Fitting the Linear regression Model by Using Matrices: learn it by
examples

(WMS) Example 11.1 Fit the simple linear regression model to the n = 5 data points:
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(a). Write the linear model in a matrix form: Y = X3 + €; i.e., what are Y, X, 3, and € in this
context? What assumption did we assume for €7
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(b). FiI/ld X'X, (X’X)’l, X'Y, M = X(X’X)"!X’. Are they symmetric? If a matrix A is symmetric,
then A’ = A. What is X'X(X'X)~'? Further show that (X'Y) = Y'X. What is (I-M)X(X'X)~1?
What is tr(I — M)? I ) '
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(c). Find the least-square estimator 8 = (X’X)~1X’Y. What is the fitted model?
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(d). The “hat” matrix M = X(X'X)~1X’. Verify the following properties:
e M is symmetric; i.e., M/ = M.

e M is idempotent; i.e., M? = M.
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(e). Instead of using a simple linear model, we fit the data using the model:
Y:50+51$+52$2+6.

Redo (a). Write the linear model in a matrix form: Y = X3 + €; i.e., what are Y, X, 3, and € in

this context? and R
(c). Find the least-square estimator 3 = (X’X)~!X"Y. What is the fitted model?
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A summary page of last lecture: what we have observed from Example 11.1:

e For two matrices A and B, generally AB # BA. But
(AB) =B’A’ and tr(AB) = tr(BA).

Further
tr(A — B) = tr(A) — tr(B).

XX, (X'X)™1 M = X(X'X) !X’ are symmetric matrices.

tr( 1)
J

If I,, is the n-dimensional identity matrix, X is of dimension n x p, then tr(I, — M) = tr(I) —
tr(X(X'X)71X') = tr(I,) — tr((X'X)1X'X) = tr(L,) — tr(I,) = n — p.

e M is symmetric; i.e., M’ = M.
e M is idempotent; i.e., M? = M.
e MX = X.

e I-MX(X'X)"!=0.

A quick quiz: If Z ~ N(0,1), W ~ x?(v), Z and W are independent, what is the distribution of




Now we know how to estimate 8. The estimator B\ = (X’X)"!X'Y. Is it a good estimator?
Unbiased? What are its sampling distribution? How can we make inference (confidence intervals,
hypothesis testing)? To answer these questions, we need some knowledge to help us handle random
vectors, more specifically, when these random vectors are from a multivariate normal distribution
N(pu, V). (Check this for Bivariate normal: https://www.geogebra.org/m/p04JcWPz).
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Practice: Consider € = (e, €2) ~ N(0,0%I2) where Let

s ()= (3)a-(1 1) mem=(1 1)

1. What is the distribution of Y = (Y1,Y2)’ = a + Be? What is the distribution of Y17 How
about the distribution of Y57

2. What is the distribution of Z = (Z1,73) = b + Ae? What is the distribution of Z;? How
about the distribution of Z5?

3. What is the distribution of a’e?
4. What is Cov(Y,Z)? Are Y and Z independent?
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What is the distribution of a’8 for a = (a1,..., ap)'?
What is the distribution of a’3 + ¢*, where ¢* ~ N(0,02) and €* is independent with e, ..., €n?!
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What is the distribution of e =Y — Y? (Recall HW 4 problem 2 part 3).
Prove that e and 3 are independent.
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A summary page of last lecture: what we have observed from Example 11.1:

e For two matrices A and B, generally AB # BA. But
(AB) =B’A’ and tr(AB) = tr(BA).

Further
tr(A — B) = tr(A) — tr(B).

XX, (X'X)™1 M = X(X'X) !X’ are symmetric matrices.

If I,, is the n-dimensional identity matrix, X is of dimension n x p, then tr(I, — M) = tr(I) —
tr(X(X'X)71X') = tr(I,) — tr((X'X)"1X'X) = tr(L,) — tr(I,) = n — p.

e M is symmetric; i.e., M’ = M.
e M is idempotent; i.e., M? = M.
e MX = X.

e I-MX(X'X)"!=0.

We have reviewed that: If Z ~ N(0,1), W ~ x?(v), Z and W are independent, what is the distribu-
tion of

Further, we proved that
« B~ N(B,oH(X'X))
e For any a = (aj,...,ap), a3 ~ N(a'B,0%a’ (X'X) " !a)

And @' + € ~ N'(a'B,02{1 + a/(X'X)'a}), where € ~ N(0,02) and € is independent with

€ly.--5€n

Let Y = X3 be the fitted values. The residual e =Y — Y. We have proved that e ~ N(0,)

e and B are independent!
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How to estimate 027 Recall that in
Y =X03 +e€,

where B = (8o, 81, ---,0k)". Let p = k + 1 be the length of 3. The length of Y is n, the dimension
of X is n x p. we assumed ¢;’s are iid N(0,02). Now the question is how to estimate 0?? Towards
this end, we need a new term, called error (residual) sum of squares:

n n

SSE = Z(YZ —Y)? = Ze? =éle.

=1 =1

(1) Prove that R
SSE=Y'I-M)Y =YY -3X'Y.

(2) Using the fact, that if E(Y) = pu, V(Y) =V, then for any suitable matrix A,
E(Y'AY) = p/Ap + tr(AV),
and tr(X(X'X)1X’) = tr((X’X)"!X'X) to prove that

E(SSE) = (n — p)oZ.

Then a natural estimator of o2 is

In fact,
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Recall

e that R
B~ N(B,o*(X'X)™)

and A2
(n - p)O’ ~ X?(n o p)

are independent;

e further that the quiz problem: If Z ~ N(0,1), W ~ x%(v), Z and W are independent,
Z

T= ~T(v).

W/v

These give us an idea to make inference for regression parameters 3.
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Confidence interval: Similarly, recall that

a'B ~ N(a'8,0%(X'X) 'a)

¥
and - o
(n—p)a* [( & K X x ,,wmaf
A o B R
These tell us a 100(1 — «)% confidence interval for E(Y') when = 0 @
2
x=x"= :
T

is

where

Prediction interval: Similarly, recall that

aB+ e ~ N@B,o*{1+a (X'X) a}),

where €* is independent with € = (e1,...,€,)’, and @
1H X
(n —p)o? % ns
s ~X’(n—p). \{5 O 0 .
o =) W
a o W 19.6
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Example 11.1 (continued) Find a 90% confidence interval for E(Y) where x = 1. FYI: 5905 =
—_—
2.920, t50.05 = 2.353, t3,0.1 = 1.638.
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Example 11.1 (continued) Find a 90% prediction intervaljfor Y at z = 2. FYI: 20,05 = 2.920,

t3,0.05 = 2.353, t30.1 = 1.638.
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A summary page of last lecture: what we have observed from Example 11.1:

e For two matrices A and B, generally AB # BA. But
(AB) =B’A’ and tr(AB) = tr(BA).

Further
tr(A — B) = tr(A) — tr(B).

XX, (X'X)™1 M = X(X'X) !X’ are symmetric matrices.

If I,, is the n-dimensional identity matrix, X is of dimension n X p, then tr(I, — M) = tr(I,,) —
tr(X(X'X)71X') = tr(I,) — tr((X'X)1X'X) = tr(L,) — tr(I,) = n — p.

e M is symmetric; i.e., M’ = M.
e M is idempotent; i.e., M? = M.
e MX = X.

e I-MX(X'X)"!=0.

We have reviewed that: If Z ~ N(0,1), W ~ x?(v), Z and W are independent, what is the distribu-
tion of

A
T =
W/v
We have proved that
° B ~ N(B,0%(X'X)~1), where
) Coo Co1 Co2 - Cok
go go Clo €11 €12 -+ Cig
~ 1
B = .1 B = . , and we denote (X'X)"! =
Bi Br
Cko Ck1 Cg2 - Ckgk

Note that means Bj ~ N(ﬁj,JQij) for  =0,1,...,k. The standard error of Bj is \/cjj02.
e For any a = (aj,...,ap), a'ﬁ ~ N(a'B, 0% (X'X) ta).

And @' + ¢ ~ N'(a/B,02{1 + a/(X'X)'a}), where € ~ N(0,02) and € is independent with

€ly.--5€n

Let Y = X3 be the fitted values. The residual e =Y — Y. We have proved that e ~ N(0,)

e and B are independent!

An estimator of o2 is

E / _ ~2
2 _ SS _ ¢ce and (n—p)o

~ x*(n —p).
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Further, we have obtained the following results:

e A 100(1 — )% confidence interval of g; is

Bj + tnpas2\/€ij0°

e Reject the test Ho : 85 = B} versus Hy : 3; # B3} if

B — By

> tnfp,a/Q

e Reject the test Ho : 85 = B} versus Hy : ;> 37 if

~

B; — B
\/ija\Q

e Reject the test Hy : 3 = 35 versus Hy : 3 < 35 if

t= > typa

B = B;
t=—"2L <ty

V€07

e A 100(1 — @)% confidence interval for £ (Y") when

is

where

e A 100(1 — )% prediction interval for Y when x = x* is

af £ty a2l +a(X'X) 1a}.
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Example 11.2. The taste of matured cheese is related to the concentration of several

chemicals in the final product. In a study from the LaTrobe Valley of Victoria, Aus-

tralia, samples of cheddar cheese were analyzed for their chemical composition and were

subjected to taste tests. For each specimen, the taste Y was obtained by combining the

scores from several tasters. Data were collected on the following variables:

Y
x1
)

xs3

taste score (TASTE)

concentration of acetic acid (ACETIC)

concentration of hydrogen sulfide (H2S)

concentration of lactic acid (LACTIC).

Variables ACETIC and H2S were both measured on the log scale. The variable LACTIC

has not been transformed. Table 11.2 contains concentrations of the various chemicals

in n = 30 specimens of cheddar cheese and the observed taste score.

Specimen  TASTE  ACETIC H2S LACTIC Specimen  TASTE  ACETIC H2S LACTIC
1 12.3 4.543 3.135 0.86 16 40.9 6.365 9.588 1.74
2 20.9 5.159 5.043 1.53 17 15.9 4.787 3.912 1.16
3 39.0 5.366 5.438 1.57 18 6.4 5.412 4.700 1.49
4 47.9 5.759 7.496 1.81 19 18.0 5.247 6.174 1.63
5 5.6 4.663 3.807 0.99 20 38.9 5.438 9.064 1.99
6 25.9 5.697 7.601 1.09 21 14.0 4.564 4.949 1.15
7 37.3 5.892 8.726 1.29 22 15.2 5.298 5.220 1.33
8 21.9 6.078 7.966 1.78 23 32.0 5.455 9.242 1.44
9 18.1 4.898 3.850 1.29 24 56.7 5.855 10.20 2.01
10 21.0 5.242 4.174 1.58 25 16.8 5.366 3.664 1.31
11 34.9 5.740 6.142 1.68 26 11.6 6.043 3.219 1.46
12 57.2 6.446 7.908 1.90 27 26.5 6.458 6.962 1.72
13 0.7 4.477 2.996 1.06 28 0.7 5.328 3.912 1.25
14 25.9 5.236 4.942 1.30 29 13.4 5.802 6.685 1.08
15 54.9 6.151 6.752 1.52 30 5.5 6.176 4.787 1.25

Table 11.2: Cheese data. ACETIC, H2S, and LACTIC are independent variables.

response variable is TASTE.
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REGRESSION MODEL: Suppose the researchers postulate that each of the three chemi-
cal composition variables 1, x3, and x3 is important in describing the taste. In this case,

they might initially consider the multiple linear regression model

Y = Bo + Bixin + oo + Bsxis + €,

for i = 1,2,...,30. We now use R to fit this model using the method of least squares.

Here is the output:

> summary(fit)
Call: 1m(formula = taste ~ acetic + h2s + lactic)
Coefficients:

Estimate Std. Error t value Pr(>lt|)

(Intercept) -28.877 19.735 -1.463 0.15540
acetic 0.328 4.460 0.074 0.94193
h2s 3.912 1.248 3.133 0.00425 *x*
lactic 19.670 8.629 2.279 0.03109 *

Residual standard error: 10.13 on 26 degrees of freedom
Multiple R-squared: 0.6518, Adjusted R-squared: 0.6116
F-statistic: 16.22 on 3 and 26 DF, p-value: 3.810e-06

OUTPUT: The Estimate output gives the values of the least squares estimates:
By —28.877 [, ~0.328  [By~3.912 32 19.670.
Therefore, the fitted least squares regression model is
Y = —28.877 + 0.3281; + 3.912, + 19.670z5,
or, in other words,

TASTE = —28.877 + 0.328ACETIC + 3.912H2S + 19.670LACTIC.
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The Std.Error output gives

19.735 = se(fo) = Vcoo0? = a(X'X)Eol

)

4460 = §6(B)) = Veno? = \/aA(XX)p!
)
)

1.248 = §(fy) = V02202 = 1/52(X'X) 5
8.620 = §o(fBs) = Veas0? = \/7HX'X)34,
where
R SSE
02 = ——— = (10.13)* ~ 102.63
30 —4

is the square of the Residual standard error. The t value output gives the t statistics

Bo—0
00032

B1—0

0116'\2

-~

B2 — 0
V 02232

t=-1463 =

]

t=0.074 =

:

t=3133 =

t=2279 =

These t statistics can be used to test Hy : 5; = 0 versus Hy : 3; # 0, for i = 0,1, 2, 3.

Two-sided probability values are in Pr(>|t|). At the a = 0.05 level,
e we do not reject Hy : By = 0 (p-value = 0.155). Interpretation: In the model

which includes all three independent variables, the intercept term [, is not statis-

tically different from zero.

e we do not reject Hy : 51 = 0 (p-value = 0.942). Interpretation: ACETIC does not
significantly add to a model that includes H2S and LACTIC.

e we reject Hy : o = 0 (p-value = 0.004). Interpretation: H2S does significantly
add to a model that includes ACETIC and LACTIC.

o wereject Hy : 53 = 0 (p-value = 0.031). Interpretation: LACTIC does significantly
add to a model that includes ACETIC and H2S.
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CONFIDENCE INTERVALS': Ninety-five percent confidence intervals for the regression

parameters By, (1, B2, and (3, respectively, are

~

€

Bo = ta6.0.025 —  —28.877 4 2.056(19.735) = (—69.45, 11.70)

se( Po
B1 = ta6,0.0255¢

(B
(B
By + £26,0.0255€ (52
(

)
) = 0.328 & 2.056(4.460) —> (—8.84,9.50)
)

s —  3.912 = 2.056(1.248) => (1.35, 6.48)
Bs =+ taso0os5(Fs) = 19.670 + 2.056(8.629) = (1.93,37.41).
PREDICTION: Suppose that we are interested estimating F(Y|x*) and predicting a new

Y when ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, so that

9.5

X =1 6.0
1.4

We use R to compute the following:

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="confidence")
fit lwr upr
23.93552 20.04506 27.82597
> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="prediction")
fit lwr upr
23.93552 2.751379 45.11966
e Note that

E(Y|x)=Y* = Bo+ o} + Borls + Bt

— —28.877 + 0.328(5.5) + 3.912(6.0) + 19.670(1.4) ~ 23.936.

e A 95 percent confidence interval for E(Y|x*) is (20.05,27.83). When ACETIC =
5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the mean taste
rating is between 20.05 and 27.83.

e A 95 percent prediction interval for Y*, when x = x*, is (2.75,45.12). When
ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the

taste rating for a new cheese specimen will be between 2.75 and 45.12.
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Completed R codes for Example 11.2 (follow this to answer HW problems).

HHFHH R R R R

# Reading data
taste=c(12.3,20.9,39,47.9,5.6,25.9,37.3,21.9,18.1,21,34.9,57.2,0.7,25.9,54.9,40.9,
15.9,6.4,18,38.9,14,15.2,32,56.7,16.8,11.6,26.5,0.7,13.4,5.5)
acetic=c(4.543,5.159,5.366,5.759,4.663,5.697,5.892,6.078,4.898,5.242,5.74,6.446,
4.477,5.236,6.151,6.365,4.787,5.412,5.247,5.438,4.564,5.298,5.455,5.855,5.366,
6.043,6.458,5.328,5.802,6.176)
h2s=c(3.135,5.043,5.438,7.496,3.807,7.601,8.726,7.966,3.85,4.174,6.142,7.908,
2.996,4.942,6.752,9.588,3.912,4.7,6.174,9.064,4.949,5.22,9.242,10.199,3.664,
3.219,6.962,3.912,6.685,4.787)
lactic=c(0.86,1.53,1.57,1.81,0.99,1.09,1.29,1.78,1.29,1.58,1.68,1.9,1.06,1.3,1.52,
1.74,1.16,1.49,1.63,1.99,1.15,1.33,1.44,2.01,1.31,1.46,1.72,1.25,1.08,1.25)

B S s s S e S S S S S e S S e e e e B S B R 2 B 2 R

# Fit linear regression

fit=1lm(taste~acetic+h2s+lactic)

summary (fit)

fi e S e s S S S S s S e S S e e e e e g B e 2 B 2 R e

# 95\’ confidence interval for E(Y) at acetic=5.5,h2s=6.0,lactic=1.4#
predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="confidence")
i Ead R S S S S S s e e e e e R B e B B R e B 2 R

# 95\), prediction interval for E(Y) at acetic=5.5,h2s=6.0,lactic=1.4
predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="prediction")
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The analysis of variance (ANOVA) for linear regression

ANOVA TABLE: The general form of an ANOVA table for linear regression (simple or

multiple) is given below:

Source df SS MS F
; ss S
Regression p—1 SSR MSR = ;F_I} F = %
Error n—p SSE MSE = %

Total n—1 SST

where
e we have
n n R o n R
D Vi=YP=) (N -YP Y (V- V)R
SST SSR SSE

— SST is the corrected total sum of squares
— SSR is the corrected regression (model) sum of squares

— SSE is the error (residual) sum of squares.
e The column labeled “df” gives the degrees of freedom for each.

e The column labeled “MS” contains the mean squares

SSR
MSR = —
p—1
E
MSE = F _ 52
n—p
e Since SST=SSR+SSE, the proportion of the total variation in the data explained by the linear
model is SSR
R* = ——
SST’

typically called the coefficient of determination. Interpretation: the larger the R?, the
more variation that is being explained by the regression model.

o The ANOVA table I statistic

MSE SSR/(p—1)

F'= NSE = $SE/(n —p)

is used to test
Hy:p1=[2="---= P =0 versus Hy : at least one of the ;s is nonzero

Rejection region: RR ={F : F > F,_1p—pa}-
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Example 11.2 (continued) Constructing the ANOVA table

Source df SS MS F
Regression p—1 SSR MSR = % F =8t

Error n—p SSE MSE = %

Total n—1 SST

based on the following R output:

fit=Im(taste~acetic+h2s+lactic)
summary (fit)

Call:

Im(formula = taste ~ acetic + h2s + lactic)

Residuals:
Min 1Q Median 3Q Max
-17.390 -6.612 -1.009 4.908 25.449

Coefficients:
Estimate Std. Error t wvalue
(Intercept) -28.8768 19.7354 -1.463

acetic 0.3277 4.4598 0.073
h2s 3.9118 1.2484 3.133
lactic 19.6705 8.6291 2.280

Signif. codes: O 7%%%7 0.001 7**x7 0.01

Pr(>[tl)
0.15540
0.94198
0.00425 *x
0.03108 *

?%? 0.06 7.7 0.1 7 7 1

Residual standard error: 10.13 on 26 degrees of freedom
Multiple R-squared: 0.6518,Adjusted R-squared: 0.6116
F-statistic: 16.22 on 3 and 26 DF, p-value: 3.81e-06
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Reduced versus full model testing Recall the multiple linear regression model is
Yi = 0o+ bixin + Baxio + - + Brxi + €, t=1,...,n,

where we believe all the k covariates are useful to explain the variance in the response. However, out
of k, the number of truly useful covariates might be only g < k. This motivates us to think which of
the following is true?

e the completed model
Yi = Bo+ brxin + Pazia + - + ByTig + Bgr1Tigyr + -+ By + €, i=1,...,n,
e or a reduced model
Y = Bo + Brxin + Boxiz + -+ Bgwig + €, i=1,...,n,

Equivalently, we are testing
Hy : Bgi1 = Pgy2 = -+ = P = 0 versus Hy : at least one of By11,..., Bk is nonzero

Test Statistics:
(SSERr — SSE¢)/(k — g)

E =SSR/ (n - p)

Rejection Region
RR=A{F:F>F, gnpat

where p =k + 1,
e SSE¢: the error sum of squares under the completed model

e SSEpR: the error sum of squared under the reduced model
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Example 11.2 (continued) Y: taste, z1: acetic, a:

53561'3,1' = 1,.‘. ,30

summary (lm(taste~acetic+h2s+lactic))

Call:
Im(formula = taste ~ acetic + h2s + lactic)
Residuals:

Min 1Q Median 3Q Max
-17.390 -6.612 -1.009 4.908 25.449
Coefficients:

Estimate Std. Error t value Pr(>ltl)

(Intercept) -28.8768 19.7354 -1.463 0.15540
acetic 0.3277 4.4598 0.073 0.94198
h2s 3.9118 1.2484  3.133 0.00425 *x*
lactic 19.6705 8.6291 2.280 0.03108 *

Signif. codes: O 7**%x7 0.001 7**x7 0.01

?x7 0.056 7.7 0.1 7 7 1

Residual standard error: 10.13 on 26 degrees of freedom

Multiple R-squared:

F-statistic: 16.22 on 3 and 26 DF,

0.6518,Adjusted R-squared:
p-value: 3.81e-06

0.6116

(1) Combining the following R results, conduct the below test at significance level o = 0.05

Hy : p1 = B3 =0 versus H; : at least one of (1, 83 is nonzero

HESSHH R

# R codes:

anova(lm(taste~h2s),1lm(taste”acetic+h2s+lactic))
HHHHH SR HHH R H B HH S HH SRR H]

Analysis of Variance Table

Model 1: taste ~
Model 2: taste ~

h2s

acetic + h2s + lactic

Res.Df RSS Df Sum of Sq F PrOGF)
1 28 3286.1
2 26 2668.4 2 617.73 3.0095 0.06674 .

Signif. codes:

0 7x%xx7 0.001 7*x? 0.01 ?x? 0.05 7.7 0.1 7 7 1
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(2) What test are the following codes for?

anova(lm(taste~acetic+lactic) ,lm(taste~acetic+h2s+lactic))
Analysis of Variance Table

Model 1: taste ” acetic + lactic
Model 2: taste ~ acetic + h2s + lactic

Res.Df RSS Df Sum of Sq F  PrOOF)
1 27 3676.1
2 26 2668.4 1 1007.7 9.8182 0.004247 *x*

Signif. codes: O 7*xxx7 0.001 7*x7 0.01 7?x7 0.056 7.7 0.1 7 7 1
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