11 Linear regression Models

Complementary reading: Chapter 11 and Appendix A (WMS)

11.1 Introduction

IMPORTANCE: A problem that often arises in economics, engineering, medicine, and
other areas is that of investigating the mathematical relationship between two (or more)
variables. In such settings, the goal is often to model a continuous random variable Y as
a function of one or more independent variables, say, x,, xs, ..., 7. Mathematically,

we can express this model as
Y = g(xy, 20, ..., 71) + €,

where g : R¥ — R, and where the random variable € satisfies certain conditions. This is

called a regression model.

e The presence of the random error term e conveys the fact that the relation-
ship between the dependent variable Y and the independent variables through

g(xy, x5, ..., 71) is not perfect.

e The independent variables xy, 3, ..., } are assumed to be fixed (not random), and

they are measured without error. If E(e) = 0 and V(¢) = o2, then

E(}/|$1:3’n2:"':$k) = Q(II,IZ,———g$k)
V(Y| 29, ...,7) = o7,

LINEAR MODELS': In this course, we will consider models of the form

Y = 1_{'30 + .311-'] + .321'2 + -4 ,kag:-' +E:

W
glz1,@e,...2)

that is, g is a linear function of the regression parameters 3, 31, ..., Sx. We call this

a linear regression model.



REMARK : In some problems, a nonlinear regression model may be appropriate. For
example, suppose that ¥ measures plant growth (in cm, say) and = denotes time. We
would expect the relationship to eventually “level off” as x gets large, as plants can not

continue to grow forever. A popular model for this situation is the nonlinear model
Bo
Y=——+e
1+ fiefee
N —
g(x)

Note that, if 3 < 0, then

lim g(z) = lim (L) = Bo.

A = RN T e
Therefore, if 55 < 0, this g function has a horizontal asymptote at y = [y, a characteristic
that is consistent with the data we would likely observe.
DESCRIPTION : We call a regression model a linear regression model if the regression
parameters enter the g function in a linear fashion. For example, each of the models is a

linear regression model:

Y = [Bo+ Biz+e
T

glz)
Y = fo+ Bz + foa®+e

g(z)
Y = Bo+ By + fors + ,53$1I%+E.

~
g(m].\xi}

These should be contrasted with the nonlinear model above, where the regression param-
eters [y, f1, and [, enter the g function nonlinearly. The term “linear” does not refer to
the shape of the regression function g. It refers to the manner in which the regression
parameters 3, 31, ..., [ enter the g function.
GOALS: We will restrict attention to linear (regression) models. Our goals are to

e obtain estimates of the regression parameters and study the sampling distributions

of these estimators
e perform statistical inference for the regression parameters and functions of them

e make predictions about future values of ¥ based on an estimated model.



11.2 Simple linear regression

TERMINOLOGY : A simple linear regression model includes only one independent
variable z. The model is of the form
Y =05+ bz +e

The regression function g(r) = [y + B is a straight line with intercept 3, and slope f;.
If E(e) = 0, then 3, quantifies the change in F(Y') brought about by a one-unit change

n z.

TERMINOLOGY : When we say, “fit a regression model,” we mean that we would like
to estimate the regression parameters in the model with the observed data. Suppose that
we collect (z;,Y;), i = 1,2,....n, and postulate the simple linear regression model

Yi = 5o+ Bizi + &,

for each i = 1.2, ....,n. Our first goal is to estimate [ and ;. Formal assumptions for

the error terms ¢; will be given later.



11.2.1 Least squares estimation

LEAST SQUARES: A widely-accepted method of estimating the model parameters [
and [ is that of least squares. The method of least squares says to choose the values

of By and 3, that minimize

mn

Q(Bo, B1) =Y _[Yi — (Bo + fui)]”.

i=1
Denote the least squares estimators by .Z?’hc. and 31, respectively. These are the values of
By and 3, that minimize Q(5y, 51). A two-variable minimization exercise can be used to

find expressions for By and ,31. Taking partial derivatives of Q(s, 31), we obtain

9B, B1) N~ aa s

5 = zg(h Bo— Bizi) =0
AO(8,. 8 L _.
Q[#ll) —2 — (}i - .'30 - .511"1')% = 0.

Solving for By and [, gives the least squares estimators

Eo = ?—,glf
5 _ TL@m-nmi-Y)
>y (T —T)?




11.2.2 Properties of the least squares estimators
INTEREST: We wish to investigate the properties of .Eo and E] as estimators of the true

regression parameters 3; and [ in the simple linear regression model
Y, = 6o + Bz + &,

fori =1,2,...,n. To do this, we need to formally state our assumptions on the error

terms ¢,;. Specifically, we will assume that ¢; ~ iid N'(0,¢?). This means that
e E(e;))=0,fori=1,2,....n
o V(e;) =0 fori=1,2,..,n, that is, the variance is constant
e the random variables ¢; are independent

e the random variables ¢; are normally distributed.

OBSERVATION : Under the assumption that ¢; ~ iid A/(0, ¢?), it follows that
Y; - N(dﬂ + ,Blﬁ-;, 0'2).

In addition, the random variables Y, are independent. They are not identically dis-

tributed because the mean [y + 12; is different for each z;.

Fact 1. The least squares estimators [y and 3; are unbiased estimators of 5, and /3,

respectively, that is,



Proof. Algebraically,

31_2 i (7 )(Y—Y) _ il Y,

> T)? 2?15’3_-’5
Y@ -nyi-T) = Y@-nn-3
= Y-~y (-7

and 3" (z; — T) = 0. Therefore, if we let

T — T

Yz —T)2

for i =1,2,...,n, we see that 5, can be written as

|
I — 1 },
Idl Z: 1 TI - E Z

a linear combination of Y7,Y5, ..., Y,,. Taking expectations, we have

_ E(ch) — B
i=1 i=1

= Z ci(Po + Bizi)
i—1

= _;"3[] Z C; + 31 Z Ci;.

i=1 i=1

c; =

However, note that

- ” 7 Spml@i=F)
l - l—f)ﬁ} SUNEE TR
and
~ | @D | Y@ -3
;Cﬂ% = ; lZ?:](I'i _T)z} - E?:]Ej:i _T)Q =1.

Therefore, £ (31) = /3, as claimed. To show that 30 is unbiased, we first note that

E(By) = E(Y - Biz) = E(Y) —zE()).



However, E [31) = /3, and
EY)=E liy = liE(Y-)
' a n I on — !

1 n
= = Z(.ﬁo + Bhz;)
e

1 1
= 52:1:.30 + ;Z,@]Iz‘

i=1

= [+ BT
Therefore,
B(f) = E(V)-7E()
= [y + 01T — BT = [o,
as claimed. We have shown that the least squares estimators /3, and j3, are unbiased.
NOTE: It is important to note that the only assumption we used in the preceding argu-
ment was that E(e;) = 0. Therefore, a sufficient condition for the least squares estimators

30 and 31 to be unbiased is that E(¢;) = 0. O

Fact 2. The least squares estimators 30 and 31 have the following characteristics:

T DY
V(b) = o ny " (7 —T)Q]
7 A = _;
V(g) = o° :Z?zl(:ci —T)z}
Cov(Bo.B1) = o m} .

REMARK : For these formulae to hold, we need to use the assumptions that E(¢;) = 0,
V(e;) = 02, and ¢; independent (i.e., normality is not needed).

Proof. Recall that 31 can be written as

T
.'31 = E ¢iYi,
i=1

where the constant
Ir; — T

> i (T =)

C; =



for i =1,2,...,n. Therefore,

1qay=v(jiqn) _ S av)
B 02 n 7 —F 2
B 1221: [Z? 1(Ii _T)2:|
0'2 - =2 _ 0_2 1 _
- EL@-oT [Z( 7 ] =il

as claimed. The variance of [3; is

V(By) = V(Y -B7)
= V(Y)+7V(5) — 22Cov(Y, 3)).

Note that
VY)=V liy = li: (V)
- lTI:':I 1 - nZ i=1 %
1 < 5, No o?
= B2 0= T
i=1
Also,
YV 53 — "ln/_n'”
Cov(Y,B)) = Cov (RZ;EZ(Y)
= [ZCO» (Y. e:Y:) + ) Cov(Y,,c; J] Z WV (Y;) = chzo.
n i=1 i#] " i=1
Therefore,
2 =2 2
FAN T 9 T 9 1 T
V) =T+ s = 0 w+23ﬁm—ﬂ4

o [T (zi —T)* + nT ]
= 0
L n’Zt:l Ty — r"c
2 Z?:l Izg }
_RZ?zl(Ii —7)%]"

as claimed. Finally, the covariance between [, and [, is given by

.

Cov(B, B1) = Cov(Y — BT, Bi) = Cov(Y, B1) — 2V (By).



We have already shown that Cov(Y, 31) = (). Therefore,
CDV(Igg:_;gl) = -7V le =a I:Z_IT] §
as claimed. [
Fact 3. The least squares estimators _30 and 51 are normally distributed.
Proof. Recall that 31 can be written as
- Z C‘i}/i!
i=1

where the constant
T —T
Yoz —T)

for : = 1,2, ..., n. However, under our model assumptions,

C; =

Y; ~ N (5o + Bz, 02)-

Therefore, 31 is normally distributed since it is a linear combination of Y7, Y5, ..., Y,,. That

30 is also normally distributed follows because
.-80 = ? - jlf

a linear combination of Y and ﬁl, both of which are normally distributed. Therefore, ﬁg
is normally distributed as well. Note that we have used the normality assumption on the
errors €; to prove this fact. [

SUMMARY : In the simple linear regression model
Yi = 5o+ bizi + &,
for i = 1,2,...,n, where ¢ ~ iid N'(0,0?), so far we have shown that
.30 ~ N (5o, 00002) and .§1 ~ N (B, 01102),
where

)il mf 1
Cap = = — and ¢ = ————.
NS (5 — 77




11.2.3 Estimating the error variance

REVIEW : In the simple linear regression model
Yi = Bo + frzi + €,

fori =1,2,....n, where ¢; ~ iid N'(0, 0?), we have just derived the sampling distributions
of the least squares estimators Sg and 31 We now turn our attention to estimating o2,

the error variance.

NOTE": In the simple linear regression model, we define the ith fitted value by

-~

Yi = fo + Bra,
where 30 and 31 are the least squares estimators. We define the ith residual by
e =Y — ?:

We define the error (residual) sum of squares by
SSE=) (Y;- V)%
i=1
Fact 4. In the simple linear regression model,
SSE
.n-..2 —
7 n—2

is an unbiased estimator of o2, that is, F(7?%) = o°.

Proof. See WMS, pp 580-581. We will prove this later under a more general setting. []

NOTATION: Your authors denote the unbiased estimator of o by S2. I don’t like this

notation because we have always used S? to denote the sample variance of Y7, Y5, ... Y.

Fact 5. If ; ~ iidd A/(0,0?), then

SSE  (n — 2)5?
0_2 - 0_2 ~ }‘.2(?‘1 _ 2)'

The proof of this fact is beyond the scope of this course.

Fact 6. If ¢; ~ iid A'(0,0?), then &? is independent of both _SU and 31 The proof of

this fact is also beyond the scope of this course.

10



11.2.4 Inference for By and S,

INTEREST: In the simple linear regression model
Yi = Bo + Bizi + €&,

for i = 1,2,...,n, where ¢ ~ iid N'(0,0?), the regression parameters 3, and [, are
unknown. It is therefore of interest to (a) construct confidence intervals and (b) perform
hypothesis tests for these parameters. In practice, inference for the slope parameter 3, is
of primary interest because of its connection to the independent variable z in the model.
Inference for 3 is usually less meaningful, unless one is explicitly interested in the mean

of Y when z = 0.
INFERENCE FOR (,: Under our model assumptions, recall that the least squares esti-

mator

31 ~ N (B, 01102),
where ;1 = 1/ >, (z; — T)?. Standardizing, we have

By — B

7 =
A 8110'2

~ N(0,1).

Recall also that

n — 2)o2
W = % ~x*(n—2).

Because 7° is independent of _'§1, it follows that Z and W are also independent. Therefore,

B%1 — . [ 51),’\/ c110°
\/’Cua \/ n— chr . 2)

t= ~ t(n —2).

Because { ~ t(n — 2), t is a pivot and we can write

Bi— B
P (_tn—E.a;’E < \/],CW <tn_ 2&f2) =1- ,

where t,_24/2 denotes the upper a/2 quantile of the #(n — 2) distribution. Rearranging

the event inside the probability symbol, we have

P (.51 — tn—2a/2V €1102 < b1 < B +tn_2.a/2V 0-1132) =1-—a,

11



which shows that
Bi £ty 2.a/2V 1107

is a 100(1 — «) percent confidence interval for 3;. If our interest was to test
Hy: By =pBio
VETsus
Hg @ 1 # B,
where (3, ¢ is a fixed value (often, 5, ; = 0), we would use

. _51 - _»'31,.!}
A% 01132

t

as a test statistic and
RR = {t . |t| = tn—2,c:;‘2}

as a level a rejection region. Omne sided tests would use a suitably-adjusted rejection

region. Probability values are computed as areas under the ¢(n — 2) distribution.

12



INFERENCE FOR fBy: A completely analogous argument shows that

.Bl} - 60
AV 00032

where cog = >, 72 /n> 1 (7; —T)?. Therefore, a 100(1 —«) percent confidence interval

t= ~t(n — 2),

for Gy is
Po T+ tnh_2.0/2V Coo0?.

In addition, a level « test of
Hy - _50 = .50,0
Versus
Ha : ,Bg # ,80,0

can be performed using

_go — Boo

p=0 00

A% 4’3[][]62

as a test statistic and
RR = {t . |t| = fn_-g_.c,fg}

as a level a rejection region. One sided tests would use a suitably-adjusted rejection

region. Probability values are computed as areas under the t(n — 2) distribution.

13



11.2.5 Confidence intervals for E(Y | z*)

INTEREST: In the simple linear regression model
Y; = 50 —+ ,Blﬁi + €,

for i = 1,2,...,n, where ¢ ~ iid N(0,0?%), we first consider constructing confidence

intervals for linear parametric functions of the form
0 = apfy + a1,

where a, and a, are fixed constants.
ESTIMATION : Using the least squares estimators of _30 and al as point estimators for

By and 3y, respectively, a point estimator for 6 is
a = Q—DBHD + {115‘1.

It is easy to see that # is an unbiased estimator for # since

o~

E0) = apE(Bo) + a1 E(B1) = aoBo + a1y = 0.

It is also possible to show that

2
ap n 2 2 _
2 | Ziz] x; +aj — 2a0T

V(0) ST

T b

T==0

Since # is a linear combination of 5, and j,, both of which are normally distributed, it

follows that

—

2
6~ N(6, 05).
INFERENCE: The variance G’é depends on the unknown parameter o?. An estimate of
crg is given by
52 — 52 C:TD D i1 T3+ af — 2a00iF
T J— 1
f > i1z — T)?
where
_, _ SSE
n—2

14



Because § ~ A (4, O’é), we have by standardization,

—

7929 ~ N(0,1).

g

Recall also that
n — 2)o?
W = % ~ Xzfﬂ — 2).

Because 7° is independent of ,3.;. and _31, it is independent of 6 and hence Z and W are
independent. Therefore,

t= 9:9 - 9)/% ~ t(n — 2).
Og J!n 2[02 )

Since t is a pivotal quantity, a 100(1 — «) percent confidence interval for € is

—

9 ZIZ fn_gra,/gga‘.

In addition, tests of hypotheses concerning # use the t(n — 2) distribution

15



SPECIAL CASE: A special case of the preceding result is estimating the mean value of

Y for a fixed value of x, say, z*. In our simple linear regression model, we know that
E(Y|x") = By + Bix7,

which is just a linear combination of the form # = ay5, +a;3;, where ay = 1 and a; = z*.
Therefore,

—

0=E(Y|z*) = B+ Biz*

is an unbiased estimator of # = E(Y |z*) = [y + f12* and its variance is

ag T 2 2 = * =12

-~ - E T+ ay — 20001 T 1 -

V() =0j=0" |2 I_lfl _ai—;loalf =o' |—+ Elx _:1;)_2 :
}:1‘=1($1 ) n E:«;=1($1 T)

Applying the preceding general results to this special case, a 100(1 — «) percent con-

fidence interval for E(Y|z*) = 3y + (12" is given by

(Bo+ Bua*) + tn_z,m\/aﬂ F P C ) ) ] |
n Zi=1($i - I)z
NOTE: The confidence interval for E(Y|z") = By + fiz" will be different for different
values of x*; see pp 597 (WMS). It is easy to see that the width of the confidence interval
will be smallest when x* = T and will increase as the distance between r* and T increases.
That is, more precise inference for § = E(Y|z*) = 3, + 5,2* will result when z* is close
to . When z* is far away from 7, our precision may not be adequate. It is sometimes
desired to estimate F(Y|z*) = By + (12 for a value of z* outside the range of = values
in the observed data. This is called extrapolation. In order for these inferences to be
valid, we must believe that the model is accurate even for r values outside the range
where we have observed data. In some situations, this may be reasonable; in others, we

may have no basis for making such a claim without data to support it.

16



11.2.6 Prediction intervals for Y*
PREDICTION: For some research questions, we may not be interested in the mean
E(Y|z*) = By + B1x*, but rather in the actual value of ¥ we may observe when = = z*.

On the surface, this may sound like the same problem, but they are very different.

EXAMPLE: Suppose that we have adopted the simple linear regression model
Y = B0+ iz + €,

where Y = 1st year final course percentage in MATH 141 and » = SAT MATH score.

Consider these (very different) questions:

e What is an estimate of the mean MATH 141 course percentage for those students

who made a SAT math score of z = 7007

e What MATH 141 course percentage would you predict for your friend Joe, who

made a SAT math score of » = 7007

The first question deals with estimating E(Y |z* = 700), a population mean. The second
question deals with predicting the value of the random variable Y, say Y, that comes
from a distribution with mean E(Y|z* = 700). Estimating F(Y |z* = 700) is much easier

than predicting Y.

GOAL: Our goal is to construct a prediction interval for a new value of Y, which we

denote by Y*. Our point predictor for Y*, when = = z*, is

Y* = _50 + .B]I*.
This point predictor is the same as the point estimator we used to estimate E(Y |z*) =
Bo + B12". However, we use a different symbol in this context to remind ourselves that

we are predicting Y*, not estimating E(Y|z*). We call Y*a prediction to make the

distinction clear.

17



TERMINOLOGY : Define the random variable
U=Y*"-Y~
We call U the prediction error. Note that
EU)=E(Y*-Y*) = E(Y*)-EY"
= (Bo+ Brz") — E(Bo + Brz”)
= (B + Biz*) — (By + Brz*) = 0.
That is, the prediction error U is an unbiased estimator of 0. The variance of U is
VIO)=V(Y*=Y*) =V(Y*) + V(Y*) = 2Cov(Y", Y™).
Under our model assumptions, we know that V(Y*) = 2. In addition,
1 (x* — )2

V(Y ) =V(By+ Biz*) =0 | =
( ) (80 +- lir } o n + E?=1[:Ii —T)z

which is the same as the variance of E@‘) Finally,

Cov(Y*,Y*) =0,

because of the independence assumption. More specifically, Y* is a function of Yi.Y5, ... Y.,
the observed data. The value Y* is a new value of Y, and, hence, is independent of

1, Y5, ..., Y,,. Therefore,

V(U) = V(Y*=Y*) =V + V(Y*) = 2Cov(Y*, Y™

— o242 l1+ (z* —7) ]
n T (@ 7)

1 *_—_2
= 02[1+—+ Elsc z) 2}7

nooy T

i=1(Ti — T)

18



We finally note that the prediction error U = Y™ — Y*is normally distributed because it

1s a linear combination of Y* and }7*, both of which are normally distributed. We have

- * _ ==\2
U:Y*—Y*NN{ {1+1+%”.

Standardizing, we have

shown that

2 1 (z*—7)?
\/‘T 1+ s

oy a2
A i N TRl

o2

Recall also that

Because 2 is independent of 3, and 5y, it is independent of Y* and hence Z and W are

independent. Therefore,

Z Y Y+
t= = ~t(n —2).

e \/32 1+

Using t as a pivot, we can write

}/’* _ }’,}*

P tn 2,002 <
(z*—m)2
\/ [1+ RS =5

<tpoap|=1—a,

where f,,_54/2 denotes the upper a/2 quantile of the f(n — 2) distribution. Rearranging

the event inside the probability symbol, we have

PV —tygapy[0° |1+ 1+ 28] < v
n >imlTi—T)

< i}* + tn—z,afﬁ“ [1 + + an:_IT) :|) — ]_ — (¥,

_ O ot
Y itn_g.a;z\/ [H _+Zt_1(mi—f)2}

is a 100(1 — ) percent prediction interval for Y*.

We call

19



NOTE: 1t is of interest to compare the confidence interval for E(Y |z*), given by

~ = |1 (z* —7)°
* 2| -
G [+ ]

to the prediction interval for Y*, given by

(z* — )

As we can see, the prediction interval when x = * will always be wider than the corre-

P . 1
(.SD + ,8156*} + tn—?,aﬁ?\/gz |:1 + E +

sponding confidence interval for E(Y|z*). This is a result of the additional uncertainty

which arises from having to predict the value of a new random variable.

11.2.7 Example

Example 11.1. A botanist is studying the absorption of salts by living plant cells. She
prepares n = 30 dishes containing potato slices and adds a bromide solution to each dish.
She waits a duration of time = (measured in hours) and then analyzes the potato slices

for absorption of bromide ions (y, measured in mg/1000g). Here are the data.

Dish T Y Dish T Y Dish T y
1 164 52 11 65.5 15.3 21 1216 230
2 182 1.0 12 68.6 11.2 22 1218 223
3 216 48 13 754 16.9 23 1224 246
4 223 27 14 76.3 123 24 1244 224
5 241 1.1 15 88.0 153 25 1280 28.1
6 29.7 35 16 920 199 26 1280 205
7 346 87 17 6.6 21.1 27 1312 265
8 35.2 101 18 08.1 195 28 1407  31.3
9 56.5 114 19 1039 20.7 29 1458 291
10 587 108 20 1159 224 30 1495 326

Table 11.1: Botany data. Absorption of bromide ions (y, measured in mg/1000g) and

time (z, measured in hours).
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Figure 11.1: Botany data. Absorption of bromide ions (y, measured in mg/1000g) versus

time (z, measured in hours). The least squares regression line has been superimposed.

REGRESSION MODEL: From the scatterplot in Figure 11.1, the linear regression model
}/; = jg + .31.’1??' + €4,

fori = 1,2, ..., 30, appears to be appropriate. Fitting this model in R, we get the output:
> summary(fit)

-~

Call: Im(formula = absorp ~ time)
Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -0.700374 0.894462 -0.783 0.44

time 0.205222 0.009509 21.582 <2e-16 *xx
Residual standard error: 2.236 on 28 degrees of freedom

Multiple R-squared: 0.9433, Adjusted R-squared: 0.9413
F-statistic: 465.8 on 1 and 28 DF, p-value: < 2.2e-16
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OUTPUT: The Estimate output gives the least squares estimates By ~ —0.700 and

31 ~~ 0.205. The equation of the least squares regression line is therefore
Y = —0.700 + 0.205z,
or, in other words,

ABSORPTION = —0.700 + 0.205TIME.

The Std.Error output gives

0.804462 = $e(30) = /coo02
0.009509 = se(3) = Veno?,
which are the estimated standard errors of [, and 3, respectively, where

SSE
e 2.
a 3032 (2.236) 5.00

is the square of the Residual standard error. The t value output gives the t statistics

By — 0
t=-0783 = -

WV 00032
t=2921582 = 0

vV 81132:
which test Hy @ By = 0 versus H, : 5y # 0 and Hy : 3y = 0 versus H, : 51 # 0,
respectively. Two-sided probability values are in Pr(>|t|). We see that

e there is insufficient evidence against Hy : Fy = 0 (p-value = 0.44).

e there is strong evidence against H; : 5, = 0 (p-value < 0.0001). This means that

the absorption rate Y is (significantly) linearly related to duration time z.

CONFIDENCE INTERVALS': Ninety-five percent confidence intervals for 5y and 5, are

o+ taspozse(Fy) = —0.700 + 2.048(0.894) — (—2.53,1.13)

B1 = tasoosse(B1) = 0.205 +2.048(0.010) = (0.18,0.23).

We are 95 percent confident that [y is between —2.53 and 1.13. We are 95 percent

confident that 3, is between 0.18 and 0.23.
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PREDICTION: Suppose that we are interested estimating £(Y |z) and predicting a new

Y when z* = 80 hours. We use R to compute the following:

> predict(fit,data.frame(time=80),level=0.95,interval="confidence")
fit lwr upr

1656.71735 14.87807 16.55663

> predict(fit,data.frame(time=80),level=0.95,interval="prediction")
fit lur upr

15.71735 11.06114 20.37355

o Note that

E(Y|z*) = Y* = By + fiz* = —0.700 + 0.205(80) = 15.71735.

e A 95 percent confidence interval for E(Y|z* = 80) is (14.88,16.56). When the
duration time is z = 80 hours, we are 95 percent confident that the mean absorption

is between 14.88 and 16.56 mg/1000g.

e A 95 percent prediction interval for Y*, when = = 80, is (11.06,20.37). When
the duration time is r = 80 hours, we are 95 percent confident that the absorption

for a new dish will be between 11.06 and 20.37 mg/1000g. [

11.3 Correlation

RECALL: In the simple linear regression model
Y = Bo + iz + €,

fori =1,2,...,n, where ¢ ~ iid N (0, 0?), it is assumed that the independent variable x is
fixed. This assumption is plausible in designed experiments, say, where the investigator

has control over which values of z will be included in the experiment. For example,

e 1 = dose of a drug, Y = change in blood pressure for a human subject
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e 1 = concentration of toxic substance, ¥ = number of mutant offspring observed

for a pregnant rat

e r = time, Y = absorption of bromide ions.

In other settings, it is unreasonable to think that the researcher can “decide” beforehand

which values of x will be observed. Consider the following examples:
e X = weight, ¥ = height of a human subject
e X = average heights of plants in a plot, ¥ = yield
o X = STAT 513 HW score, Y = STAT 513 final exam score.

In each of these instances, the independent variable X is best regarded as random. It

is unlikely that the researcher can control (fix) its value.

IMPORTANT: When both X and Y are best regarded as random, it is conventional to
model the observed data as realizations of (X,Y), a bivariate random vector. A popular
model for (X, Y) is the bivariate normal distribution.

RECALL: The random vector (X, Y) is said to have a bivariate normal distribution
if its (joint) pdf is given by

L Q2
2roxoyy/1 — p?

Ixy(z,y) =

for all (z,y) € R?, where

1 T — fx : T — Ux Y — [y Yy — py ?
0= | (52 e () () + (5
—p oy aTx ay oy

Under the bivariate normal model, recall from STAT 511 that

E(Y|X) =B+ A X

where

By = py — Bipx

. ay
Vo)
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IMPORTANT: Note that because

51 :p<0_y>7
ox

the correlation p and the (population) slope parameter 5; have the same sign.

ESTIMATION: Suppose that (X1, Y7), (X2, Ys), ..., (X, Y,) is an iid sample of size n from
a bivariate normal distribution with marginal means jx and py, marginal variances o%

and 0%, and correlation p. The likelihood function is given by

L(px, by, 0%,0v,p) = H fxy (i, y:)
=1

_ ( 1 ) e~ T Qi/2.
2roxoy/1 — p?

1 Li — ? Li— i~ i ?
Q; = Hx\ 2 Hx Yi — My I Yi — By _
1—p? ox ox Oy oy

The maximum likelihood estimators are

where

_ _ 1 <& _ 1 <& _
nxy =X iy =Y AQ:—E X; — X)? A2:—E Y, —Y)?
#X 7 MY , UX ni:l( )7 UY ni:l( )’
and
"X, -X) Y, -Y
e S X))

VI (X = TR (Y - T2
HYPOTHESIS TEST: In the bivariate normal model, suppose that it is desired to test

Ho P = 0
Versus

H,:p#0.
Since p and f; always have the same sign, mathematically, this is equivalent to testing

H() : 61 =0
versus

Haiﬁl#o.
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That is, we can use the statistic

-~

b
vV 61132

to test Hy : p =0 versus H, : p # 0. A level a rejection region is

t =

RR = {t : |t| > ta/27n72}-

One sided tests can be performed similarly.
RESULT' Simple calculations show that

- Bl ryn—2
Veno? o V1T—1r2

Therefore, the test of Hy : p = 0 versus H, : p # 0 (or any other suitable H,) can be

t

performed using only the calculated value of r.
REMARK: Even though the tests
Ho: 31 =0
versus
Ha : 51 7é 0

and

H() P = 0
versus

H,:p#0

are carried out in the exact same manner, it is important to remember that the inter-

pretation of the results is very different, depending on which test we are performing.
e In the first test, we are determining whether or not there is a linear relationship

between Y and x. The independent variable x is best regarded as fixed.

e In the second test, we are actually determining whether or not the random variables

X and Y are independent. Recall that in the bivariate normal model,

X and Y independent <= p = 0.
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REMARK: In some problems, it may be of interest to test

Ho: p=po
versus

Hy o p# po

(or any other suitable H,), where py # 0. In this case, there is no equivalence between
the two tests (as when py = 0) that we saw before. We are forced to use a different test

(i.e., one that is based on large sample theory).
ASYMPTOTIC RESULT: Suppose that (Xi,Y1), (Xs,Y3),..., (X, Y,) is an iid sample

of size n from a bivariate normal distribution with marginal means px and py, marginal
variances 0% and 0%, and correlation p. Let

. S (X = X)(Y;i - Y)

Vo (G - X, (Y - VP

denote the maximum likelihood estimator of p. For large n, the statistic

1 147 1 14+p 1

W = —l ~ -AN _l ) .
2“(1—r) {2“(1—;)) n—3]

IMPLEMENTATION: This asymptotic result above can be used to test

Hy: p=po
versus

Haiﬁ)?épo

(or any other suitable H,), where po # 0. The test statistic is the standardized value of
W, computed under Hy, that is,

An approximate level o rejection region is
RR = {Z . |Z| > Za/z},

where 2,2 is the upper /2 quantile of the standard normal distribution. One sided tests

can be performed similarly.
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11.4 Multiple linear regression models

11.4.1 Introduction
PREVIEW: We have already considered the simple linear regression model

Y = Bo + Bz + €,

for © = 1,2,...,n. Our interest now is to extend this basic model to include multiple

independent variables 1, xo, ..., x5. Specifically, we consider models of the form
Yi = fo+ frzia + BoTio + - - + Brxar + €,

for i = 1,2,...,n. We call this a multiple linear regression model.
e There are now p = k + 1 regression parameters 3y, 31, ..., Bx. These are unknown

and are to be estimated with the observed data.

e Schematically, we can envision the observed data as follows:

Individual Y 21 292 -+ a1
1 Yi i1 712 0 T
2 Yo ®o1 w2 - o
n Yo Tpi Th2 o Tnk

That is, each of the n individuals contributes a response Y and a value of each of

the independent variables x1, x2, ..., Tk.

e We continue to assume that ¢; ~ iid N'(0,0?).

e We also assume that the independent variables z1, z, ..., x; are fixed and measured

without error. Therefore, Y is normally distributed with

E(Y|xy, 29, ...,xr) = o+ a1+ Paa+ -+ + Py

V(Y|$1, T2y ouny l‘k) = 0'2.
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PREVIEW:: To fit the multiple linear regression model
Yi = 0o+ B1xin + Baia + -+ - + Brix + €,

we will still use the method of least squares. However, simple computing formulae for
the least squares estimators of fy, 1, ..., Br are no longer available (as they were in the
simple linear regression model). It is advantageous to express multiple linear regression
models in terms of matrices and vectors. This greatly streamlines notation and makes

calculations tractable.

11.4.2 Matrix representation

MATRIX REPRESENTATION : Consider the multiple linear regression model
Y; = Po + bz + Baia + -+ - + Brir + €,

fort=1,2,...,n. Define

(50\

Y; 1 211 212 -+ 21k 5 €1
1
Y, 1 wor xop -+ 9 €2
Y = ) , X = ) ' ' ~ . , 16 — 52 , €=
Yn 1 Tn1l Tp2 - °- Tnk 5 €n
%

With these definitions, the model above can be expressed equivalently as

Y =X3+e.

In this equivalent representation,

e Y is an n x 1 (random) vector of responses
e X is an n x p (fixed) matrix of independent variable measurements (p =k + 1)
e (s apx 1 (fixed) vector of unknown population regression parameters

e eisann x 1 (random) vector of unobserved errors.
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LEAST SQUARES: The notion of least squares is the same as it was in the simple linear
regression model. To fit a multiple linear regression model, we want to find the values of

Bo, Bi, ..., B that minimize

n

Q(ﬁm By s 5k) = Z [Y;‘ - (50 + Bixin + Poig + - - + 5k$z‘k)]2,

i=1

or, in matrix notation, the value of B8 that minimizes

Q=Q(B) = (Y -XB)(Y - XB).
Because () is a scalar function of the p = k + 1 elements of 3, it is possible to use

calculus to determine the values of the p elements that minimize it. Formally, we can

take the p partial derivatives with respect to each of 3y, 51, ..., 8 and set these equal to

zero; i.e.,

0Q
5y 0
0Q

0QB) | @5 [sa| O

19J6] : :
Q.
OBk 0

These are called the normal equations. Solving the normal equations for (y, f1, ..., Bk
gives the least squares estimators, which we denote by BO, Bl, e Bk

NORMAL EQUATIONS: Using the calculus of matrices makes this much easier; in

particular, the normal equations above can be expressed as
X'X3=X'Y.
Provided that X'X is full rank, the (unique) solution is
B = (X'X)"'X'Y.
This is the least squares estimator of 3. The fitted regression model is
Y = X3,

or, equivalently,

2 = Bo + 31901‘1 + BinZ + -+ BrTik.
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NOTE: For the least squares estimator B to be unique, we need X to be of full column
rank; i.e., 7(X) = p = k+ 1. That is, there must be no linear dependencies among the
columns of X. If r(X) < p, then X’X does not have a unique inverse. In this case, the

normal equations can not be solved uniquely. We will henceforth assume that X is of

full column rank.

11.4.3 Random vectors: Important results

IMPORTANCE: Because multiple linear regression models are best presented in terms of
(random) vectors and matrices, it is important to extend the notions of mean, variance,
and covariance to random vectors. Doing so allows us to examine sampling distributions

and the resulting inference that arises in multiple linear regression models.

TERMINOLOGY : Suppose that Zy, Zs, ..., Z,, are random variables. We call
Z
z-| ?

Zn

a random vector. The multivariate probability density function (pdf) of Z is de-

noted by fz(z). The function fz(z) describes probabilistically how the random variables
Z, Lo, ..., Ly are jointly distributed.

o If 71,75, ..., Z, are independent variables, then

fZ(Z) = HfZi(zi)>
i=1
where f7 (z;) is the marginal pdf of Z;.

o If 7y, 7, ..., Z, are iid from a common marginal pdf, say, fz(z), then

fz(z) = Hfz(zz‘)-
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TERMINOLOGY : Suppose Zy, Zs, ..., Z, are random variables with means E(Z;) = p;
and variances V(Z;) = o2, for i = 1,2, ...,n, and covariances Cov(Z;, Z;) = o;; for i # j.

The mean of a random vector Z is given by

Z E(Zy) {1
E(Z)=E Zs _ E(Z,) _ ,u‘z —
Z, E(Z,) fin
The variance of Z is
Al 01 012 O1n
V(Z) =V Zy | 0.21 o3 o |y
Zy Opl Opy -+ 02

e V is an n X n matrix. It is also called the variance-covariance matrix of Z.

e V consists of the n variances 07,03, ..., 02 on the diagonal and the 2(7) covariance
terms Cov(Z;, Z;), for i # j, on the off-diagonal.
e Since Cov(Z;, Z;) = Cov(Z;, Z;), V is symmetric; i.e., V' = V.

TERMINOLOGY : Suppose that

Y, A

Y- 7
Y = 2 and Z = 2

Y, Zm

are random vectors. The covariance between Y and Z is

Cov(Yy, Z1) Cov(Yy,Z2) -+ Cov(Yy, Zn)
Cov(Ysy, Z1) Cov(Ysy, Zy) --- Cov(Ya, Z,,
Cov(y, 2= | COVBE) CovlZ) e ConllaiZ)
Cov(Y,, Z1) Cov(Yn, Zs) -+ Cov(Ya, Zn)
nxm
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RESULTS: Suppose Z is a random vector with mean F(Z) = p and variance-covariance
matrix V(Z) = V. Suppose a is a nonrandom (constant) vector and that A and B are

nonrandom (constant) matrices.

1. E(a+BZ)=a+BE(Z)=a+Bpu
2. V(a+BZ) =BV (Z)B'=BVB’

3. Cov(AY,BZ) = ACov(Y,Z)B".
TERMINOLOGY: Let Y be an nx1 random vector with mean g and variance-covariance
matrix V. Let A be an n x n nonrandom matrix. We call Y'AY a quadratic form.

The mean of a quadratic form is
E(Y'AY) = /Ap + tr(AV),
where tr(-) means “trace,” that is, tr(AV) is the sum of the diagonal elements of AV.

REMARK: Tt is important to see that a quadratic form Y’AY is a scalar random variable.
Therefore, its mean E(Y'AY) is a scalar constant. Quadratic forms are important in the
theory of linear (regression) models. It turns out that sums of squares (which appear

in analysis of variance tables) can always be written as quadratic forms.
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11.4.4 Multivariate normal distribution
TERMINOLOGY : Suppose that Zi, Zs, ..., Z, are iid N(0,1) random variables. The
joint pdf of Z = (21, Zs, ..., Z,), for all z € R™, is given by

Z)—iljfZ(zi) = lj
_ ( ) S22 (20) 2 exp(—22/2).

722/2

If Z has a pdf given by fz(z), we say that Z has a standard multivariate normal dis-

tribution; i.e., a multivariate normal distribution with mean 0 and variance-covariance
matrix I. Here,

0 10 0
01 - 0

0= and I=
0 00 --- 1

That is, 0 is an nx 1 zero vector and I is the n xn identity matrix. We write Z ~ N,,(0,1).
Note that

Zy, Zoy oy Zy ~ iid N(0,1) <= Z ~ N,,(0,1).
TERMINOLOGY : The random vector Y = (Y7, Y5, ..., Y,,)" is said to have a multivari-
ate normal distribution with mean g and variance-covariance matrix V if its joint

pdf is given by

Fe(y) = )V e {0 -V - ).

for all y € R™. We write Y ~ N, (u, V).
FACTS:

o IfY = (Y1,Ys,....Y,) ~ N,(, V), then Y; ~ N(p;,02), for each i = 1,2, ..., n.

e If Y ~ N, (s, V) and a,,»; and B,,«,, are nonrandom, then

U=a+BY ~N,,(a+Bu,BVB').
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APPLICATION: Consider the multiple linear regression model
Y = Bo + frwi + avia + -+ - + Brik + €,
for i = 1,2,...,n, where ¢; ~ iid N'(0,0?%). Equivalently, we can write this model as
Y =X +¢€,
where € ~ N,,(0,0%I). Note that

EY)=E(XB+e€)=XB+FE(e)=XB+0=Xp3
and
V(Y)=V(XB+e€) =V(e) =o’L
Because Y is a linear combination of €, which is normally distributed by assumption, it

follows that
Y ~ N,(XB,0°T). O
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11.4.5 Estimating the error variance

REVIEW: Consider the multiple linear regression model
Y = X3 +e€,
where € ~ N,,(0, 0%I). Recall that the least squares estimator of 3 is given by
B =(X'X)"'X'Y.

Our next task is to estimate the error variance o2.
TERMINOLOGY : We define the error (residual) sum of squares as

SSE = (Y —XB)(Y — Xp)
— (Y—?)’(Y—?) = €le.

e The n x 1 vector Y = XB contains the least squares fitted values.

e The n x 1 vector e =Y — Y contains the least squares residuals.

TERMINOLOGY : Consider the multiple linear regression model Y = X3+ € and define
M = X(X'X)"'X'.

M is called the hat matrix. Many important quantities in linear regression can be
written as functions of the hat matrix. For example, the vector of fitted values can be
written as

Y = X3 = X(X'X)"'X'Y = MY.

The vector of residuals can be written as
e=Y-Y=Y-MY=>I-M)Y.
The error (residual) sum of squares can be written as
SSE=(Y -Y)(Y-Y)=Y'(I-M)Y.

Note that SSE = Y'(I — M)Y is a quadratic form.
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FACTS: The matrix M possesses the following properties:
e M is symmetric, i.e., M’ = M.
e M is idempotent, i.e., M? = M.

e MX = X i.e., M projects each column of X onto itself.

RESULT: Consider the multiple linear regression model
Y = X3 +e¢,

where € ~ N,(0,0%I). Let p = k + 1 denote the number of regression parameters in the
model. The quantity
5 SSE
o =
n—p
is an unbiased estimator of o2, that is, £(c?) = 0.
Proof. Recall that SSE = Y'(I — M)Y. Because E(Y) = X3 and V(Y) = 021, we have

E(SSE) = E[Y'I-M)Y]
= (XB)(I-M)XS + tr[(I — M)o2I].

The first term (X3)"(I — M)X3 = 0 because
(I-M)XB=X38-MX8=X3-X3=0.
Because the tr(-) function is linear,

tr[(I— M)o?l] = o2[tr(I) — tr(M)]

= o*{n — tr[X(X'X)"'X']}.
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Since tr(AB) = tr(BA) for any matrices A and B, taking A = X and B = (X’X)™'X/,

we can write the last expression as
o*{n — tr[X(X'X)"'X]} = o*{n— tr[(X'X)'X'X]}
= o’[n—tr(,)] = o*(n —p),

since I, = (X'X)'X'X is p x p. We have shown that E(SSE) = ¢%(n — p). Thus,

E@%:E(%E):ﬁm—m )

= 0’ N
n—op n—op
showing that o2 is an unbiased estimator of o2. [J
RESULT: Consider the multiple linear regression model

Y = X8 + ¢,

where € ~ N,,(0,0%I). Let p = k + 1 denote the number of regression parameters in the

model. Under these model assumptions,

SSE  (n — p)o?
0_2 = 0_2 NX2(n_p)

The proof of this result is beyond the scope of this course.

11.4.6 Sampling distribution of B
GOAL: Consider the multiple linear regression model

Y = X3 + €,

where € ~ N, (0,0°T). We now investigate the sampling distribution of the least

squares estimator
B=(X'X)"'X'Y.
MEAN AND VARIANCE: The mean of 3 is given by
EB) = E[(XX)'XY]
= (X'X)"'X'E(Y)
= (X'X)"'X'X3 = 3.
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This shows that B is an unbiased estimator of 3. The variance of B is
V(B) = VI(X'X)TX'Y]
= (X'X)'X'V(Y)[(X'X) X
= (X'X)' X'’ IX(X'X) ™!
= AXX)TIX'X(X'X)!=H(X'X) TN
NORMALITY : Since 8 = (X'X)~'X'Y is a linear combination of Y, which is (multi-

variate) normal under our model assumptions, it follows that B is normally distributed

as well. Therefore, we have shown that

B~ N,[B,0*(X'X)7]. O

IMPLICATIONS': The following results are direct consequences of our recent discussion:
1. E(B]) = B, for j = 0,1, ..., k; that is, the least squares estimators are unbiased.
2. V(B;) = ¢j;02, for j =0,1,..., k, where
¢ = (X'X);}!

is the corresponding jth diagonal element of (X'X)~!. An estimate of V(Bj) is

V(B)) = ¢;;6° = 32(X'X);}

Jio

where

SSE
5 =

n—p

3. Cov(@,gj) = ¢;;0%, where
Cij = (X/X);]l

is the corresponding ith row, jth column entry of (X'X)~! fori,7 =0,1,....k. An
estimate of Cov(gi, Ej) is

Cov(Bi, By) = €;6° = 5*(X'X);;".

4. Marginally, Bj ~ N (B}, cjjo?), for j =0,1,.... k.
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11.4.7 Inference for regression parameters

IMPORTANCE: Consider our multiple linear regression model
Yi = Bo + Brwi + Boio + -+ + Brar + €,

for i = 1,2,...,n, where ¢; ~ iid N'(0,0?). Confidence intervals and hypothesis tests for
B; can help us assess the importance of using the independent variable z; in a model with
the other independent variables. That is, inference regarding f; is always conditional
on the other variables being included in the model.

CONFIDENCE INTERVALS: Since Bj ~ N(B;,cjjo?), for j = 0,1,2,..., k, it follows,

from standardization, that

4:@_@~N@U
V/€iio?
Recall also that
~2
n—p)o
w = ﬂ) ~x*(n—p).

Because 72 is independent of Bj, it follows that Z and W are also independent. Therefore,

o~

Bi=B (3= B)/ /50
t= — = ~ t(n —p).
Vet e )

Because t ~ t(n — p), t is a pivot and we can write

P _tn—p,a/Q < 6J _ /6\3 < tn—p,a/2 =1- a,
ijUQ

where t,_, /2 denotes the upper a/2 quantile of the ¢(n — p) distribution. Rearranging

the event inside the probability symbol, we have

P (ﬁj — tnpajaV/ €00 < B < Bj+tapajpv Cj132> =1l-a

This shows that
Bi £ tnpaj2/ 507

is a 100(1 — «) percent confidence interval for f;.
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HYPOTHESIS TESTS: Suppose that we want to test

Hy : B; = Bjo

versus

H, : B; # Bjo,
where f3; is a fixed value (often, 3;0 = 0). We use

t = 6j - 5j,0
\/ijb'\Q

as a test statistic and

RR = {t : |t| > tn_pya/g}

as a level a rejection region. One sided tests would use a suitably-adjusted rejection

region. Probability values are computed as areas under the ¢(n — p) distribution.
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11.4.8 Confidence intervals for E(Y|z*)

RECALL: In the simple linear regression model
Y; = Po + biz; + €,

for i = 1,2, ...,n, where ¢; ~ iid N'(0, 0?), we learned how to obtain confidence intervals
for the mean response E(Y |x*) = By + f1x*. Extending this to multiple linear regression

models is straightforward.

GOAL: Consider the multiple linear regression model
Y; = Bo + Bzt + Paiz + - + Brak + €5,
for i = 1,2, ...,n, where ¢; ~ iid N'(0, 0?), or, equivalently,
Y = X3 +e,

where € ~ N, (0,0%T). Our goal is to construct confidence intervals for linear parametric

functions of the form

0= a0ﬁ0+a1ﬁ1 +"'+ak6k = a’ﬁ,

where
Qo Bo
a
a= ' and (3= él
ag B

INFERENCE: A point estimator for §# = a’(3 is
9 =aB,

where 8 = (X'X)"1X'Y. Tt is easy to see that 0 is an unbiased estimator for 6 since

The variance of 8 is given by

-~ -~

V() =V(@B) =aV(B)a=acXX'X) 'a=c%(X'X)"a.
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Since 0 = a’ ,CA'S' is a linear combination of B, which is normally distributed, 9 is also

normally distributed. Therefore, we have shown that

-~

0 ~ N0, 0%’ (X'X)a].

Standardizing, we have

~

0—0

o?a/(X'X)"1a -

-0
= = ~ t(n - p)a
o2a/(X'X)"1a

N(0,1).

It also follows that

where p = k4 1 and
5 SSE
o

_n—p'

Since t is a pivotal quantity, a 100(1 — «) percent confidence interval for # = a’3 is

~

0+t papyola (XX) la.

In addition, tests of hypotheses concerning 6 use the t(n — p) distribution.
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SPECIAL CASE: A special case of the preceding result is estimating the mean value of

Y for a fixed value of x = (1, %2, ..., %), say,

In our multiple linear regression model, we know that
E(Y[x") = By + p1a} + Boah + - - - + By,

which is just a linear combination of the form 6 = aofy + a151 + - - - + arSr. = a’'B, where

Therefore,
G= E(Y ) = Bo+ Bua* + Boxy+ -+ + ol = B
is an unbiased estimator of § = E(Y|x*), and its variance is

-~

V(0) = o%a (X'X)a,

where a is as given above. Applying the preceding general results to this special case, a

100(1 — «) percent confidence interval for E(Y |x*), the mean of Y when x = x*, is

0+ by paja/52a (XX) La,
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11.4.9 Prediction intervals for Y*
RECALL: In the simple linear regression model, we learned how to obtain prediction
intervals for a new response Y*. Extending this to multiple linear regression models is

straightforward.

GOAL: Consider the multiple linear regression model
Yi = Po+ brxin + Bario + - - + Brir + €,
for i = 1,2,...,n, where ¢; ~ iid N(0,0?), or, equivalently,
Y = X3 +e¢€,

where € ~ N,,(0,0%I). Suppose that we would like to predict the value of a new response

Y*, for a fixed value of x = (x1, 2, ..., x)’, say,

Our point predictor for Y*, based on the least squares fit, is

Y* = Bo+ Bt + Bowy + - - + Brw, = a'B,
where a = (1,27, 23, ....2}) and B = (X’X)"'X'Y. Define the error in prediction by
U=Y*—-Y* Analogously to the simple linear regression case,

U=Y*—Y*~N{0,0%[1 +a'(X'X) 'a]}.

Using the fact that (n — p)5?/o? ~ x?(n — p), it follows that

L Ye-Y*
Vo[l +a/(X/'X) " 1a]

~ t(n —p).

Therefore,

Y* 4ty pasa/02 [+ a (X'X)1al,

is a 100(1 — «) percent prediction interval for Y*.
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REMARK : Comparing the prediction interval for Y* to the analogous 100(1 — ) percent
confidence interval for E(Y'|x*), we see that the intervals are again identical except the
prediction interval has an extra “1” in the estimated standard error. This results from

the extra variability that arises when predicting Y* as opposed to estimating F(Y |x*).
y g g
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11.4.10 Example

Example 11.2. The taste of matured cheese is related to the concentration of several

chemicals in the final product. In a study from the LaTrobe Valley of Victoria, Aus-

tralia, samples of cheddar cheese were analyzed for their chemical composition and were

subjected to taste tests. For each specimen, the taste Y was obtained by combining the

scores from several tasters. Data were collected on the following variables:

Y =
I =
Lo =

T3 =

taste score (TASTE)

concentration of acetic acid (ACETIC)

concentration of hydrogen sulfide (H2S)

concentration of lactic acid (LACTIC).

Variables ACETIC and H2S were both measured on the log scale. The variable LACTIC

has not been transformed. Table 11.2 contains concentrations of the various chemicals

in n = 30 specimens of cheddar cheese and the observed taste score.

Specimen  TASTE  ACETIC H2S LACTIC Specimen  TASTE  ACETIC H2S LACTIC
1 12.3 4.543 3.135 0.86 16 40.9 6.365 9.588 1.74
2 20.9 5.159 5.043 1.53 17 15.9 4.787 3.912 1.16
3 39.0 5.366 5.438 1.57 18 6.4 5.412 4.700 1.49
4 47.9 5.759 7.496 1.81 19 18.0 5.247 6.174 1.63
5 5.6 4.663 3.807 0.99 20 38.9 5.438 9.064 1.99
6 25.9 5.697 7.601 1.09 21 14.0 4.564 4.949 1.15
7 37.3 5.892 8.726 1.29 22 15.2 5.298 5.220 1.33
8 21.9 6.078 7.966 1.78 23 32.0 5.455 9.242 1.44
9 18.1 4.898 3.850 1.29 24 56.7 5.855 10.20 2.01
10 21.0 5.242 4.174 1.58 25 16.8 5.366 3.664 1.31
11 34.9 5.740 6.142 1.68 26 11.6 6.043 3.219 1.46
12 57.2 6.446 7.908 1.90 27 26.5 6.458 6.962 1.72
13 0.7 4.477 2.996 1.06 28 0.7 5.328 3.912 1.25
14 25.9 5.236 4.942 1.30 29 13.4 5.802 6.685 1.08
15 54.9 6.151 6.752 1.52 30 5.5 6.176 4.787 1.25

Table 11.2: Cheese data.

response variable is TASTE.

ACETIC, H2S, and LACTIC are independent variables.
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REGRESSION MODEL: Suppose the researchers postulate that each of the three chemi-
cal composition variables x1, x2, and x3 is important in describing the taste. In this case,

they might initially consider the multiple linear regression model
Y: = Bo + Bixin + oz + B3xis + €,

for i = 1,2,...,30. We now use R to fit this model using the method of least squares.
Here is the output:

> summary(fit)
Call: 1m(formula = taste ~ acetic + h2s + lactic)
Coefficients:

Estimate Std. Error t value Pr(>ltl|)

(Intercept) -28.877 19.735 -1.463 0.15540
acetic 0.328 4.460 0.074 0.94193
h2s 3.912 1.248 3.133 0.00425 *x*
lactic 19.670 8.629 2.279 0.03109 *

Residual standard error: 10.13 on 26 degrees of freedom
Multiple R-squared: 0.6518, Adjusted R-squared: 0.6116
F-statistic: 16.22 on 3 and 26 DF, p-value: 3.810e-06

OUTPUT: The Estimate output gives the values of the least squares estimates:
By~ —28.877 B ~0.328  Bam3912 By~ 19.670.
Therefore, the fitted least squares regression model is
Y = —28.877 + 0.3287; + 3.912z5 + 19.670z3,
or, in other words,

TASTE = —28.877 + 0.328ACETIC + 3.912H2S + 19.670LACTIC.
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The Std.Error output gives

19.735 = = /o0 2(X'X) o 00
4.460 = = V10?2 = /32X X)
1.248 = = /2202 = 1/ 02( X'X)zz

8.629 = = \/ 6330' X/X

where

SSE
62 = —— =(10.13)®> ~ 102.63
- 30—4 = y

is the square of the Residual standard error. Thet value output gives the ¢ statistics

BO_O

Coo0O

t=-1463 =

>T
)
[\

iS3
o

t=0.074 =

3

0110'2

52—0

t=3.133 =
0220'2

4

t=2279 =

d

6330'2
These t statistics can be used to test Hy : 5; = 0 versus Hy : §; # 0, for ¢+ = 0,1,2, 3.

Two-sided probability values are in Pr(>|t|). At the a = 0.05 level,
e we do not reject Hy : By = 0 (p-value = 0.155). Interpretation: In the model

which includes all three independent variables, the intercept term [, is not statis-

tically different from zero.

e we do not reject Hy : 51 = 0 (p-value = 0.942). Interpretation: ACETIC does not
significantly add to a model that includes H2S and LACTIC.

o we reject Hy : o = 0 (p-value = 0.004). Interpretation: H2S does significantly
add to a model that includes ACETIC and LACTIC.

o wereject Hy : 3 = 0 (p-value = 0.031). Interpretation: LACTIC does significantly
add to a model that includes ACETIC and H2S.
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CONFIDENCE INTERVALS': Ninety-five percent confidence intervals for the regression

parameters [y, B1, B2, and [3, respectively, are

Bo = tas.0.0255¢(Bo —28.877 4 2.056(19.735) = (—69.45, 11.70)

se(
B1 = tas,0.0055(
By £ £26,0.0255€(

(

B £ t26,0.025

PREDICTION: Suppose that we are interested estimating E (Y |x*) and predicting a new

3.912 + 2.056(1.248) => (1.35,6.48)

Bo) =
Bi) = 0.328 £ 2.056(4.460) = (—8.84,9.50)
52) -

se
$o(fBs) = 19.670 & 2.056(8.629) —> (1.93,37.41).

Y when ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, so that

9.5

X =1 6.0
1.4

We use R to compute the following:

> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="confidence")
fit lwr upr
23.93552 20.04506 27.82597
> predict(fit,data.frame(acetic=5.5,h2s=6.0,lactic=1.4),level=0.95,interval="prediction")
fit lwr upr
23.93552 2.751379 45.11966
e Note that

—

EV|X) =Y = Bo+ ol + Boty + Ban

— —28.877 + 0.328(5.5) + 3.912(6.0) + 19.670(1.4) ~ 23.936.

e A 95 percent confidence interval for F(Y|x*) is (20.05,27.83). When ACETIC =
5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the mean taste
rating is between 20.05 and 27.83.

e A 95 percent prediction interval for Y*, when x = x*, is (2.75,45.12). When
ACETIC = 5.5, H2S = 6.0, and LACTIC = 1.4, we are 95 percent confident that the

taste rating for a new cheese specimen will be between 2.75 and 45.12.
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11.5 The analysis of variance for linear regression

IMPORTANCE: The fit of a linear regression model (simple or linear) can be summarized
in an analysis of variance (AINOVA) table. An ANOVA table provides a partition
of the variability in the observed data. This partition, in turn, allows us to assess the

overall fit of the model.

MODEL: Consider the linear regression model
Y =XB+e,

where € ~ N,,(0,0%I), and let M = X(X’X) !X’ denote the hat matrix. Recall that
Y = MY and e = (I = M)Y denote the vectors of least squares fitted values and

residuals, respectively.
SUMS OF SQUARES': Start with the simple quadratic form Y'Y = Y'I'Y. Note that

YY = YM+I-M)Y
= YMY +Y'(I-M)Y
= YMMY +Y'(I-M)I-M)Y

— Y'Y +ée.

This equation can be expressed equivalently as
)IICED SRS YL
i=1 i=1 i=1

TERMINOLOGY : We call

e Y'Y =" | Y? the uncorrected total sum of squares
e Y'Y = > )Aff the uncorrected regression (model) sum of squares

eee=>" (Y- }A/;)Q the error (residual) sum of squares.
CORRECTED VERSIONS: When we fit a linear regression model, we are often in-

terested in the regression coefficients that are attached to independent variables; i.e.,
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B4, Ba, ..., Br.. We generally are not interested in the intercept term f,, the overall mean
of Y (ignoring the independent variables). Therefore, it is common to “remove” the
effects of fitting the intercept term y. This removal is accomplished by subtracting nY’

from both sides of the last equation. This gives

Zn:Y? Y = i:?? Y +zn:(Yi ~ V)2
i—1 i=1 i—1

or, equivalently,

DY =Y (VY)Y (V)
N . & AN y
SérT SgrR SérE

We call

e SST the corrected total sum of squares
e SSR the corrected regression (model) sum of squares

e SSE the error (residual) sum of squares.
QUADRATIC FORMS: To enhance our understanding of the partitioning of sums of

squares, we express the SST = SSR + SSE partition in terms of quadratic forms. The

basic uncorrected partition is given by
YY=YMY+Y(I-M)Y.

To write the corrected partition, we subtract nY’ = Y'n~'JY from both sides of the

last equation, where

11 1

11 1
J=

11 1

nxn

is the n x n matrix of ones. This gives
YY -Yn ' JY =YMY -Yn ' JY +Y(I-M)Y
or, equivalently,

YI-n'N)Y=YM-n'D)Y+Y(I-M)Y.

Vv Vv Vv
SST SSR SSE
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ANOVA TABLE: The general form of an ANOVA table for linear regression (simple or

multiple) is given below:

Source df SS MS F
Regression p—1 SSR MSR = % F %
Error n—p SSE MSE = &}2

Total n—1 SST

NOTES:

e The corrected partition SSR + SSE = SST appears in the column labeled “SS”

(sum of squares).

e The column labeled “df” gives the degrees of freedom for each quadratic form.

Mathematically, )
p—1 = r(M—-n""J)

n—p = r(I-M)

n—1 r(I—n=1J).

That is, the degrees of freedom are the ranks of the quadratic form matrices in
YI-n2')Y=YM-n'D)Y+YI-M)Y.

Note also that the degrees of freedom add down (as the SS do).

e The column labeled “MS” contains the mean squares

MSR = SS_R
p—1
MSE = SSE.
n—p

That is, the mean squares are the SS divided by the corresponding degrees of

freedom. Note that
SSE

n—p

is our unbiased estimator of the error variance o2 in the underlying model.

62 = MSE =

e The ANOVA table F statistic will be discussed next.
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F STATISTIC: The F statistic in the ANOVA table is used to test

Hy:p1=p=-=0B=0
Versus

H, : at least one of the f3; is nonzero.

In other words, F' tests whether or not at least one of the independent variables
x1, X2, ..., T is important in describing the response Y. If Hj is rejected, we do not
know which one or how many of the /3;’s are nonzero; only that at least one is. In this
light, one could argue that this test is not all that meaningful.

JUSTIFICATION: When H, is true,

SSR SSE
— ~ X1, — ~X(n—p),

and SSR and SSE are independent. These facts would be proven in a more advanced

course. Therefore, when Hj is true,

SSR/02

p_ o1 _SSR/(p—1) MSR
SSE/o> " SSE/(n —p) MSE

n—p

~ F(p—1,n—p).

The test above uses a one-sided, upper tail rejection region. Specifically, a level a rejection
region is

RR={F:F>F, 1npal
where F}, 1 ,_, denotes the upper a quantile of the F' distribution with p—1 (numerator)
and n — p (denominator) degrees of freedom. Probability values are computed as areas
to the right of F' on the F(p — 1,n — p) distribution.
TERMINOLOGY : Since

SST = SSR + SSE,

the proportion of the total variation in the data explained by the model is

,_ SSR
~ SST

The statistic R? is called the coefficient of determination. The larger the R?, the

more variation that is being explained by the regression model.
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Example 11.2 (continued). In Example 11.2, we fit the multiple linear regression model

Y = Bo + Bixi + Bamio + Bswiz + €,

for i =1,2,...,30. The ANOVA table, obtained using SAS, is shown below.

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 4994.50861 1664.83620 16.22 <.0001
Error 26 2668.37806 102.62993
Corrected Total 29 7662.88667

The F' statistic is used to test

Hy:B1=0r=p3=0
Versus

H, : at least one of the (3, is nonzero.

ANALYSIS: Based on the F' statistic (F' = 16.22), and the corresponding probability
value (p-value < 0.0001), we conclude that at least one of ACETIC, H2S, and LACTIC is

important in describing taste (that is, we reject Hy). The coefficient of determination is

~ SSR 4994.51

R? = =
SST ~ 7662.89

~ 0.652.

That is, about 65.2 percent of the variability in the taste data is explained by the inde-

pendent variables. If we analyze these data using R, we get the following:
anova.fit<-anova(lm(taste~acetic+h2s+lactic))

anova.fit

Response: taste

Df Sum Sq Mean Sq F value Pr(>F)
acetic 1 2314.14 2314.14 22.5484 6.528e-05 *xx*
h2s 1 2147.11 2147.11 20.9209 0.0001035 ***
lactic 1 533.26 533.26 5.1959 0.0310870 *

Residuals 26 2668.38 102.63
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NOTE: The convention used by R is to “split up” the (corrected) regression sum of
squares

SSR = 4994.50861

into sums of squares for each of the three independent variables ACETIC, H2S, and LACTIC,
as they are added sequentially to the model (these are called sequential sums of
squares). The sequential sums of squares for the independent variables add to the

SSR (up to rounding error) for the model, that is,

SSR =4994.51 = 2314.14 4+ 2147.11 + 533.26
= SS(ACETIC) + SS(H2S) + SS(LACTIC).
In words,
e SS(ACETIC) is the sum of squares added when compared to a model that includes

only an intercept term.

e SS(H2S) is the sum of squares added when compared to a model that includes an

intercept term and ACETIC.

e SS(LACTIC) is the sum of squares added when compared to a model that includes
an intercept term, ACETIC, and H2S.
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11.6 Reduced versus full model testing
SETTING: Consider the (full) multiple regression model

Yi = Bo + Biwia + BoTig + - - + Brwar + €,
for i = 1,2, ...,n, where ¢; ~ iid N(0,0?), or, equivalently,
Y = XB+e,

where € ~ N, (0, 0%I). We now consider the question of whether or not a smaller model
is adequate for the data. That is, can we remove some of the independent variables and

write a smaller model that does just as well at describing the data as the full model?

REMARK : Besides their ease of interpretation, smaller models confer statistical benefits.
Remember that for each additional independent variable we add to the model, there is an
associated regression parameter that has to be estimated. For each additional regression
parameter that we have to estimate, we lose a degree of freedom for error. Remember
that MSE, our estimator for the error variance o2 uses the degrees of freedom for error
in its computation. Thus, the fewer error degrees of freedom we have, the less precise
estimate we have of o2. With an imprecise estimate of o2, hypothesis tests, confidence

intervals, and prediction intervals are less informative.
TERMINOLOGY : We call

Y = Bo + Biria + Boia + -+ - + Byig + Byr1Tigrr) + -0 + Brlar + €
the full model because it includes all of the independent variables x1, za, ..., 2. We call
Y =Y + 7T + x4+ YeTig + €

a reduced model because it includes only the independent variables 1, x, ..., z,, where
g < k, that is, independent variables x g1, %442, ..., 2 are not included in the reduced

model.
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MATRIX NOTATION: In matrix notation, the full model is

Y = X3 + €,
where
Bo
B
I 11 12 -+ Ty Tige) 0 Tk o))
X — 1 2o o --- Xy L2(g+1) T2k 3=
By
1 @y xp2 - Tng Tn(g+l) -~ Tnk 5g+1
Br
In matrix notation, the reduced model is
Y:XQ"}’+E,
where
Yo
1 211 xi2 -+ Ty
1 71
To1 X2 -+ Tyg
Xo=1 . . . ) Y=
1 Tnl Tn2 - Ing
Vg

That is, the matrix X, is simply X with the last (k — ¢) columns removed.

58




TESTING PROBLEM: In order to determine whether or not the extra independent
variables x411, T2, ..., 5 should be included in the regression, we are interested in testing

the reduced model versus the full model, that is,
H() Y = X()’Y +e€
versus
H,:Y=X3+e.
In terms of the regression parameters in the full model, we are essentially testing
Hoﬁg_’_lzﬁg_'_zz...:ﬁk:o
versus
H, : not Hy.
INTUITION: Define the hat matrices for the reduced and full models by My =
Xo(X(Xo)1Xf and M = X(X'X) !X/, respectively. We know that
SSRr = Y'(M—-n"tJ)Y
SSRr = Y'(My—n"'J)Y
are the (corrected) regression sum of squares for the full and reduced models, respectively.

Since the regression sum of squares SSR can never decrease by adding independent vari-

ables, it follows that

SSRr=Y'M—n"'3)Y > Y'(My — n'J)Y = SSRp.
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In the light of this, our intuition should suggest the following:

e If SSRr = Y(M — n=1J)Y and SSRr = Y'(My — n~1J)Y are “close,” then
the additional independent variables x,41, 2442, ..., 2 do not add too much to the

regression, and the reduced model is adequate at describing the data.

e if SSRr = Y'(M — n )Y and SSRr = Y'(My — n~'J)Y are not “close,” then
the additional independent variables z441, Zg42, ..., 2 add a significant amount to
the regression. This suggests that the reduced model does an insufficient job of

describing the data when compared to the full model.
e We therefore make our decision by examining the size of
SSRr —SSRr =Y (M —-n"'J)Y = Y'(My —n'J)Y = Y' (M - My)Y.

If this difference is “large,” then the reduced model does not do a good job of

describing the data (when compared to the full model).

e We are assuming that the full model already does a good job of describing the data;

we are trying to find a smaller model that does just as well.
TEST STATISTIC: Theoretical arguments in linear models show that when the reduced

model is correct,

Y'(M—M)Y/(k—g)

F =
MSE -

NF(k_gan_p)v

where p = k + 1 and MSEp is the mean squared error computed from the full model.

Therefore, a level a rejection region for testing

Hy:Y=Xpy+e
versus
H,:Y=X3+¢€
is given by

RR={F:F > Fygnpal

where Fi_;,—pao is the upper a quantile of the F'(k — g,n — p) distribution.
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Example 11.2 (continued). In Example 11.2, consider the full model
Y = fo+ bz + Boio + PsTis + €.

Suppose we believe that a simple linear regression model with ACETIC (z1) only does just

as well as the full model at describing TASTE. In this case, the reduced model is
Yi =%+ nea + €.

IMPLEMENTATION: To test the reduced model versus the full model, we first compute
the ANOVA tables from both model fits. The ANOVA table from the full model fit
(using SAS) is

Analysis of Variance: Full Model

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 4994 .50861 1664.83620 16.22 <.0001
Error 26 2668.37806 102.62993
Corrected Total 29 7662.88667

The ANOVA table from the reduced model fit (using SAS) is

Analysis of Variance: Reduced Model

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 2314.14151 2314.14151 12.11 0.0017
Error 28 5348.74515 191.02661
Corrected Total 29 7662.88667

Therefore, the difference in the (corrected) regression sum of squares is

Y'(M—M,)Y = SSRp— SSRp

= 4994.50861 — 2314.14151 = 2680.367

and the test statistic is

Y/'(M -~ My)Y/(k —g) _ 2680.367/(3 — 1)

F =
MSEr 102.62993

~ 13.058.
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A level @ = 0.05 rejection region is
RR = {F B> F2726’0.05 = 3369}

I used the R command qf (0.95,2,26) to compute F5 96005 Because the test statistic
F falls in the rejection region, we reject Hy at the a = 0.05 level. We conclude that the
reduced model does not do as well as the full model in describing TASTE. The probability
value for the test is

p-value = P(F5 96 > 13.058) ~ 0.0001,

computed using the 1-pf(13.058,2,26) in R.
IMPORTANT: 1t is interesting to note that the sum of squares

2680.367 = Y'(M — M,)Y

— SS(H2S) 4 SS(LACTIC) = 2147.11 + 533.26.

That is, we can obtain Y'(M — M,)Y by adding the sequential sum of squares corre-

sponding to the independent variables not in the reduced model.

REMARK: Tt is possible to implement this test completely in R. Here is the output:

> fit.full<-1m(taste~acetic+h2s+lactic)
> fit.reduced<-1m(taste~acetic)

> anova(fit.reduced,fit.full,test="F")
Model 1: taste ™ acetic

Model 2: taste ™ acetic + h2s + lactic

Res.Df RSS Df Sum of Sq F Pr (>F)
1 28 5348.7
2 26 2668.4 2 2680.4 13.058 0.0001186 **x

ANALYSIS: R’s convention is to produce the F' statistic

CY'(M -My)Y/(k—g)  2680.367/(3 — 1)

P _ ~ 13.058
MSE - 102.62993

automatically with the corresponding p-value in Pr (>F).
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