HW 3 (Due Oct 3, 2017)

Name:

Problem 1.

Suppose that $Y_1, Y_2, ..., Y_n$ is an iid sample from

$$f_Y(y; \theta) = \begin{cases} \theta(1-y)^{\theta-1}, & 0 < y < 1\\ 0, & \text{otherwise.} \end{cases}$$

- (a) Derive the level α likelihood ratio test of $H_0: \theta = 1$ versus $H_a: \theta \neq 1$.
- (b) Derive the power function $K(\theta)$.

(c) Use R to plot $K(\theta)$ when n = 10 and $\alpha = 0.10$. Compute K(0.8) and K(1.5).

Problem 2.

Let Y_1, Y_2, \ldots, Y_{20} be a random sample of size n = 20 from a normal distribution with unknown mean μ and known variance $\sigma^2 = 5$. We wish to test $H_0: \mu = 7$ versus $H_a: \mu > 7$.

- **a** Find the uniformly most powerful test with significance level .05.
- **b** For the test in part (a), find the power at each of the following alternative values for μ : $\mu_a = 7.5, 8.0, 8.5, \text{ and } 9.0.$
- **c** Sketch a graph of the power function.

Problem 3.

Suppose that we have a random sample of four observations from the density function

$$f(y \mid \theta) = \begin{cases} \left(\frac{1}{2\theta^3}\right) y^2 e^{-y/\theta}, & y > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

- **a** Find the rejection region for the most powerful test of $H_0: \theta = \theta_0$ against $H_a: \theta = \theta_a$, assuming that $\theta_a > \theta_0$. [*Hint:* Make use of the χ^2 distribution.]
- **b** Is the test given in part (a) uniformly most powerful for the alternative $\theta > \theta_0$?

Obtain an expression for the power function $K(\theta)$ using the rejection region in part (b). Use R to graph the power function when $\alpha = 0.01, \theta_0 = 3$ and n = 4. Further, take $\alpha = 0.01$ and $\theta_0 = 0.03$ to find the smallest sample size n that guarantees $K(4) \ge 0.90$.

Problem 4.

Let Y_1, Y_2, \ldots, Y_n denote a random sample from a Bernoulli-distributed population with parameter p. That is,

$$p(y_i | p) = p^{y_i} (1 - p)^{1 - y_i}, \qquad y_i = 0, 1.$$

- **a** Suppose that we are interested in testing $H_0: p = p_0$ versus $H_a: p = p_a$, where $p_0 < p_a$.
 - i Show that

$$\frac{L(p_0)}{L(p_a)} = \left[\frac{p_0(1-p_a)}{(1-p_0)p_a}\right]^{\sum y_i} \left(\frac{1-p_0}{1-p_a}\right)^n.$$

- ii Argue that $L(p_0)/L(p_a) < k$ if and only if $\sum_{i=1}^n y_i > k^*$ for some constant k^* .
- iii Give the rejection region for the most powerful test of H_0 versus H_a .
- **b** Recall that $\sum_{i=1}^{n} Y_i$ has a binomial distribution with parameters *n* and *p*. Indicate how to determine the values of any constants contained in the rejection region derived in part [a(iii)].
- **c** Is the test derived in part (a) uniformly most powerful for testing $H_0: p = p_0$ versus $H_a: p > p_0$? Why or why not?

Now suppose that n = 60 and $p_0 = 0.30$. In part (a), find the value of k^* that makes α as close to 0.05 as possible. Further, use n = 60, $p_0 = 0.3$ and the k^* you just obtained to find an expression for the power function K(p). Use R to graph the power function.

Problem 5.

Let X_1, X_2, \ldots, X_m denote a random sample from the exponential density with mean θ_1 and let Y_1, Y_2, \ldots, Y_n denote an independent random sample from an exponential density with mean θ_2 .

- **a** Find the likelihood ratio criterion for testing $H_0: \theta_1 = \theta_2$ versus $H_a: \theta_1 \neq \theta_2$.
- **b** Show that the test in part (a) is equivalent to an exact *F* test [*Hint*: Transform $\sum X_i$ and $\sum Y_j$ to χ^2 random variables.]

Problem 6.

Let $Y_1, Y_2, ..., Y_n$ denote a random sample from a normal distribution with mean μ (unknown) and variance σ^2 . For testing $H_0: \sigma^2 = \sigma_0^2$ against $H_a: \sigma^2 > \sigma_0^2$, show that the likelihood ratio test is equivalent to the χ^2 test

Problem 7.

Suppose that $Y_1, Y_2, ..., Y_5$ is an iid sample of size n = 5 from

$$f_Y(y;\theta) = \begin{cases} \theta e^{-\theta y}, & y > 0\\ 0, & \text{otherwise.} \end{cases}$$

Find the uniformly most powerful (UMP) level $\alpha = 0.10$ rejection region to test

$$H_0: \theta = 1$$
versus
$$H_a: \theta < 1.$$

Your rejection region should not include any unknown constants. If it includes a quantile from a well known distribution, use properly defined notation to identify it.