10 Hypothesis Testing

Complementary reading: Chapter 10 (WMS)
10.1 Introduction and review

PREVIEW: : Classical statistical inference deals with making statements about popula-
tion (model) parameters. The two main areas of statistical inference are estimation
(point estimation and confidence intervals) and hypothesis testing. Point and interval

estimation were discussed CH8-9 (WMS). This chapter deals with hypothesis testing.

Example 10.1. Actuarial data reveal that the claim amount for a “standard class” of
policy holders, denoted by Y (measured in $1000s), follows an exponential distribution
with mean 6 > 0. Suppose that we adopt this model for Y and that we observe an iid

sample of claims, denoted by Y7,Y5, ..., Y,,. Recall the following facts from STAT 512:

1. A sufficient statistic for @ is

2. The maximum likelihood estimator (MLE) for 6 is

i=1

Y =

S|

3. The minimum variance unbiased estimator (MVUE) for 6§ is Y.

4. The quantity

2T

Q= 7 ~ X2(2n)a

and therefore is a pivot. This is an exact (finite sample) result; i.e., @ ~ x?*(2n)

exactly for all n.

5. The quantity -
Y -0 4
7 = — N(0,1
spvm MO




as n — 0o, and therefore Z is a large sample pivot. This means that Z ~ AN(0, 1),

when n is large. The larger the n, the better the approximation.

INTERVAL ESTIMATION: We have at our disposal two pivots, namely,

2T

_ 2
Q= ~ )

and B
Y -0

S/

The (exact) confidence interval for # arising from @ is

2T 2T
X%n,cv/Z7 X%n,l—cx/2 ’

where X3, ./, and X3, , , denote the lower and upper a/2 quantiles of a x*(2n) distri-

7 =

AN(0,1).

bution, respectively. The (approximate) confidence interval for  arising from Z is

— S
Y +zup0l—]),
o (ﬁ)
where S is the sample standard deviation and z,/9 is the upper a/2 quantile of the

N (0, 1) distribution.



SIMULATION EXERCISE: To compare the coverage probabilities of the exact and ap-
proximate intervals, we will use Monte Carlo simulation. In particular, we use R to

generate B = 10,000 iid samples
Y1,Ys, ..., Y, ~ exponential(6),

with n = 10.

e For each of the B = 10,000 samples, we will keep track of the values of T, Y,
and S. We will then compute the exact and approximate 95 percent confidence

intervals for 6 with each sample (that is, 1 —a = 0.95).

e Therefore, at the end of the simulation, we will have generated B = 10,000 exact
intervals and B = 10,000 approximate intervals.

e We can then compute the proportion of the intervals (both exact and approximate)
which contain . For purposes of illustration, we take § = 10. Because we are
computing 95 percent confidence intervals, we would expect this proportion to be

close to 1 — o = 0.95.

e We then repeat this simulation exercise for n = 30, n = 100, and n = 1000. Here

are the results:

Interval n=10 n=30 n=100 n = 1000
Exact 0.953 0.949 0.952 0.951
Approximate  0.868 0.915 0.940 0.951

Table 10.1: Monte Carlo simulation. Coverage probabilities for exact and approximate

95 percent confidence intervals for an exponential mean 6, when 6 = 10.



DISCUSSION : As we can see, regardless of the sample size n, the exact interval produces
a coverage probability that hovers around the nominal 1 —a = 0.95 level, as expected. On
the other hand, the coverage probability of the approximate interval is much lower than
the nominal 1 — a = 0.95 level when n is small, although, as n increases, the coverage

probability does get closer to the nominal level.

MORAL: We will discuss two types of statistical inference procedures: those that are
exact and those that are approximate. Exact procedures are based on exact distribu-
tional results. Approximate procedures are typically based on large sample distributional

results (e.g., Central Limit Theorem, Delta Method, Slutsky’s Theorem, etc.).

e In some problems, exact inference may not be available or the exact distributional
results needed may be so intractable that they are not helpful. In these instances,

approximate procedures can be valuable.

e Approximate procedures are based on the (rather nonsensical) notion that the
sample size n — oo. However, these procedures often do confer acceptable results

for reasonably sized samples.



PREVIEW : Suppose your colleague claims that the mean claim amount 6 for a new class
of customers is larger than the mean amount for the standard class of customers, known
to be #y. How can we determine (statistically) if there is evidence to support this claim?

Here, it makes sense to think of two competing hypotheses:

H(] : 9 - 00
versus

H,:0>0,.

e H, says that the mean claim amount for the new class of customers, 0, is the same

as the mean claim amount for the standard class, 6.

e H, says that the mean claim amount for the new class of customers, @, is larger
than the mean claim amount for the standard class, 6y, that is, your colleague’s

claim is correct.

e Based on a sample of claim amounts Y7, Ys, ..., Y, from the new class of customers,
how should we formally decide between Hy and H,? This question can be answered

by performing a hypothesis test.



10.2 The elements of a hypothesis test

TERMINOLOGY : A hypothesis test is an inferential technique which pits two com-
peting hypotheses versus each other. The goal is to decide which hypothesis is more
supported by the observed data. The four parts of a hypothesis test are

1. the null hypothesis, Hg
2. the alternative hypothesis, H,
3. the test statistic

4. the rejection region.

TERMINOLOGY : The null hypothesis Hy states the value of the parameter to be
tested. For example, if our colleague in Example 10.1 wants to compare the mean claim
amount of the new class # to the mean claim amount for the standard class (known to

be 6y = 10, say), then the null hypothesis would be
Hg 10 =10.

In this course, we will usually take the null hypothesis to be sharp; that is, there is only

one value of the parameter 6 possible under H,.

TERMINOLOGY : The alternative hypothesis H, describes what values of # we are
interested in testing Hy against. For example, if our colleague in Example 10.1 believed

that the mean claim amount for the new class of customers was
e greater than 6y = 10, s/he would use
H,:6 > 10.
e less than 6y = 10, s/he would use

H,:0 < 10.

e different than 6y = 10, s/he would use

H,: 0+ 10.



The alternative hypothesis H, is sometimes called the researcher’s hypothesis. since

it is often the hypothesis the researcher wants to conclude is supported by the data.

NOTE: The first two examples of H, above are called one-sided alternatives. The last
example is called a two-sided alternative. One-sided alternatives state pointedly which

direction we are testing Hy against. A two-sided alternative does not specify this.

TERMINOLOGY : A test statistic is a statistic that is used to test H, versus H,. We
make our decision by comparing the observed value of the test statistic to its sampling

distribution under Hy.

e If the observed value of the test statistic is consistent with its sampling distribution

under Hy, then this is not evidence for H,,.

e [f the observed value of the test statistic is not consistent with its sampling distri-
bution under H, and it is more consistent with the sampling distribution under

H,. then this is evidence for H,.

TERMINOLOGY : The rejection region, denoted by RR. specifies the values of the
test statistic for which Hy is rejected. The rejection region is usually located in tails of
the test statistic’s sampling distribution computed under Hy. This is why we take Hj to

be sharp, namely, so that we can construct a single sampling distribution.

PREVAILING RULE: In any hypothesis test, if the test statistic falls in rejection region,

then we reject Hy.



STATES OF NATURE: Table 10.2 summarizes the four possible outcomes from per-

forming a hypothesis test.

Decision: Reject Hy | Decision: Do not reject H,

Truth: Hy Type I Error correct decision

Truth: H, correct decision Type II Error

Table 10.2: States of nature in testing Hy : 8 = 6, versus H, : 8 = 6, (or any other H,).

TERMINOLOGY: Type 1 Error: Rejecting Hy when Hy is true. The probability of

Type I Error is denoted by «a. Notationally,

a = P(Type I Error) = P(Reject Hy|Hy is true)

= P(Reject Hyld = by).

The Type I Error probability a is also called the significance level for the test. We

would like o to be small. It is common to choose this value up front.

TERMINOLOGY : Type II Error: Not rejecting Hy when H, is true. The probability

of Type II Error is denoted by . Notationally,
3 = P(Type Il Error) = P(Do not reject Hg|H, is true).

REMARK: Obviously, H, : 8 # 6y (or any other H,) can be true in many ways, so we
can compute [ for different values of # under H,. Specifically, the probability of Type 11

error, when 6 =0, € H,, is
5= 3(6,) = P(Do not reject Hyl0 = 6,).

That is, this probability will be different for different values of 6, € H,. Ideally, we would

like 3 to be small for all 8, € H,,.



Example 10.2. Suppose that industrial accidents occur according to a Poisson process
with mean 8 = 20 per site per year. New safety measures have been put in place to
decrease the number of accidents at industrial sites all over the US. Suppose that after
implementation of the new measures, we will observe the number of accidents for a sample

of n = 10 sites. Denote these data by Y1, Y5, ... Yig. We are interested in testing

Hy:6=20
Versus

H,: 6 < 20.

To perform the test, suppose we use the test statistic

10
T=>Y;
i=1

and the rejection region RR = {t : ¢ < 175}

QUESTIONS:

(a) What is the distribution of 7" when Hj is true?

(b) What is @ = P(Type I Error) for this RR?

(c) Suppose that ¢ = 18, that 1s, H, 1s true. What is the probability of Type II Error

when using this RR7



Example 10.3. Suppose that Y. Y5, ..., Yo5 1s an 1d sample of n = 25 observations from

a N (0, a2) distribution, where o3 = 100 is known. We would like to test

Hy:0="75
Versus

H,:0>T75.

To perform the test, suppose we use the test statistic

- L ny,
V= ; Y;
and the rejection region RR = {7 : 7 > k}, where £ is a constant.
QUESTIONS:
(a) What is the distribution of Y when Hp is true?
(b) Find the value of £ that provides a level a = 0.10 test.
(c) Suppose that # = &0, that 1s, H, 1s true. What is the probability of Type II Error

when using this RR?

10



Example 10.4. Suppose that Y7, Y5, ..., Y, is an iid Bernoulli(p) sample, where n = 100.
We would like to test
Hy:p=0.10
Versus

H,:p<0.10.

To perform the test, suppose we use the test statistic

100

T=Y
i=1

and the rejection region RR = {¢ : ¢t <k}, where £ is a constant.
(QUESTIONS:

(a) What is the distribution of 7" when Hj is true?

(b) Is 1t possible to find an exact level a = 0.05 rejection region?

(c) With £ = 5, find the probability of Type II Error when p = 0.05.

11



10.3 Common large sample tests

REMARK: The term “large sample” 1s used to describe hypothesis tests that are con-
structed using asymptotic (large sample) theory, so the following tests are approximate

for “large” sample sizes. We present large sample hypothesis tests for

1. one population mean p

[S]

. one population proportion p
3. the difference of two population means iy — pa
4. the difference of two population proportions p; — po.

TEST STATISTIC: In each of these situations, we will use a point estimator 0 which

satisfies R
B 0—40

7 = 4, N(0, 1),

99

as n — oo. Recall that

-~

o5 =1/ V(6)

denotes the standard error of 4. In most cases, the estimated standard error 35 must
be used in place of 05 The estimated standard error o is simply a point estimator for

the true standard error oz. In fact, if

as n — oo, then

as n — oo, by Slutsky’s Theorem.

12



TWO-SIDED TEST: Suppose that we would like to test

HO 0= 90
versus
H,: 00
This is called a two-sided test because H, does not specify a direction indicating
departure from Hy. Therefore, large values of
,_ 0 — %

%

in either direction, are evidence against Hy. Note that, for n large, Z ~ AN(0,1) when

Hy : 0 = 0y 1s true. Therefore,
RR = {z:|2| > za2}

1s an approximate level a rejection region. That is, we will reject Hg whenever Z > 2,9

or Z < —zy2. For example, if a = 0.05, then z4/9 = 20,025 = 1.96.

13



ONE-SIDED TESTS: Suppose that we would like to test

Hg 0= 90
versus

H,:6> 6,

This is called a one-sided test because H, indicates a specific direction indicating a

departure from Hj. In this case, only large values of

66,
7 = 0

9

are evidence against Hy. Therefore,
RR={z:2> 2z}
is an approximate level a rejection region. That is, we will reject Hy whenever Z > z,.

For example, if @ = 0.05, then z, = zyps = 1.65. By an analogous argument, the

one-sided test of

Hy: 0 =6
versus

H,:0 <6

can be performed using

RR={z:2z< —z,}

as an approximate level a rejection region.

14



10.3.1 One population mean
SITUATION: Suppose that Y7.Y5,.... Y, 1s an ud sample from a distribution with mean

o and variance o? and that interest lies in testing

Hy : p=pp
Versus

Ha- U 7é Ho

(or any other H,). In this situation, we identify

0 = pu
f =Y
o
o5 = ﬁ
N S
o5 = ﬁ .

where S denotes the sample standard deviation. Therefore, if o2 is known, we use

Y —u
7z -1
o//n
Otherwise, we use B
Y —
7=2_H

S/

Both statistics have large sample N(0, 1) distributions when Hy : 0 = pg is true.

15



10.3.2 One population proportion

SITUATION: Suppose that Y1,Ys, ..., Y, is an iid Bernoulli(p) sample and that interest

lies in testing

Hy:p=mpo
versus

Ha:p#p()

(or any other H,). In this situation, we identify

6 =

i~

0§ = p
[p(1—p)
o5 = I
R /p(1 — D)
o5 = E—

To perform this test, there are two candidate test statistics. The first is
Ty = P — Do ’
/ P(1-p)

which arises from the theory we have just developed. A second test statistic is

Zg = P—Po .

/ po(1—po)

The test statistic Zg uses the standard error

N [po(1 — po)
PN

which is the correct standard error when Hy : p = pq is true. For theoretical reasons, Zy,

is called a Wald statistic and Zg is called a score statistic. Both have large sample
N(0,1) distributions when Hy : p = pg is true. The score statistic Zg is known to have
better properties in small (i.e., finite) samples; i.e., it possesses a true significance level
which is often closer to the nominal level a. The Wald statistic is often liberal, possessing

a true significance level larger than the nominal level.

16



10.3.3 Difference of two population means

SITUATION: Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Y10, ..., Y1, are iid with mean p; and variance of

Sample 2: Yor, Yoo, ..., Yy, areiid with mean py and variance Jg,

and that interest lies in testing
Hy - M1 — M2 = do
Versus

Hy : iy — po # do

(or any other H,), where dj is a known constant. Note that taking dp = 0 allows one to
test the equality of 1 and po. In this situation, we identify

0 = fpu— o

i = Vi -V,

o; =

%
G; = .

If 07 and 03 are both known (which would be unlikely), then we would use

(Vi — Vo) —do

Otherwise, we use

7 _ (Yip —Yoy) — do.

s 5
ni no
Both statistics have large sample N (0, 1) distributions when Hy : 1 — pg = dy is true.

17



10.3.4 Difference of two population proportions

SITUATION: Suppose that we have two independent samples; i.e.,

Sample 1:  Yiy, Y19, ..., Y1, are iid Bernoulli(p,)

Sample 2:  Ys, Yo, ..., Ya,, are iid Bernoulli(ps),

and that interest lies in testing

Ho:p1 —p2=do
Versus

Hy:pr—p2#do

(or any other H,), where dj is a known constant. Note that taking dy = 0 allows one to

test the equality of p; and ps. In this situation, we identify

0 = p1—p2
0 = pi—D2
1-— 1—
o — \/pl( ) | Pa(l—po)
nq No

_ \/ﬁl(l—ﬁ1)+@<1—52>

ny N2

The Wald statistic is

Z - (ﬁl - ﬁ?) - dO
w = — — — — -
\/m(:m) + P2(1;P2)

A score statistic is available when dy = 0. It is given by
P — D>

o= (& + &)

nip1 + NaPo
ny + Ng

Ls =

where
ﬁ:
is the pooled sample proportion, as it estimates the common p; = p, = p under H,.

Both statistics have large sample A(0,1) distributions when Hy : p1 — pa = dp is true.

As in the one-sample problem, the score statistic performs better in small samples.

18



10.4 Sample size calculations
IMPORTANCE: We now address the problem of sample size determination, restricting

attention to one-sample settings. We assume that the estimator 0 satisfies

ZZH—H

~ AN(0,1),

T4

for large n, where o; is the standard error of f. Recall that 5, and consequently its

standard error oz, depends on n, the sample size. We focus on the one-sided test

Ho . 9 == 90
versus

H,: 0> 0,
that employs the level a rejection region
RR={z:2> 2.} < {y:0>k},
where k is chosen so that Py, (6 > k) = P( > k|H, is true) = o.

SETTING: Our goal is to determine the sample size n that confers a specified Type 11
Error probability 5. However,  is a function 6, so we must specify a particular value
of A to consider. Because the alternative hypothesis is of the form H, : § > 6y, we are
interested in a value 6, > 6y; i.e.,

Ga:00+A,

where A > 0 is the practically important difference that we wish to detect.

19



IMPORTANT": To derive a general formula for the sample size in a particular problem,

we exploit the following two facts:

e when H is true, our level a rejection region RR = {2z : 2 > z,} implies that

k — 0o
99

= Zq-

e when H, is true and 6, = 6y + A, then for a specified value of 3, it follows that
k—0,

= —23;

Tq
see Figure 10.5, pp 508 (WMS). These two formulae provide the basis for calculating
the necessary sample size n. When a two-sided alternative H, : 8 # 6 is specified,
the only change is that we replace 2, with z,/,.
POPULATION MEAN: For the one-sample test regarding a population mean, that is,
of Hy : pt = po versus H, : ju > o, we have

/C—,ILQZZ
ofyn

When p, = o + A, then for a specified value of 5, we have

k—,ua:_z
a/vn "

Solving these two equations simultaneously for n gives

> Z22
I 5)07

A2
where A = i, — po. Note that the population variance o2 must be specified in advance.

In practice, we must provide a “guess” or an estimate of its value. This guess may be

available from preliminary studies or from other historical information.

20



Example 10.5. A marine biologist, interested in the distribution of the size of a partic-

ular type of anchovy, would like to test

H() U= 20
VETsus

H,: > 20,

where p denotes the mean anchovy length (measured in ¢cm). She would like to perform
this test using a = 0.05. Furthermore, when u = u, = 22, she would like the probability
of Type II Error to be only g = 0.1. What sample size should she use? Based on previous

studies, a guess of o &~ 2.5 is provided.

21



POPULATION PROPORTION: For the one-sample test regarding a population propor-
tion, that is, Hy : p = po versus H, : p > pg, it follows that

k — po
—_— = Z,.
/ po(1—po)
When p, = po + A, then for a specified value of 3, we have

k—pa

—_— = —2Z3.
/pa(l_pa) b

Eliminating the common £k in these two equations and solving for n produces

[za Poll — o) + 25/pall — pa>r
* ,

n —=

where A = p, — po.

22



Example 10.6. Researchers are planning a Phase III clinical trial to determine the
probability of response, p, to a new drug treatment. It is believed that the standard
treatment produces a positive response in 35 percent of the population. To determine
if the new treatment increases the probability of response, the researchers would like to

test, at the a = 0.05 level,

Hy:p=0.35
versus

H,:p>0.35.

In addition, they would like to detect a “clinically important” increase in the response
probability to p = p, = 0.40 with probability 0.80 (so that the Type II Error probability
B = 0.20). The clinically important difference A = p, — po = 0.05 is a value that
represents “a practically important increase” for the manufacturers of the new drug.

What is the minimum sample size that should be used in the Phase III trial?

23



10.5 Confidence intervals and hypothesis tests

REVELATION: There is an elegant duality between confidence intervals and hypothesis
tests. In a profound sense, they are essentially the same thing, as we now illustrate.
Suppose that we have a point estimator, say, @ which satisfies

69

Tg

Z ~ N(0,1).

Using Z as a pivot, it follows that

(/9\:|: Za/20G

is a 100(1 — «) percent confidence interval for 6.

REMARK: In what follows, we assume that o; does not depend on 6 (although the
following conclusions hold even if it does). If o5 depends on other nuisance parameters,

without loss, we assume that these parameters are known.

HYPOTHESIS TEST: The two-sided level a hypothesis test

Ho . 0 == 90
Versus

H,: 040,

employs the rejection region

RR = {z: |2] > 242}

which means that Hj is not rejected when

9 — 0,

[

—Za /2 < < Zy /2-
However, algebraically, the last inequality can be rewritten as

(/9\— Za/20 < Oy < é\—l— Za/20p,

which we recognize as the set of all fy that fall between the 100(1 — ) percent confidence

interval limits.

24



PUNCHLINE: The hypothesis Hy : 6 = 6y is not rejected in favor of H, : 6 # 6, at
significance level , whenever 6 is contained in the 100(1 — ) percent confidence interval
for 6. If 6, is not contained in the 100(1 — ) percent confidence interval for 6, then this

is the same as rejecting Hy at level a.

10.6 Probability values (p-values)

REMARK: When performing a hypothesis test, simply saying that we “reject Hy” or
that we “do not reject Hy” is somewhat uninformative. A probability value (p-value)

provides a numerical measure of how much evidence we have against H.

TERMINOLOGY: The probability value for a hypothesis test specifies the smallest
value of a for which Hj is rejected. Thus, if the probability value is less than (or equal

to) «, we reject Hp. If the probability value is greater than «, we do not reject Hp.

REMARK: Probability values are computed in a manner consistent with the alternative
hypothesis H,. Since the probability value is viewed as a measure of how much evidence

we have against Hy, it is always computed under the assumption that Hy is true.

Example 10.7. Suppose that Y3,Y5, ..., Yigo is an iid N (u, 02) sample, where o3 = 100

is known, and that we want to test

H() U= 75
versus

H,:p> 5.

Suppose that the sample mean is 7 = 76.42, and, thus, the one sample z statistic is

 J—po  T642—75
oo/ 10/4/100

Since our alternative is one-sided, we would use the rejection region RR = {z: 2z > z,},

1.42.

z

where z, denotes the upper « quantile of the standard normal distribution.
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Figure 10.1: N(0, 1) density with one-sided probability value P(Z > 1.42) = 0.0778.

o} Test statistic Rejection region Reject Hy?
a=0.05  z=142 {z:2>1.65} no
a=0.10 2z =1.42 {z:2>128} yes

From the table, we note that

128 =2p10 < 2= 1.42 < Z2o.05 = 1.65.
Therefore, the probability value is somewhere between 0.05 and 0.10. In fact, observing
that our alternative is one-sided, we see that

p-value = P(Z > 1.42) = 0.0778

(see Figure 10.1). Therefore, if a < 0.0778, we would not reject Hy. On the other hand,
if o > 0.0778, we would reject Hy. Remember, the probability value is the “borderline”
value of o for which Hj is rejected. UJ

Example 10.8. It has been suggested that less than 20 percent of all individuals who

sign up for an extended gym membership continue to use the gym regularly six months
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after joining. Suppose that Y denotes the number of members who use a certain gym
regularly (i.e., at least 3 times per week on average) six months after joining, to be
observed from a sample of n = 50 members. Assume that Y ~ b(50,p) and that we are

to test

Ho:p=0.20
Versus

H,:p<0.20.
If Y =y = 6, the exact probability value is

p-value = P(Y <6)

% /50
— Z (y ) (0.20)¥(1 — 0.20)°°7¥ ~ 0.1034,

y=0

J

b(50,0.20) pmf
computed using the pbinom(6,50,0.20) command in R. This is somewhat strong evi-
dence against Hj, although it is “not enough” at the standard o = 0.05 level of signifi-
cance. Instead of using the exact probability value, we could also compute the approxi-

mate probability value as

p-value = P(p<0.12)

0.12 - 0.20

0.20(1—0.20)
50

= P(Z < —1.41) = 0.0793.

~ P|Z<

As you can see, there is a mild discrepancy here in the exact and approximate probability

values. Approximate results should always be interpreted with caution. [

REMARK: In a profound sense, a probability value, say, P, is really a random variable.
This should be obvious since it depends on a test statistic, which, in turn, is computed
from a sample of random variables Y7, Y, ..., Y,. In the light of this, it seems logical to
think about the distribution of P. If the test statistic has a continuous distribution, then
when H, is true, the probability value P ~ U(0,1). This is a theoretical result which

would be proven in a more advanced course.
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10.7 Small sample hypothesis tests using the ¢ distribution

GOAL: We now focus on small sample hypothesis tests for
e a single population mean pu
e the difference of two population means p; — po.

In the one-sample problem, we know that when Hy : = pg is true,
S/\/n

as n — 00, by the Central Limit Theorem and Slutsky’s Theorem. Therefore, Z can

Z L5 N(0,1),

be used as a large sample test statistic to test Hy : p = pg. However, the large sample
N(0,1) distribution may be inaccurate when n is small. This occurs when the underlying

distribution is highly skewed and/or when S is not a good estimator of o.

10.7.1 Omne-sample test

SETTING: Suppose that Y}, Ys, ..., Y, is an iid N(pu, 0%) sample, where both parameters

1 and o2 are unknown, and that we want to test

Ho : = pig

versus

Ho @ pp # o

(or any other H,). When Hj : p = pq is true, the one-sample t-statistic
_ Y — o
S/\/n

Therefore, to perform a level o (two-sided) test, we use the rejection region

t ~tn—1).

RR = {t : |t| > tn—l,a/?}-

Probability values are also computed from the ¢(n — 1) distribution. One-sided tests use

a suitably-adjusted rejection region.

28



Table 10.3: Crab temperature data. These observations are modeled as n = 8 11d real-

izations from a N (u, 0?) distribution.

25.8 246 26.1 249 251 253 24.0 245

Example 10.9. A researcher observes a sample of n = 8 crabs and records the body
temperature of each (in degrees C); see Table 10.3. She models these observations as an

iid sample from a N'(y, o?) distribution. She would like to test, at level a = 0.05,

Hy:p=254
versus

H,:p<254.
The level oo = 0.05 rejection region is
RR = {t < —t7]0A05 = —1895}

From the data in Table 10.3, we compute y = 25.0 and s = 0.69; thus, the value of the

one-sample t-statistic is

_Y—m _250-254
os/m 069/v/8 T

Therefore, we do not have sufficient evidence to reject Hy at the a = 0.05 level since our

i

test statistic t does not fall in RR. Equivalently, the probability value is
p-value = P[(7) < —1.64] =~ 0.073,

which is not smaller than o = 0.05. I used the R command pt(-1.64,7) to compute
this probability. [J
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10.7.2 Two-sample test

SITUATION: Suppose that we have two independent samples; i.e.,

Sample 1: Y11, Yie, ..., Y1, are iid with mean p; and variance 0%

Sample 2: Yo1, Yoo, ..., Ya,, are iid with mean py and variance Jg,

and that interest lies in testing

Hy @ py — po = dy

versus

Hy @ piy — pia # do

(or any other H,), where dy is a known constant. When the population variances are

equal; that is, when o} = 03, we know that

(?H— - ?2+) — (1 — p2)

/1 1
SorS nr T g

ny+mnyg —2

~ t(nl + N9 — 2),

where

2
S, =

is the pooled sample variance. Therefore, to perform a level o (two-sided) test, we use

the test statistic B B
(Vi = Ya) —do

Spr) e +

RR = {t : |t| > tn1+n2—2,a/2}-

i

~ t(nl + N9 —2)

and the rejection region

Probability values are also computed from the #(n; + ny — 2) distribution. One-sided

tests use a suitably-adjusted rejection region.
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REMARK : When o2 # o3; that is, when the population variances are not equal, we can

use the modified t-statistic given by

Yig —You) — do
52 52 '
NERE

Under H, the distribution of this modified ¢-statistic is approximated by a t(v) distri-

.

bution, where the degrees of freedom
52 S2 2
(5 +2)

NG

ni—1 no—1
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10.8 Hypothesis tests for variances

10.8.1 Omne-sample test

SETTING: Suppose that Yi,Ys, ..., Y, is an iid N'(u, o?) sample, where both parameters

are unknown, and that interest lies in testing

Cs2 42
Hy:0° =03

Versus
H, : 0% +# o3,
(or any other H,), where of is a specified value. When Hy is true; i.e., when o2 = o2,
the statistic
X = w ~ x*(n—1).
90

Therefore, a level a (two-sided) rejection region is

2. .2 2 2 2
RR={X" 1 X" < Xp-11-a/2 OT X" > Xp_1,0/2}

Probability values are also computed from the x?(n — 1) distribution. One-sided tests

use a suitably-adjusted rejection region.
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10.8.2 Two-sample test

SETTING: Suppose that we have two independent samples:

Sample 1: Yy, Yia, ..., Vi, ~iid N (1, 0})
Sample 2:  Yay, Yao, ..., Yon, ~ iid N(p2, 03),

and that interest lies in testing

2

versus
H, : o} # o3,
(or any other H,). Recall from Chapter 7 (WMS) that, in general,
— US t/(n1—1)

F= NF(nl—l,ng—l).
ﬁf(”z”sﬂ/(ng Y
2

However, note that when Iy : 07 = o3 is true, F' reduces algebraically to

SQ
' = ?NF(nl—lng—l)

Therefore, a level a (two-sided) rejection region is

RR = {F . F < Fnlfl,nz—l,lfoe/Q or F > Fnlfl’nzflia/g}.

Probability values are also computed from the F(n; — 1,ns — 1) distribution. One-sided

tests use a suitably-adjusted rejection region.
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10.9 Power, the Neyman-Pearson Lemma, and UMP tests
10.9.1 Power

TERMINOLOGY : Suppose that Y1, Y5, ..., Y,, is an iid sample from fy(y;#) and that we

use a level a rejection region to test Hy : 8 = #, versus a suitable alternative. The power

function of the test, denoted by K(#), is given by
K(0) = P(Reject Hy|0).
That is, the power function gives the probability of rejecting Hy as a function of 6.

e If 6 =6y, that is Hy is true, then K (6y) = «, the probability of Type I Error.

e For values of 6 that are “close” to #p, one would expect the power to be smaller,
than, say, when @ is far away from 6. This makes sense intuitively; namely, it is
more difficult to detect a small departure from Hy (i.e., to reject Hp) than it is to

detect a large departure from H,.
e The shape of the power function always depends on the alternative hypothesis.
NOTE: If , is a value of # in the alternative space; that is, if 8, € H_, then
K({6,)=1-5(8,).
Proof. This follows directly from the complement rule; that is,

K(#,) = P(Reject Hyltl =4,)
= 1— P(Do not reject Holf =#6,) =1— 3(#,). O
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Example 10.10. Suppose that ¥, V5. ... Y, isan iid N'(#, ¢3) sample, where o3 is known,
and that we would like to test
Hy:0 =46,
Versus

H, 0> 8.

Suppose that we use the level a rejection region RR = {z: z = z.}. where
Y -4
Z = -
ao/+/n

and z, denotes the upper a quantile of the standard normal distribution. The power

function for the test, for # > #p, is given by
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Figure 10.2: Power function K(#) in Example 10.10 with a = 0.05, f; = 6, 3 = 4, and
n = 10. A horizontal line at o = 0.05 is drawn.
ILLUSTRATION: Figure 10.2 displays the graph of K(#) when oo = 0.05, 6y = 6, 03 = 4,

and n = 10. That is, we are testing

Hn . H' =6
Versus

H,:0>6.

We make the following observations.
e Note that K(6) = 0.05, that is, the power of the test when Hy : # = 6 is true is
equal to a = 0.05.

e Note that K(f) is an increasing function of #. Therefore, the probability of rejecting
Hj increases as # increases. For example, K(6.5) = 0.1965, K(7) = 0.4746, K(8) =
0.9354, K(9) = 0.9990, ete. O
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10.9.2 The Neyman-Pearson Lemma

TERMINOLOGY : In this course, we will usually take the null hypothesis to be sharp,
or simple; that is, there is just one value of # possible under Hy. The alternative may

be simple or composite. Here is an example of a simple-versus-simple test:

HI:I H=5
VEersus
H, 8 =56.

Here is an example of a simple-versus-composite test:

HI:I =5
Versus

H,:0=5

Note that there are an infinite number of values of # specified in a composite alternative

hypothesis. In this example, H, consists of any value of # larger than 5.

GOAL: For a level o simple-versus-simple test, we seek the most powerful rejection
region; i.e., the rejection region that maximizes the probability of rejecting Hy when H,

is true. The Neyman-Pearson Lemma tells us how to find this “most powerful test.”

RECALL: Suppose that Y. Y5, .. Y, is an iid sample from fy(y;#). The likelihood

function for # is given by

T

L(6) = L(8ly) = LBy, va. -, ¥a) = [ | fr (w:: 0).

i=1
NEYMAN-PEARSON LEMMA: Suppose that Y7, Y5, ..., Y, is an iid sample from fy-(y; 8).
and let L(#) denote the likelihood function. Consider the following simple-versus-simple

hypothesis test:

HEI 0 = 50
versus
H,:0=40,.
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The level o test that maximizes the power when H, : # = #, is true uses the rejection

- <

region

where k is chosen so that
P(Reject Hy|Hy is true) = a.

This is called the most-powerful level o test for Hj versus H,.
Example 10.11. Suppose that Y is a single observation (i.e., an iid sample of size n = 1)

from an exponential distribution with mean #. Using this single observation, we would

like to test
HI:I =2
versus
H,:06=3.

Use the Neyman-Pearson Lemma to find the most powerful level oo = 0.10 test.
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REMARK : Note that even though we have found the most powerful level o = 0.10 test of

Hy versus H,, the test is not all that powerful; we have only about a 21.5 percent chance
of correcting rejecting Hy when H, is true. Of course, this should not be surprising, given

that we have just a single observation Y. We are trying to make a decision with very

little information about #. O
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Example 10.12. Suppose that Y}, Y5, ... ¥}y is an iid sample of Poisson(#) observations

and that we want to test

H o H’ =
Versus

H,:0=2,

Find the most-powerful level o test.

What is the power of the level o = 0.0487 test when H, is true?
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RESULT: Suppose that Y}, Y5, ... Y, is an iid sample from fy (y;#) and let U7 be a suf-
ficient statistic. The rejection region for the most powerful level o test of Hy : # =
versus H, : # = #, always depends on U.

Proof. From the Factorization Theorem, we can write

L(6b) _ g(u;bo)h(y) _ g(u:bh)

L(0,)  g(u:0,)h(y)  g(u;6,)’

where g and h are nonnegative functions. By the Neyman-Pearson Lemma, the most-

powerful level & rejection region is

L) 1 gluibh)
R = {’”‘ L6, © "} = {’” ' owib) F‘”}’

where k is chosen so that P(Reject Hy|Hy is true) = a. Clearly, this rejection region

depends on the sufficient statistic 7. O
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10.9.3 Uniformly most powerful (UMP) tests

REMARK: For a simple-versus-simple test, the Neyman-Pearson Lemma shows us ex-
plicitly how to derive the most-powerful level a rejection region. We now discuss simple-
versus-composite tests; e.g., Hy : 0 = 0y versus H, : #§ > 6, and Hy : f§ = #; versus

H, 60 <6,.

TERMINOLOGY : When a test maximizes the power for all # in the alternative space:
ie, for all # € H,, it is called the uniformly most powerful (UMP) level o test.
In other words, if Ky (f) denotes the power function for the UMP level a test of Hy
versus H,, and if K. (f) denotes the power function for some other level a test, then

Ky(8) = Ky-(0) for all 8 € H,.
FINDING UMP TESTS: Suppose that our goal is to find the UMP level o test of

H,:0=8,
VErsis
H,:0 =4,
Instead of considering this simple-versus-composite test, we first “pretend” like we have

the level o simple-versus-simple test

HEI 0 = EEI
Versus
H,:0=8,,

where 6, > f is arbitrary. If we can then show that neither the test statistic nor the
rejection region for the most powerful level o simple-versus-simple test depends on #,,
then the test with the same rejection region will be UMP level a for the simple-versus-

composite test Hy : 0 = ty versus H, : 8 = fg.
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CURIOSITY : Why does this work? Essentially we are showing that for a given #,, the
level o simple-versus-simple test is most powerful. by appealing to the Neyman-Pearson
Lemma. However, since the value 6, is arbitrary and since the most powerful RR is free
of #,, this same test must be most powerful level o for every value of 8, = f;; 1.e., it must
be the uniformly most powerful (UMP) level o test for all 8 = #,.

Example 10.13. Suppose that Y, Y5, ..., Y5 is an iid sample from a Rayleigh distribution
with pdf

() — %E_.y?;g! y =0
0, otherwise.
Find the UMP level a = 0.05 test of
H,:0=1
VErsus
H,:0=1.

What is the power function K (6) for this test?
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Figure 10.3: Power function K(f) in Example 10.13 with e« = 0.05, #; = 1, and n = 15.
A horizontal line at o = 0.05 is drawn.
REMARK: UMP level o tests do not always exist. For example, a two-sided test Hj :

# = By versus H, : # 3£ 6 never has a UMP rejection region. This is because

e the power function of the UMP level o test of Hy : 8 = 8 versus H, : 6 < #; will

be larger than the power function of the UMP level o test of Hy : @ = f versus
H, : 8 =t when # < ;.

e the power function of the UMP level o test of Hy : 8 = g versus H, : 6 = fy will

be larger than the power function of the UMP level a test of Hy : @ = )y versus
H, : 0 < #l; when # = d,.

For two-sided alternatives, the class of level o tests, say, C, is too large, and finding one

rejection region that uniformly beats all other level a rejection regions is impossible.
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10.10 Likelihood ratio tests
TERMINOLOGY : Suppose that Y71,Y5, ..., Y, is an iid sample from fy(y;#), where the
parameter 6 € ). We call () the parameter space; that is, () represents the set of all

values that # (scalar or vector) can assume. For example, if
oV ~b(l1,0) = Q={0:0<0<1}
e Y ~ exponential(§) = Q= {6:0 > 0}

o YV ~ gamma(e, ) = Q={0=(a,8) :a >0, g >0}

o YV ~ N(p,0?) = Q=1{0=(p,0%) : —oc < p < o0, 0 >0}.
TERMINOLQOGY : Suppose that we partition () into two sets {)y and €),, that is, we

write

Q= QU

where {2y and €2, are mutually exclusive. A hypothesis test can be stated very generally
as Hy : 8 € Qg versus H, : 6 € ,. We call €}y the null space and (2, the alternative
space.

TERMINOLOGY : Suppose that Y|, Y5, ..., Y}, is an iid sample from fy (y;#), where # € (2.
A level e likelihood ratio test (LRT) for

H o - 9 = Qg
versus

H,:0eQ,

employs the test statistic

——

L(£) _ SUPgeny L(f)
L(Q)  supgeq L()

/\:

and uses the rejection region

RR={A: A<k},
where k is chosen such that

P(Reject Hy|Hy is true) = a.
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From the definition, we see that 0 < A < 1, because L(-) is positive and {2, C (2. Also,

o L(f)) is the likelihood function evaluated at the maximum likelihood estimator

(MLE) over (25, the “restricted” parameter space.

o~

e [(12) is the likelihood function evaluated at the MLE over (2, the “unrestricted”

parameter space.

TECHNICAL NOTE: If H, is a composite hypothesis, we define

a = sup P(Reject Hy|#) = sup K(#),

felly LI=i9 5
where K () denotes the power function.

Example 10.14. Suppose that Y7, Y5, ..., Y, is an iid sample from an exponential(#)

distribution. Find the level « likelihood ratio test (LRT) for

Hy: 0 =10
Versus
H, :0# 6.
SOLUTION. Here, the restricted parameter space is (g = {6y}, that is, {2y contains only

one value of 6. The alternative parameter space is 0, = {6 : 0 > 0, 0 # 6y}, and the
unrestricted parameter space is 2 = {# : § > 0}. Note that {2 = Q,UQ,. The likelihood

function for # is given by

1
L) = e
i=1
1 n
= g_ne_zi:lyi/g
_ g—ne—u/B’

where the sufficient statistic u = >"""  y,. Over the restricted (null) space, we have

L(QO) = sup L(#) = L(6o),

QEQD
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because {)y contains only the singleton ¢y. Over the unrestricted space,

L() = sup L(0) = L(B),

where # is the maximum likelihood estimator (MLE) of 8. Recall that for the exponential (6)

model, the MLE is
6=Y.

Therefore, the likelihood ratio test statistic is

L(Q)  L(B)  Oyme /%

A=Y o = _
L) L grewy

Because u = Y, y; = ny, we can rewrite \ as
7\ " ,—u/b n
Y € € —n _—ny/6
/\ = - —— = -_— y/ D_
(90) e /Y (90) v
Therefore, to find the level @ LRT, we would choose k so that

(£) 7o <

0

9:90] = (.

P

This is an unfriendly request, so let’s approach the problem of choosing k in another way.

EXCURSION: For a > 0, define the function

e n
g9(a) = (9—0> ame e/

so that
Ing(a) =Incy+nlna— E,
to

where the constant ¢y = (e/6y)". Note that
dlng(a) n n

da a O

If we set this derivative equal to 0 and solve for a, we get the first order critical point

a=90.

This value of @ maximizes In g(a) because

9*Ing(a) n
o a2V
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by the Second Derivative Test. Also, note that

dlng(a)
Oa

- >0, ifa < 8

QIS 23

— 5 <0, ifa> by,
so In g(a) is strictly increasing for a < 6y and strictly decreasing for a > . However,

because the log function is 1:1, all of these findings apply to the function g(a) as well:

e g(a) is strictly increasing when a < 6.
e g(a) is strictly decreasing when a > 6.
e g(a) is maximized when a = 6.
Therefore, there exist constants ¢; < ¢o such that
gla)<k<=a<e¢ ora> e

This is easy to see from sketching a graph of g(a), for a > 0.
LRT': Now, returning to the problem at hand, we need to choose k so that

P (93) Ve /% <

0

9=90] = (.

The recent excursive argument should convince you that this is equivalent to choosing ¢;

and ¢y so that

P({? S Cl} U {7 Z Cz}|9 = 00) = Q.
However, because ¢; < ca, the sets {7 < ¢} and {7 > ¢o} must be mutually exclusive.
By Kolmolgorov’s third axiom of probability, we have
@ = P({? S Cl} U {?Z CQ}|9 = 90)
= P(?S Cl|9 = 90) —|—P(? Z 02|9 = 90)
We have changed the problem to now specifying the constants ¢; and ¢y that satisfy this

most recent expression. This is a much friendlier request because the distribution of YV

is tractable; in fact, a simple mgf argument shows that, in general,

— 0
Y ~ gamma (n, —) ,
n
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Therefore, when Hy : 8 = 6, is true, we can take ¢; and ¢y to satisfy
o e/ (Wda = a/2

OO7a”_1e_a/(670) a = «
I, T e = o

n

1

that is, ¢; is the lower a/2 quantile of the gamma(n,fy/n) distribution and ¢, is the
corresponding upper «/2 quantile. R makes getting these quantiles simple. It is possible

to get closed-form expressions for ¢; and cs. In fact, it can be shown that

o = (L)
1 on Xon,1-a/2

_ (B 2
G = omn Xan,a /2

where x5 _ and x are the lower and upper «/2 quantiles of the x<(2n) distri-
h g'n,l a/2 d gn,a/? he 1 d 2 il f th 2(2 distri

bution. Therefore, the level a likelihood ratio test (LRT) uses the rejection region
RR={7:7<cory>c}.
ILLUSTRATION: Suppose that a = 0.05, 8y = 10, and n = 20, so that

10

10
0 = (E) o005 = 14.8354.

Therefore, the level a = 0.05 LRT employs the rejection region
RR ={7:7 <6.1083 or 7 > 14.8354}.
For this rejection region, the power function is given by

K(#) = P(Reject Hyld)

c1 oo
_ / ﬁam_le_a/(%)da'l'/ %aﬂ)—le—a/(%>da
o I'(20) (%) e I'(20) (—)

This power function is shown in Figure 10.4. O
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Figure 10.4: Power function K () in Example 10.14 with « = 0.05, 0y = 10, and n = 20.

A horizontal line at a = 0.05 is drawn.

REMARK: In Example 10.14, we were fortunate to know the sampling distribution of
Y when H, was true. In other situations, the distribution of the test statistic may be
intractable. When this occurs, the following large-sample result can prove to be useful.

ASYMPTOTIC RESULT: Suppose that Y1, Ys,....Y, is an iid sample from fy(y;0),

where 6 € €), and that we are to test

H():QEQO

versus

Under certain “regularity conditions” (which we will omit), it follows that, under Hy,
—2InA - X (v),

as n — 00, where v is the difference between the number of free parameters specified

by 8 € €y and the number of free parameters specified in by 8 € €.
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Example 10.15

SITUATION: Suppose that we have two independent samples; i.c..

Sample 1: Yi1, Yio, ..., Yi,, are iid with mean py and variance 0%
Sample 2: Yor1, Yoo, ..., Ys,, are iid with mean o and variance 0%,

and that interest lies in testing

Ho @ py — pa = dpo

versus

Hy @ py — po # do

(or any other H,), where dy is a known constant. When the population variances are

equal; that is, when o? = o3, we know that

(?1+ - ?2+) — (1 — pi2)

/1 1
Spr/ st g

N1 + ng — 2

~ t(m + o — 2),

where

2
S, =

is the pooled sample variance. Therefore, to perform a level a (two-sided) test, we use

the test statistic

0 Nt(n1+n2—2)

and the rejection region
RR = {t : |t| > tn1+n2—2,a/2}-

Probability values are also computed from the ¢(n; + ny — 2) distribution. One-sided

tests use a suitably-adjusted rejection region.
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