Problem 1.

Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ is an iid sample from

$$
f_{Y}(y ; \theta)=\left\{\begin{array}{cl}
\theta(1-y)^{\theta-1}, & 0<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Derive the level α likelihood ratio test of $H_{0}: \theta=1$ versus $H_{a}: \theta \neq 1$.
(b) Derive the power function $K(\theta)$.
(c) Use R to plot $K(\theta)$ when $n=10$ and $\alpha=0.10$. Compute $K(0.8)$ and $K(1.5)$.

Problem 2.

Let $Y_{1}, Y_{2}, \ldots, Y_{20}$ be a random sample of size $n=20$ from a normal distribution with unknown mean μ and known variance $\sigma^{2}=5$. We wish to test $H_{0}: \mu=7$ versus $H_{a}: \mu>7$.
a Find the uniformly most powerful test with significance level .05 .
b For the test in part (a), find the power at each of the following alternative values for $\mu: \mu_{a}=7.5,8.0,8.5$, and 9.0.
c Sketch a graph of the power function.

Problem 3.

Suppose that we have a random sample of four observations from the density function

$$
f(y \mid \theta)= \begin{cases}\left(\frac{1}{2 \theta^{3}}\right) y^{2} e^{-y / \theta}, & y>0 \\ 0, & \text { elsewhere }\end{cases}
$$

a Find the rejection region for the most powerful test of $H_{0}: \theta=\theta_{0}$ against $H_{a}: \theta=\theta_{a}$, assuming that $\theta_{a}>\theta_{0}$. [Hint: Make use of the χ^{2} distribution.]
b Is the test given in part (a) uniformly most powerful for the alternative $\theta>\theta_{0}$?
Obtain an expression for the power function $K(\theta)$ using the rejection region in part (b). Use R to graph the power function when $\alpha=0.01, \theta_{0}=3$ and $n=4$. Further, take $\alpha=0.01$ and $\theta_{0}=0.03$ to find the smallest sample size n that guarantees $K(4) \geq 0.90$.

Problem 4.

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a Bernoulli-distributed population with parameter p. That is,

$$
p\left(y_{i} \mid p\right)=p^{y_{i}}(1-p)^{1-y_{i}}, \quad y_{i}=0,1 .
$$

a Suppose that we are interested in testing $H_{0}: p=p_{0}$ versus $H_{a}: p=p_{a}$, where $p_{0}<p_{a}$.
i Show that

$$
\frac{L\left(p_{0}\right)}{L\left(p_{a}\right)}=\left[\frac{p_{0}\left(1-p_{a}\right)}{\left(1-p_{0}\right) p_{a}}\right]^{\sum y_{i}}\left(\frac{1-p_{0}}{1-p_{a}}\right)^{n}
$$

ii Argue that $L\left(p_{0}\right) / L\left(p_{a}\right)<k$ if and only if $\sum_{i=1}^{n} y_{i}>k^{*}$ for some constant k^{*}.
iii Give the rejection region for the most powerful test of H_{0} versus H_{a}.
b Recall that $\sum_{i=1}^{n} Y_{i}$ has a binomial distribution with parameters n and p. Indicate how to determine the values of any constants contained in the rejection region derived in part [a(iii)].
c Is the test derived in part (a) uniformly most powerful for testing $H_{0}: p=p_{0}$ versus $H_{a}: p>p_{0}$? Why or why not?
Now suppose that $n=60$ and $p_{0}=0.30$. In part (a), find the value of k^{*} that makes α as close to 0.05 as possible. Further, use $n=60, p_{0}=0.3$ and the k^{*} you just obtained to find an expression for the power function $K(p)$. Use R to graph the power function.

Problem 5.

Let $X_{1}, X_{2}, \ldots, X_{m}$ denote a random sample from the exponential density with mean θ_{1} and let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote an independent random sample from an exponential density with mean θ_{2}.
a Find the likelihood ratio criterion for testing $H_{0}: \theta_{1}=\theta_{2}$ versus $H_{a}: \theta_{1} \neq \theta_{2}$.
b Show that the test in part (a) is equivalent to an exact F test [Hint: Transform $\sum X_{i}$ and $\sum Y_{j}$ to χ^{2} random variables.]

Problem 6.

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote a random sample from a normal distribution with mean μ (unknown) and variance σ^{2}. For testing $H_{0}: \sigma^{2}=\sigma_{0}^{2}$ against $H_{a}: \sigma^{2}>\sigma_{0}^{2}$, show that the likelihood ratio test is equivalent to the χ^{2} test

Problem 7.

Suppose that $Y_{1}, Y_{2}, \ldots, Y_{5}$ is an iid sample of size $n=5$ from

$$
f_{Y}(y ; \theta)=\left\{\begin{array}{cl}
\theta e^{-\theta y}, & y>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the uniformly most powerful (UMP) level $\alpha=0.10$ rejection region to test

$$
\begin{gathered}
H_{0}: \theta=1 \\
\text { versus } \\
H_{a}: \theta<1 .
\end{gathered}
$$

Your rejection region should not include any unknown constants. If it includes a quantile from a well known distribution, use properly defined notation to identify it.

