HW 5 (Due Nov 02, 2017)

Name:

Problem 1. Finish HW 4 Problem 2 part (3).

Problem 2. Cosider the multiple linear regression model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where **X** is $n \times p$ and p = k + 1. Let $\mathbf{M} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ denote the hat matrix. Let **I** denoted the identity matrix that has the same dimensions as **M**.

- (a) What are the dimensions of **M**?
- (b) Show that both \mathbf{M} and $\mathbf{I} \mathbf{M}$ are symmetric and idempotent (a matrix \mathbf{A} is idempotent if $\mathbf{A}^2 = \mathbf{A}$).
- (c) Show that $\mathbf{M}\mathbf{X} = \mathbf{X}$ and $(\mathbf{I} \mathbf{M})\mathbf{X} = \mathbf{0}$.
- (d) Show that $\mathbf{M}\mathbf{Y} = \mathbf{X}\widehat{\boldsymbol{\beta}}$
- (e) Show that $(\mathbf{I} \mathbf{M})\mathbf{Y} = \mathbf{e}$ where $\mathbf{e} = \mathbf{Y} \widehat{\mathbf{Y}}$ and $\widehat{\mathbf{Y}} = \mathbf{X}\widehat{\boldsymbol{\beta}}$.
- (f) Show that $(\mathbf{MY})'(\mathbf{I} \mathbf{M})\mathbf{Y} = 0$.
- (g) Show that $(\mathbf{Y} \mathbf{X}\widehat{\boldsymbol{\beta}})'(\mathbf{Y} \mathbf{X}\widehat{\boldsymbol{\beta}}) = \mathbf{Y}'(\mathbf{I} \mathbf{M})\mathbf{Y}.$

Problem 3.

Consider the following data set on Y and two independent variables x_1 and x_2 :

Y	x_1	x_2
5	1	1
5	1	-1
6	-1	1
8	-1	-1

I want you to do the following parts **by hand**, and show all of your work. You can use R to check your work.

- (a) Write the multiple linear regression model in matrix form; i.e., what are $\mathbf{Y}, \mathbf{X}, \boldsymbol{\beta}$ and $\boldsymbol{\epsilon}$?
- (b) Compute the least squares estimator $\hat{\beta}$.
- (c) Find the covariance matrix of $\hat{\beta}$. What is the estimated standard error of $\hat{\beta}_1$.
- (d) Test $H_0: \beta_1 = 0$ versuse $H_1: \beta_1 \neq 0$ using $\alpha = 0.05$. What assumptions on the error ϵ do you need for this hypothesis test to be valid?