HW 7 (Due Dec 05, 2017)

Name:

Problem 1.

Let $Y_1, Y_2, ..., Y_n$ denote a random sample from an exponentially distributed population with density $f(y | \theta) = \theta e^{-\theta y}, 0 < y$. (*Note*: the mean of this population is $\mu = 1/\theta$.) Use the conjugate gamma (α, β) prior for θ to do the following.

a Show that the joint density of $Y_1, Y_2, \ldots, Y_n, \theta$ is

$$f(y_1, y_2, ..., y_n, \theta) = \frac{\theta^{n+\alpha-1}}{\Gamma(\alpha)\beta^{\alpha}} \exp\left[-\theta / \left(\frac{\beta}{\beta \sum y_i + 1}\right)\right].$$

b Show that the marginal density of Y_1, Y_2, \ldots, Y_n is

$$m(y_1, y_2, ..., y_n) = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha)\beta^{\alpha}} \left(\frac{\beta}{\beta \sum y_i + 1}\right)^{\alpha+n}.$$

c Show that the posterior density for $\theta \mid (y_1, y_2, ..., y_n)$ is a gamma density with parameters $\alpha^* = n + \alpha$ and $\beta^* = \beta/(\beta \sum y_i + 1)$.

d Show that the Bayes estimator for $\mu = 1/\theta$ is

$$\hat{\mu}_B = \frac{\sum Y_i}{n + \alpha - 1} + \frac{1}{\beta(n + \alpha - 1)}.$$

[Hint: Recall Exercise 4.111(e).]

e Show that the Bayes estimator in part (d) can be written as a weighted average of \overline{Y} and the prior mean for $1/\theta$. [*Hint*: Recall Exercise 4.111(e).]

f Show that the Bayes estimator in part (d) is a biased but consistent estimator for $\mu = 1/\theta$.

g. Assuming that a sample of size n=15 produced a sample such that $\sum y_i=30.27$ and the parameters of the gamma prior are $\alpha=2.3$ and $\beta=0.4$, use the R function qgamma to find a 95% credible intervals for θ and $1/\theta$. Further, conduce the Bayesian test for $H_0: \theta > 2$ versus $H_1: \theta \leq 2$. (part g requires what we will discuss on Tuesday's class. You do not need to finish it for HW 7, but should finish it before the final exam).

Problem 2.

Let Y_1, Y_2, \ldots, Y_n denote a random sample from a Poisson-distributed population with mean λ . In this case, $U = \sum Y_i$ is a sufficient statistic for λ , and U has a Poisson distribution with mean $n\lambda$. Use the conjugate gamma (α, β) prior for λ to do the following.

a Show that the joint likelihood of U, λ is

$$L(u,\lambda) = \frac{n^u}{u!\beta^{\alpha}\Gamma(\alpha)}\lambda^{u+\alpha-1} \exp\left[-\lambda \left/ \left(\frac{\beta}{n\beta+1}\right)\right].$$

b Show that the marginal mass function of U is

$$m(u) = \frac{n^{u} \Gamma(u + \alpha)}{u! \beta^{\alpha} \Gamma(\alpha)} \left(\frac{\beta}{n\beta + 1}\right)^{u + \alpha}.$$

- **c** Show that the posterior density for $\lambda \mid u$ is a gamma density with parameters $\alpha^* = u + \alpha$ and $\beta^* = \beta/(n\beta + 1)$.
- **d** Show that the Bayes estimator for λ is

$$\hat{\lambda}_B = \frac{\left(\sum Y_i + \alpha\right)\beta}{n\beta + 1}.$$

- **e** Show that the Bayes estimator in part (d) can be written as a weighted average of \overline{Y} and the prior mean for λ .
- **f** Show that the Bayes estimator in part (d) is a biased but consistent estimator for λ .
- g. Assuming that a sample of size n=25 produced a sample such that $\sum y_i = 174$ and the parameters of the gamma prior are $\alpha=2$ and $\beta=3$, use the R function qgamma to find a 95% credible intervals for λ . Further, conduce the Bayesian test for $H_0: \lambda > 5$ versus $H_1: \lambda \leq 5$. (again, part g requires what we will discuss on Tuesday's class. You do not need to finish it for HW 7, but should finish it before the final exam).