
Fitting the Linear regression Model by Using Matrices: learn it by
examples

(WMS) Example 11.1 Fit the simple linear regression model to the n = 5 data points:

(a). Write the linear model in a matrix form: Y = Xβ + ε; i.e., what are Y, X, β, and ε in this
context? What assumption did we assume for ε?
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(b). Find X′X, (X′X)−1, X′Y, M = X(X′X)−1X′. Are they symmetric? If a matrix A is symmetric,
then A′ = A. What is X′X(X′X)−1? Further show that (X′Y)′ = Y′X. What is (I−M)X(X′X)−1?
What is tr(I−M)?
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(c). Find the least-square estimator β̂ = (X′X)−1X′Y. What is the fitted model?
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(d). The “hat” matrix M = X(X′X)−1X′. Verify the following properties:

• M is symmetric; i.e., M′ = M.

• M is idempotent; i.e., M2 = M.

• MX = X.

• (I−M)X(X′X)−1 = 0.
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(e). Instead of using a simple linear model, we fit the data using the model:

Y = β0 + β1x+ β2x
2 + ε.

Redo (a). Write the linear model in a matrix form: Y = Xβ + ε; i.e., what are Y, X, β, and ε in
this context? and
(c). Find the least-square estimator β̂ = (X′X)−1X′Y. What is the fitted model?
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A summary page of last lecture: what we have observed from Example 11.1:

• For two matrices A and B, generally AB 6= BA. But

(AB)′ = B′A′ and tr(AB) = tr(BA).

Further
tr(A−B) = tr(A)− tr(B).

• X′X, (X′X)−1, M = X(X′X)−1X′ are symmetric matrices.

• If In is the n-dimensional identity matrix, X is of dimension n× p, then tr(In−M) = tr(In)−
tr(X(X′X)−1X′) = tr(In)− tr((X′X)−1X′X) = tr(In)− tr(Ip) = n− p.

• M is symmetric; i.e., M′ = M.

• M is idempotent; i.e., M2 = M.

• MX = X.

• (I−M)X(X′X)−1 = 0.

A quick quiz: If Z ∼ N(0, 1), W ∼ χ2(ν), Z and W are independent, what is the distribution of

T =
Z√
W/ν
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Now we know how to estimate β. The estimator β̂ = (X′X)−1X′Y. Is it a good estimator?
Unbiased? What are its sampling distribution? How can we make inference (confidence intervals,
hypothesis testing)? To answer these questions, we need some knowledge to help us handle random
vectors, more specifically, when these random vectors are from a multivariate normal distribution
N (µ,V). (Check this for Bivariate normal: https://www.geogebra.org/m/pO4JcWPz).
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Practice: Consider ε = (ε1, ε2)
′ ∼ N (0, σ2I2) where Let

a =

(
1
1

)
,b =

(
1
−2

)
,A =

(
1 −1
−1 1

)
, and B =

(
1 1
1 1

)
1. What is the distribution of Y = (Y1, Y2)

′ = a + Bε? What is the distribution of Y1? How
about the distribution of Y2?

2. What is the distribution of Z = (Z1, Z2)
′ = b + Aε? What is the distribution of Z1? How

about the distribution of Z2?

3. What is the distribution of a′ε?

4. What is Cov(Y,Z)? Are Y and Z independent?

8



We now prove that
β̂ ∼ N (β, σ2(X′X)−1)
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What is the distribution of a′β̂ for a = (a1, . . . , ap)
′?

What is the distribution of a′β̂ + ε∗, where ε∗ ∼ N(0, σ2) and ε∗ is independent with ε1, . . . , εn?
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What is the distribution of e = Y − Ŷ? (Recall HW 4 problem 2 part 3).
Prove that e and β̂ are independent.
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A summary page of last lecture: what we have observed from Example 11.1:

• For two matrices A and B, generally AB 6= BA. But

(AB)′ = B′A′ and tr(AB) = tr(BA).

Further
tr(A−B) = tr(A)− tr(B).

• X′X, (X′X)−1, M = X(X′X)−1X′ are symmetric matrices.

• If In is the n-dimensional identity matrix, X is of dimension n× p, then tr(In−M) = tr(In)−
tr(X(X′X)−1X′) = tr(In)− tr((X′X)−1X′X) = tr(In)− tr(Ip) = n− p.

• M is symmetric; i.e., M′ = M.

• M is idempotent; i.e., M2 = M.

• MX = X.

• (I−M)X(X′X)−1 = 0.

We have reviewed that: If Z ∼ N(0, 1), W ∼ χ2(ν), Z and W are independent, what is the distribu-
tion of

T =
Z√
W/ν

Further, we proved that

• β̂ ∼ N (β, σ2(X′X)−1)

• For any a = (a1, . . . , ap)
′, a′β̂ ∼ N (a′β, σ2a′(X′X)−1a)

• And a′β̂ + ε∗ ∼ N (a′β, σ2{1 + a′(X′X)−1a}), where ε∗ ∼ N(0, σ2) and ε∗ is independent with
ε1, . . . , εn

• Let Ŷ = Xβ̂ be the fitted values. The residual e = Y − Ŷ. We have proved that e ∼ N (0, )

• e and β̂ are independent!
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How to estimate σ2? Recall that in
Y = Xβ + ε,

where β = (β0, β1, . . . , βk)
′. Let p = k + 1 be the length of β. The length of Y is n, the dimension

of X is n × p. we assumed εi’s are iid N(0, σ2). Now the question is how to estimate σ2? Towards
this end, we need a new term, called error (residual) sum of squares:

SSE =

n∑
i=1

(Yi − Ŷi)2 =

n∑
i=1

e2i = e′e.

(1) Prove that
SSE = Y′(I−M)Y = Y′Y − β̂′X′Y.

(2) Using the fact, that if E(Y) = µ, V (Y) = V, then for any suitable matrix A,

E(Y′AY) = µ′Aµ + tr(AV),

and tr(X(X′X)−1X′) = tr((X′X)−1X′X) to prove that

E(SSE) = (n− p)σ2.

Then a natural estimator of σ2 is

σ̂2 =
SSE

n− p
In fact,

SSE

σ2
=

(n− p)σ̂2

σ2
∼ χ2(n− p).

(3) Find the value of σ̂2 in Example 11.1
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Recall

• that
β̂ ∼ N(β, σ2(X′X)−1)

and
(n− p)σ̂2

σ2
∼ χ2(n− p)

are independent;

• further that the quiz problem: If Z ∼ N(0, 1), W ∼ χ2(ν), Z and W are independent,

T =
Z√
W/ν

∼ T (ν).

These give us an idea to make inference for regression parameters β.
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Confidence interval: Similarly, recall that

a′β̂ ∼ N(a′β, σ2a′(X′X)−1a)

and
(n− p)σ̂2

σ2
∼ χ2(n− p).

These tell us a 100(1− α)% confidence interval for E(Y ) when

x = x∗ =

 x∗1
...
x∗k


is

a′β̂ ± tn−p,α/2
√
σ̂2a′(X′X)−1a

where

a =


1
x∗1
...
x∗k

 .

Prediction interval: Similarly, recall that

a′β̂ + ε∗ ∼ N(a′β, σ2{1 + a′(X′X)−1a}),

where ε∗ is independent with ε = (ε1, . . . , εn)′, and

(n− p)σ̂2

σ2
∼ χ2(n− p).

These tell us that a 100(1− α)% prediction interval for Y when

x = x∗ =

 x∗1
...
x∗k


is

a′β̂ ± tn−p,α/2
√
σ̂2{1 + a′(X′X)−1a}

where

a =


1
x∗1
...
x∗k



15



Example 11.1 (continued) Find a 90% confidence interval for E(Y ) where x = 1. FYI: t2,0.05 =
2.920, t3,0.05 = 2.353, t3,0.1 = 1.638.
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Example 11.1 (continued) Find a 90% prediction interval for Y at x = 2. FYI: t2,0.05 = 2.920,
t3,0.05 = 2.353, t3,0.1 = 1.638.
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A summary page of last lecture: what we have observed from Example 11.1:

• For two matrices A and B, generally AB 6= BA. But

(AB)′ = B′A′ and tr(AB) = tr(BA).

Further
tr(A−B) = tr(A)− tr(B).

• X′X, (X′X)−1, M = X(X′X)−1X′ are symmetric matrices.

• If In is the n-dimensional identity matrix, X is of dimension n× p, then tr(In−M) = tr(In)−
tr(X(X′X)−1X′) = tr(In)− tr((X′X)−1X′X) = tr(In)− tr(Ip) = n− p.

• M is symmetric; i.e., M′ = M.

• M is idempotent; i.e., M2 = M.

• MX = X.

• (I−M)X(X′X)−1 = 0.

We have reviewed that: If Z ∼ N(0, 1), W ∼ χ2(ν), Z and W are independent, what is the distribu-
tion of

T =
Z√
W/ν

We have proved that

• β̂ ∼ N (β, σ2(X′X)−1), where

β̂ =


β̂0
β̂1
...

β̂k

 ,β =


β0
β1
...
βk

 , and we denote (X′X)−1 =


c00 c01 c02 · · · c0k
c10 c11 c12 · · · c1k
...

...
. . . · · ·

...
...

... · · · . . .
...

ck0 ck1 ck2 · · · ckk


Note that means β̂j ∼ N(βj , σ

2cjj) for j = 0, 1, . . . , k. The standard error of β̂j is
√
cjjσ2.

• For any a = (a1, . . . , ap)
′, a′β̂ ∼ N (a′β, σ2a′(X′X)−1a).

• And a′β̂ + ε∗ ∼ N (a′β, σ2{1 + a′(X′X)−1a}), where ε∗ ∼ N(0, σ2) and ε∗ is independent with
ε1, . . . , εn

• Let Ŷ = Xβ̂ be the fitted values. The residual e = Y − Ŷ. We have proved that e ∼ N (0, )

• e and β̂ are independent!

• An estimator of σ2 is

σ̂2 =
SSE

n− p
=

e′e

n− p
and

(n− p)σ̂2

σ2
∼ χ2(n− p).
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Further, we have obtained the following results:

• A 100(1− α)% confidence interval of βj is

β̂j ± tn−p,α/2
√
cjj σ̂2

• Reject the test H0 : βj = β∗j versus H1 : βj 6= β∗j if

|t| =

∣∣∣∣∣ β̂j − β∗j√
cjj σ̂2

∣∣∣∣∣ > tn−p,α/2

• Reject the test H0 : βj = β∗j versus H1 : βj > β∗j if

t =
β̂j − β∗j√
cjj σ̂2

> tn−p,α

• Reject the test H0 : βj = β∗j versus H1 : βj < β∗j if

t =
β̂j − β∗j√
cjj σ̂2

< −tn−p,α

• A 100(1− α)% confidence interval for E(Y ) when

x = x∗ =

 x∗1
...
x∗k


is

a′β̂ ± tn−p,α/2
√
σ̂2a′(X′X)−1a

where

a =


1
x∗1
...
x∗k


• A 100(1− α)% prediction interval for Y when x = x∗ is

a′β̂ ± tn−p,α/2
√
σ̂2{1 + a′(X′X)−1a}.
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Completed R codes for Example 11.2 (follow this to answer HW problems).

########################################################################

# Reading data

taste=c(12.3,20.9,39,47.9,5.6,25.9,37.3,21.9,18.1,21,34.9,57.2,0.7,25.9,54.9,40.9,

15.9,6.4,18,38.9,14,15.2,32,56.7,16.8,11.6,26.5,0.7,13.4,5.5)

acetic=c(4.543,5.159,5.366,5.759,4.663,5.697,5.892,6.078,4.898,5.242,5.74,6.446,

4.477,5.236,6.151,6.365,4.787,5.412,5.247,5.438,4.564,5.298,5.455,5.855,5.366,

6.043,6.458,5.328,5.802,6.176)

h2s=c(3.135,5.043,5.438,7.496,3.807,7.601,8.726,7.966,3.85,4.174,6.142,7.908,

2.996,4.942,6.752,9.588,3.912,4.7,6.174,9.064,4.949,5.22,9.242,10.199,3.664,

3.219,6.962,3.912,6.685,4.787)

lactic=c(0.86,1.53,1.57,1.81,0.99,1.09,1.29,1.78,1.29,1.58,1.68,1.9,1.06,1.3,1.52,

1.74,1.16,1.49,1.63,1.99,1.15,1.33,1.44,2.01,1.31,1.46,1.72,1.25,1.08,1.25)

########################################################################

# Fit linear regression

fit=lm(taste~acetic+h2s+lactic)

summary(fit)

########################################################################

# 95\% confidence interval for E(Y) at acetic=5.5,h2s=6.0,lactic=1.4#

predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="confidence")

########################################################################

# 95\% prediction interval for E(Y) at acetic=5.5,h2s=6.0,lactic=1.4

predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="prediction")
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The analysis of variance (ANOVA) for linear regression

where

• we have

– SST is the corrected total sum of squares

– SSR is the corrected regression (model) sum of squares

– SSE is the error (residual) sum of squares.

• The column labeled “df” gives the degrees of freedom for each.

• The column labeled “MS” contains the mean squares

MSR =
SSR

p− 1

MSE =
SSE

n− p
= σ̂2

• Since SST=SSR+SSE, the proportion of the total variation in the data explained by the linear
model is

R2 =
SSR

SST
,

typically called the coefficient of determination. Interpretation: the larger the R2, the
more variation that is being explained by the regression model.

• The ANOVA table F statistic

F =
MSR

MSE
=

SSR/(p− 1)

SSE/(n− p)

is used to test

H0 : β1 = β2 = · · · = βk = 0 versus H1 : at least one of the βj ’s is nonzero

Rejection region: RR = {F : F > Fp−1,n−p,α}.
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Example 11.2 (continued) Constructing the ANOVA table

based on the following R output:

fit=lm(taste~acetic+h2s+lactic)

summary(fit)

Call:

lm(formula = taste ~ acetic + h2s + lactic)

Residuals:

Min 1Q Median 3Q Max

-17.390 -6.612 -1.009 4.908 25.449

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.8768 19.7354 -1.463 0.15540

acetic 0.3277 4.4598 0.073 0.94198

h2s 3.9118 1.2484 3.133 0.00425 **

lactic 19.6705 8.6291 2.280 0.03108 *

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518,Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06
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Reduced versus full model testing Recall the multiple linear regression model is

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi, i = 1, . . . , n,

where we believe all the k covariates are useful to explain the variance in the response. However, out
of k, the number of truly useful covariates might be only g < k. This motivates us to think which of
the following is true?

• the completed model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βgxig + βg+1xi,g+1 + · · ·+ βkxik + εi, i = 1, . . . , n,

• or a reduced model

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βgxig + εi, i = 1, . . . , n,

Equivalently, we are testing

H0 : βg+1 = βg+2 = · · · = βk = 0 versus H1 : at least one of βg+1, . . . , βk is nonzero

Test Statistics:

F =
(SSER − SSEC)/(k − g)

SSEC/(n− p)
Rejection Region

RR = {F : F > Fk−g,n−p,α}

where p = k + 1,

• SSEC : the error sum of squares under the completed model

• SSER: the error sum of squared under the reduced model
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Example 11.2 (continued) Y : taste, x1: acetic, x2: h2s, x3: lactic; Yi = β0 + β1xi1 + β2xi2 +
β3xi3, i = 1, . . . , 30.

summary(lm(taste~acetic+h2s+lactic))

Call:

lm(formula = taste ~ acetic + h2s + lactic)

Residuals:

Min 1Q Median 3Q Max

-17.390 -6.612 -1.009 4.908 25.449

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.8768 19.7354 -1.463 0.15540

acetic 0.3277 4.4598 0.073 0.94198

h2s 3.9118 1.2484 3.133 0.00425 **

lactic 19.6705 8.6291 2.280 0.03108 *

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared: 0.6518,Adjusted R-squared: 0.6116

F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06

(1) Combining the following R results, conduct the below test at significance level α = 0.05

H0 : β1 = β3 = 0 versus H1 : at least one of β1, β3 is nonzero

#########################################

# R codes:

anova(lm(taste~h2s),lm(taste~acetic+h2s+lactic))

#########################################

Analysis of Variance Table

Model 1: taste ~ h2s

Model 2: taste ~ acetic + h2s + lactic

Res.Df RSS Df Sum of Sq F Pr(>F)

1 28 3286.1

2 26 2668.4 2 617.73 3.0095 0.06674 .

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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(2) What test are the following codes for?

anova(lm(taste~acetic+lactic),lm(taste~acetic+h2s+lactic))

Analysis of Variance Table

Model 1: taste ~ acetic + lactic

Model 2: taste ~ acetic + h2s + lactic

Res.Df RSS Df Sum of Sq F Pr(>F)

1 27 3676.1

2 26 2668.4 1 1007.7 9.8182 0.004247 **

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

29


