Problem 1. Finish HW 4 Problem 2 part (3).

Problem 2. Cosider the multiple linear regression model

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where \mathbf{X} is $n \times p$ and $p=k+1$. Let $\mathbf{M}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ denote the hat matrix. Let \mathbf{I} denoted the identity matrix that has the same dimensions as \mathbf{M}.
(a) What are the dimensions of \mathbf{M} ?
(b) Show that both \mathbf{M} and $\mathbf{I}-\mathbf{M}$ are symmetric and idempotent (a matrix \mathbf{A} is idempotent if $\mathbf{A}^{2}=\mathbf{A}$).
(c) Show that $\mathbf{M X}=\mathbf{X}$ and $(\mathbf{I}-\mathbf{M}) \mathbf{X}=\mathbf{0}$.
(d) Show that $\mathbf{M Y}=\mathbf{X} \widehat{\boldsymbol{\beta}}$
(e) Show that $(\mathbf{I}-\mathbf{M}) \mathbf{Y}=\mathbf{e}$ where $\mathbf{e}=\mathbf{Y}-\widehat{\mathbf{Y}}$ and $\widehat{\mathbf{Y}}=\mathbf{X} \widehat{\boldsymbol{\beta}}$.
(f) Show that $(\mathbf{M Y})^{\prime}(\mathbf{I}-\mathbf{M}) \mathbf{Y}=0$.
(g) Show that $(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})^{\prime}(\mathbf{Y}-\mathbf{X} \widehat{\boldsymbol{\beta}})=\mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{M}) \mathbf{Y}$.

Problem 3.

Consider the following data set on Y and two independent variables x_{1} and x_{2} :

Y	x_{1}	x_{2}
5	1	1
5	1	-1
6	-1	1
8	-1	-1

I want you to do the following parts by hand, and show all of your work. You can use R to check your work.
(a) Write the multiple linear regression model in matrix form; i.e., what are $\mathbf{Y}, \mathbf{X}, \boldsymbol{\beta}$ and $\boldsymbol{\epsilon}$?
(b) Compute the least squares estimator $\widehat{\boldsymbol{\beta}}$.
(c) Find the covariance matrix of $\widehat{\boldsymbol{\beta}}$. What is the estimated standard error of $\widehat{\beta}_{1}$.
(d) Test $H_{0}: \beta_{1}=0$ versuse $H_{1}: \beta_{1} \neq 0$ using $\alpha=0.05$. What assumptions on the error $\boldsymbol{\epsilon}$ do you need for this hypothesis test to be valid?

