2=0

y1y2 × 24y1y2dy2dy1 =
2

15
.

Thus,

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2)

=
2

15
−

(
2

5

)(
2

5

)
≈ −0.027.

Finally,

V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2)

=
1

25
+

1

25
+ 2(−0.027) ≈ 0.027. ¤

RESULTS : Suppose that Y1 and Y2 are random variables (discrete or continuous). The

covariance function satisfies the following:

(a) Cov(Y1, Y2) = Cov(Y2, Y1)

(b) Cov(Y1, Y1) = V (Y1).

(c) Cov(a + bY1, c + dY2) = bdCov(Y1, Y2), for any constants a, b, c, and d.

Proof. Exercise. ¤
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5.8.2 Correlation

GENERAL PROBLEM : Suppose that X and Y are random variables and that we want

to predict Y as a linear function of X. That is, we want to consider functions of the form

Y = β0 + β1X, for fixed constants β0 and β1. In this situation, the “error in prediction”

is given by

Y − (β0 + β1X).

This error can be positive or negative, so in developing a measure of prediction error, we

want one that maintains the magnitude of error but ignores the sign. Thus, we define

the mean squared error of prediction, given by

Q(β0, β1) ≡ E{[Y − (β0 + β1X)]2}.

A two-variable calculus argument shows that the mean squared error of prediction

Q(β0, β1) is minimized when

β1 =
Cov(X, Y )

V (X)

and

β0 = E(Y )−
[
Cov(X,Y )

V (X)

]
E(X) = E(Y )− β1E(X).

Note that the value of β1, algebraically, is equal to

β1 =
Cov(X,Y )

V (X)

=

[
Cov(X,Y )

σXσY

]
σY

σX

= ρ

(
σY

σX

)
,

where

ρ =
Cov(X,Y )

σXσY

.

The quantity ρ is called the correlation coefficient between X and Y .

SUMMARY : The best linear predictor of Y , given X, is Y = β0 + β1X, where

β1 = ρ

(
σY

σX

)

β0 = E(Y )− β1E(X).
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NOTES ON THE CORRELATION COEFFICIENT :

(1) −1 ≤ ρ ≤ 1 (this can be proven using the Cauchy-Schwartz Inequality, from

calculus).

(2) If ρ = 1, then Y = β0 + β1X, where β1 > 0. That is, X and Y are perfectly

positively linearly related; i.e., the bivariate probability distribution of (X, Y ) lies

entirely on a straight line with positive slope.

(3) If ρ = −1, then Y = β0 + β1X, where β1 < 0. That is, X and Y are perfectly

negatively linearly related; i.e., the bivariate probability distribution of (X, Y ) lies

entirely on a straight line with negative slope.

(4) If ρ = 0, then X and Y are not linearly related.

NOTE : If X and Y are independent random variables, then ρ = 0. However, again, the

implication does not go the other way; that is, if ρ = 0, this does not necessarily mean

that X and Y are independent.

NOTE : In assessing the strength of the linear relationship between X and Y , the corre-

lation coefficient is often preferred over the covariance since ρ is measured on a bounded,

unitless scale. On the other hand, Cov(X,Y ) can be any real number and its units may

not even make practical sense.

Example 5.16. In Example 5.14, we considered the bivariate model

fY1,Y2(y1, y2) =





3y1, 0 < y2 < y1 < 1

0, otherwise.

for Y1, the proportion of the capacity of the tank after being stocked, and Y2, the pro-

portion of the capacity of the tank that is sold. Compute the correlation ρ between Y1

and Y2.

Solution: In Example 5.14, we computed Cov(Y1, Y2) = 0.01875, so all we need is

σY1 and σY2 , the marginal standard deviations. In Example 5.14, we also found that
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Y1 ∼ beta(3, 1) and

fY2(y2) =





3
2
(1− y2

2), 0 < y2 < 1

0, otherwise.

The variance of Y1 is

V (Y1) =
3(1)

(3 + 1 + 1)(3 + 1)2
=

3

80
=⇒ σY1 =

√
3

80
≈ 0.194.

Simple calculations using fY2(y2) show that E(Y 2
2 ) = 1/5 and E(Y2) = 3/8 so that

V (Y2) =
1

5
−

(
3

8

)2

= 0.059 =⇒ σY2 =
√

0.059 ≈ 0.244.

Finally, the correlation is

ρ =
Cov(Y1, Y2)

σY1σY2

≈ 0.01875

(0.194)(0.244)
≈ 0.40. ¤

5.9 Expectations and variances of linear functions of random

variables

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn are random variables and that a1, a2, ..., an

are constants. The function

U =
n∑

i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

is called a linear combination of the random variables Y1, Y2, ..., Yn.

EXPECTED VALUE OF A LINEAR COMBINATION :

E(U) = E

(
n∑

i=1

aiYi

)
=

n∑
i=1

aiE(Yi)

VARIANCE OF A LINEAR COMBINATION :

V (U) = V

(
n∑

i=1

aiYi

)
=

n∑
i=1

a2
i V (Yi) + 2

∑
i<j

aiajCov(Yi, Yj)

=
n∑

i=1

a2
i V (Yi) +

∑

i6=j

aiajCov(Yi, Yj)
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Example 5.17. Achievement tests are commonly seen in educational or employment

settings. For a large population of test-takers, let Y1, Y2, and Y3 represent scores for

different parts of an exam. Suppose that Y1 ∼ N (12, 4), Y2 ∼ N (16, 9), and Y3 ∼
N (20, 16). Suppose additionally that Y1 and Y2 are independent, Cov(Y1, Y3) = 0.8, and

Cov(Y2, Y3) = −6.7. Two different summary measures are computed to assess a subject’s

performance:

U1 = 0.5Y1 − 2Y2 + Y3 and U2 = 3Y1 − 2Y2 − Y3.

Find E(U1) and V (U1).

Solution: The expected value of U1 is

E(U1) = E(0.5Y1 − 2Y2 + Y3) = 0.5E(Y1)− 2E(Y2) + E(Y3)

= 0.5(12)− 2(16) + 20 = −6.

The variance of U1 is

V (U1) = V (0.5Y1 − 2Y2 + Y3)

= (0.5)2V (Y1) + (−2)2V (Y2) + (1)2V (Y3)

+ 2(0.5)(−2)Cov(Y1, Y2) + 2(0.5)(1)Cov(Y1, Y3) + 2(−2)(1)Cov(Y2, Y3)

= (0.25)(4) + 4(9) + 16 + 2(0.5)(−2)(0) + 2(0.5)(0.8) + 2(−2)(−6.7) = 80.6.

Exercise: Find E(U2) and V (U2). ¤

COVARIANCE BETWEEN TWO LINEAR COMBINATIONS : Suppose that

U1 =
n∑

i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

U2 =
m∑

j=1

bjXj = b1X1 + b2X2 + · · ·+ bmXm.

Then,

Cov(U1, U2) =
n∑

i=1

m∑
j=1

aibjCov(Yi, Xj).

Exercise: In Example 5.17, compute Cov(U1, U2).
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5.10 The multinomial model

RECALL: When we discussed the binomial model in Chapter 3, each (Bernoulli) trial

resulted in either a “success” or a “failure;” that is, on each trial, there were only two

outcomes possible (e.g., infected/not, germinated/not, defective/not, etc.).

TERMINOLOGY : A multinomial experiment is simply a generalization of a binomial

experiment. In particular, consider an experiment where

• the experiment consists of n trials (n is fixed),

• the outcome for any trial belongs to exactly one of k ≥ 2 categories,

• the probability that an outcome for a single trial falls into category i is pi, for

i = 1, 2, ..., k, where each pi remains constant from trial to trial, and

• the trials are independent.

DEFINITION : In a multinomial experiment, define

Y1 = number of outcomes in category 1

Y2 = number of outcomes in category 2

...

Yk = number of outcomes in category k

so that Y1 +Y2 + · · ·+Yk = n, and denote Y = (Y1, Y2, ..., Yk). We call Y a multinomial

random vector and write Y ∼ mult(n, p1, p2, ..., pk).

NOTE : When there are k = 2 categories (e.g., success/failure), the multinomial model

reduces to a binomial model! When k = 3, Y is said to have a trinomial distribution.

JOINT PMF : In general, If Y ∼ mult(n, p1, p2, ..., pk), the pmf for Y is given by

pY (y) =





n!
y1!y2!···yk!

py1

1 py2

2 · · · pyk

k , yi = 0, 1, ..., n;
∑

i yi = n

0, otherwise.
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Example 5.18. At a number of clinic sites throughout Nebraska, chlamydia and gon-

orrhea testing is performed on individuals using urine or swab specimens. Define the

following categories:

Category 1 : subjects with neither chlamydia nor gonorrhea

Category 2 : subjects with chlamydia but not gonorrhea

Category 3 : subjects with gonorrhea but not chlamydia

Category 4 : subjects with both chlamydia and gonorrhea.

For these k = 4 categories, empirical evidence suggests that p1 = 0.90, p2 = 0.06,

p3 = 0.01, and p4 = 0.03. At one site, suppose that n = 20 individuals are tested on a

given day. What is the probability exactly 16 are disease free, 2 are chlamydia positive

but gonorrhea negative, and the remaining 2 are positive for both infections?

Solution. Define Y = (Y1, Y2, Y3, Y4), where Yi counts the number of subjects in

category i. Assuming that subjects are independent,

Y ∼ mult(n = 20, p1 = 0.90, p2 = 0.06, p3 = 0.01, p4 = 0.03).

We want to compute

P (Y1 = 16, Y2 = 2, Y3 = 0, Y4 = 2) =
20!

16! 2! 0! 2!
(0.90)16(0.06)2(0.01)0(0.03)2

≈ 0.017.

FACTS : If Y = (Y1, Y2, ..., Yk) ∼ mult(n, p1, p2, ..., pk), then

• the marginal distribution of Yi is b(n, pi), for i = 1, 2, ..., k.

• E(Yi) = npi, for i = 1, 2, ..., k.

• V (Yi) = npi(1− pi), for i = 1, 2, ..., k.

• the joint distribution of (Yi, Yj) is trinomial(n, pi, pj, 1− pi − pj).

• Cov(Yi, Yj) = −npipj, for i 6= j.
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5.11 The bivariate normal distribution

TERMINOLOGY : The random vector (Y1, Y2) has a bivariate normal distribution

if its joint pdf is given by

fY1,Y2(y1, y2) =





1

2πσ1σ2

√
1−ρ2

e−Q/2, (y1, y2) ∈ R2

0, otherwise,

where

Q =
1

1− ρ2

[(
y1 − µ1

σ1

)2

− 2ρ

(
y1 − µ1

σ1

)(
y2 − µ2

σ2

)
+

(
y2 − µ2

σ2

)2]
.

We write (Y1, Y2) ∼ N2(µ1, µ2, σ
2
1, σ

2
2, ρ). There are 5 parameters associated with this

bivariate distribution: the marginal means (µ1 and µ2), the marginal variances (σ2
1 and

σ2
2), and the correlation ρ.

FACTS ABOUT THE BIVARIATE NORMAL DISTRIBUTION :

1. Marginally, Y1 ∼ N (µ1, σ
2
1) and Y2 ∼ N (µ2, σ

2
2).

2. Y1 and Y2 are independent ⇐⇒ ρ = 0. This is only true for the bivariate normal

distribution (remember, this does not hold in general).

3. The conditional distribution

Y1|{Y2 = y2} ∼ N
[
µ1 + ρ

(
σ1

σ2

)
(y2 − µ2), σ

2
1(1− ρ2)

]
.

4. The conditional distribution

Y2|{Y1 = y1} ∼ N
[
µ2 + ρ

(
σ2

σ1

)
(y1 − µ1), σ

2
2(1− ρ2)

]
.

Exercise: Suppose that (Y1, Y2) ∼ N2(0, 0, 1, 1, 0.5). What is P (Y2 > 0.5|Y1 = 0.2)?

Answer: Conditional on Y1 = y1 = 0.2, Y2 ∼ N (0.1, 0.75). Thus,

P (Y2 > 0.5|Y1 = 0.2) = P (Z > 0.46) = 0.3228.
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5.12 Conditional expectation

5.12.1 Conditional means and curves of regression

TERMINOLOGY : Suppose that X and Y are continuous random variables and that

g(X) and h(Y ) are functions of X and Y , respectively. The conditional expectation

of g(X), given Y = y, is

E[g(X)|Y = y] =

∫

R
g(x)fX|Y (x|y)dx.

Similarly, the conditional expectation of h(Y ), given X = x, is

E[h(Y )|X = x] =

∫

R
h(y)fY |X(y|x)dy.

If X and Y are discrete, then sums replace integrals.

IMPORTANT : It is important to see that, in general,

• E[g(X)|Y = y] is a function of y, and

• E[h(Y )|X = x] is a function of x.

CONDITIONAL MEANS : In the definition above, if g(X) = X and h(Y ) = Y , we get

(in the continuous case),

E(X|Y = y) =

∫

R
xfX|Y (x|y)dx

E(Y |X = x) =

∫

R
yfY |X(y|x)dy.

E(X|Y = y) is called the conditional mean of X, given Y = y. E(Y |X = x) is the

conditional mean of Y , given X = x.

Example 5.19. In a simple genetics model, the proportion, say X, of a population

with Trait 1 is always less than the proportion, say Y , of a population with trait 2. In

Example 5.3, we saw that the random vector (X, Y ) has joint pdf

fX,Y (x, y) =





6x, 0 < x < y < 1

0, otherwise.
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In Example 5.5, we derived the conditional distributions

fX|Y (x|y) =





2x/y2, 0 < x < y

0, otherwise
and fY |X(y|x) =





1
1−x

, x < y < 1

0, otherwise.

Thus, the conditional mean of X, given Y = y is

E(X|Y = y) =

∫ y

0

xfX|Y (x|y)dx

=

∫ y

0

x

(
2x

y2

)
dx =

2

y2

(
x3

3

∣∣∣∣
y

0

)
=

2y

3
.

Similarly, the conditional mean of Y , given X = x is

E(Y |X = x) =

∫ 1

x

yfY |X(y|x)dy

=

∫ 1

x

y

(
1

1− x

)
dy =

1

1− x

(
y2

2

∣∣∣∣
1

x

)
=

1

2
(x + 1).

That E(Y |X = x) = 1
2
(x + 1) is not surprising because Y |{X = x} ∼ U(x, 1). ¤

TERMINOLOGY : Suppose that (X, Y ) is a bivariate random vector.

• The graph of E(X|Y = y) versus y is called the curve of regression of X on Y .

• The graph of E(Y |X = x) versus x is the curve of regression of Y on X.

The curve of regression of Y on X, from Example 5.19, is depicted in Figure 5.17.

5.12.2 Iterated means and variances

REMARK : In general, E(X|Y = y) is a function of y, and y is fixed (not random). Thus,

E(X|Y = y) is a fixed number. However, E(X|Y ) is a function of Y ; thus, E(X|Y )

is a random variable! Furthermore, as with any random variable, it has a mean and

variance associated with it!!

ITERATED LAWS : Suppose that X and Y are random variables. Then the laws of

iterated expectation and variance, respectively, are given by

E(X) = E[E(X|Y )]
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Figure 5.17: The curve of regression E(Y |X = x) versus x in Example 5.19.

and

V (X) = E[V (X|Y )] + V [E(X|Y )].

NOTE : When considering the quantity E[E(X|Y )], the inner expectation is taken with

respect to the conditional distribution fX|Y (x|y). However, since E(X|Y ) is a function

of Y , the outer expectation is taken with respect to the marginal distribution fY (y).

Proof. We will prove that E(X) = E[E(X|Y )] for the continuous case. Note that

E(X) =

∫

R

∫

R
xfX,Y (x, y)dxdy

=

∫

R

∫

R
xfX|Y (x|y)fY (y)dxdy

=

∫

R

[∫

R
xfX|Y (x|y)dx

]

︸ ︷︷ ︸
E(X|Y =y)

fY (y)dy = E[E(X|Y )]. ¤

Example 5.20. Suppose that in a field experiment, we observe Y , the number of plots,

out of n, that respond to a treatment. However, we don’t know the value of p, the

probability of response, and furthermore, we think that it may be a function of location,
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temperature, precipitation, etc. In this situation, it might be appropriate to regard p as

a random variable. Specifically, suppose that the random variable P varies according to

a beta(α, β) distribution. That is, we assume a hierarchical structure:

Y |P = p ∼ binomial(n, p)

P ∼ beta(α, β).

The (unconditional) mean of Y can be computed using the iterated expectation rule:

E(Y ) = E[E(Y |P )] = E[nP ] = nE(P ) = n

(
α

α + β

)
.

The (unconditional) variance of Y is given by

V (Y ) = E[V (Y |P )] + V [E(Y |P )]

= E[nP (1− P )] + V [nP ]

= nE(P − P 2) + n2V (P )

= nE(P )− n{V (P ) + [E(P )]2}+ n2V (P )

= n

(
α

α + β

)
− n

[
αβ

(α + β)2(α + β + 1)
+

(
α

α + β

)2
]

+
n2αβ

(α + β)2(α + β + 1)

= n

(
α

α + β

)[
1−

(
α

α + β

)]
+

n(n− 1)αβ

(α + β)2(α + β + 1)︸ ︷︷ ︸
extra variation

.

Unconditionally, the random variable Y follows a beta-binomial distribution. This is

a popular probability model for situations wherein one observes binomial type responses

but where the variance is suspected to be larger than the usual binomial variance. ¤

BETA-BINOMIAL PMF : The probability mass function for a beta-binomial random

variable Y is given by

pY (y) =

∫ 1

0

fY,P (y, p)dp =

∫ 1

0

fY |P (y|p)fP (p)dp

=

∫ 1

0

(
n

y

)
py(1− p)n−y Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1dp

=

(
n

y

)
Γ(α + β)Γ(y + α)Γ(n + β − y)

Γ(α)Γ(β)Γ(n + α + β)
,

for y = 0, 1, ..., n, and pY (y) = 0, otherwise.
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