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• MOM estimators can be nonsensical. In fact, sometimes MOM estimators fall outside
the parameter space ⇥. For example, in linear models with random e↵ects, variance
components estimated via MOM can be negative.

7.2.2 Maximum likelihood estimation

Note: We first formally define a likelihood function; see also Section 6.3 (CB).

Definition: Suppose X ⇠ fX(x|✓), where ✓ 2 ⇥ ✓ Rk. Given that X = x is observed, the
function

L(✓|x) = fX(x|✓)

is called the likelihood function.

Note: The likelihood function L(✓|x) is the same function as the joint pdf/pmf fX(x|✓).
The only di↵erence is in how we interpret each one.

• The function fX(x|✓) is a model that describes the random behavior of X when ✓ is
fixed.

• The function L(✓|x) is viewed as a function of ✓ with the data X = x held fixed.

Interpretation: When X is discrete,

L(✓|x) = fX(x|✓) = P✓(X = x).

That is, when X is discrete, we can interpret the likelihood function L(✓|x) literally as a
joint probability.

• Suppose that ✓1 and ✓2 are two possible values of ✓. Suppose X is discrete and

L(✓1|x) = P✓1
(X = x) > P✓2

(X = x) = L(✓2|x).

This suggests the sample x is more likely to have occurred with ✓ = ✓1 rather than if
✓ = ✓2. Therefore, in the discrete case, we can interpret L(✓|x) as “the probability of
the data x.”

• Of course, this interpretation of L(✓|x) is not appropriate whenX is continuous because
P✓(X = x) = 0. However, this description is still used informally when describing
the likelihood function with continuous data. An attempt to make this description
mathematical is given on pp 290 (CB).

• Section 6.3 (CB) describes how the likelihood function L(✓|x) can be viewed as a data
reduction device.
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Definition: Any maximizer b✓ = b✓(x) of the likelihood function L(✓|x) is called a maxi-
mum likelihood estimate.

• With our previous interpretation, we can think of b✓ as “the value of ✓ that maximizes
the probability of the data x.”

We call b✓(X) a maximum likelihood estimator (MLE).

Remarks:

1. Finding the MLE b✓ is essentially a maximization problem. The estimate b✓(x) must
fall in the parameter space ⇥ because we are maximizing L(✓|x) over ⇥; i.e.,

b✓(x) = argmax
✓2⇥

L(✓|x).

There is no guarantee that an MLE b✓(x) will be unique (although it often is).

2. Under certain conditions (so-called “regularity conditions”), maximum likelihood esti-
mators b✓(X) have very nice large-sample properties (Chapter 10, CB).

3. In most “real” problems, the likelihood function L(✓|x) must be maximized numerically
to calculate b✓(x).

Example 7.4. Suppose X1, X2, ..., Xn are iid U [0, ✓], where ✓ > 0. Find the MLE of ✓.
Solution. The likelihood function is

L(✓|x) =
nY

i=1

1

✓
I(0  xi  ✓) =

1

✓n
I(x(n)  ✓)

nY

i=1

I(xi � 0)

| {z }
view this as a function of ✓ with x fixed

.

Note that

• For ✓ � x(n), L(✓|x) = 1/✓n, which decreases as ✓ increases.

• For ✓ < x(n), L(✓|x) = 0.

Clearly, the MLE of ✓ is b✓ = X(n).

Remark: Note that in this example, we “closed the endpoints” on the support of X; i.e.,
the pdf of X is

fX(x|✓) =
( 1

✓
, 0  x  ✓

0, otherwise.

Mathematically, this model is no di↵erent than had we “opened the endpoints.” However, if
we used open endpoints, note that

x(n) < argmax
✓>0

L(✓|x) < x(n) + ✏

for all ✏ > 0, and therefore the maximizer of L(✓|x); i.e., the MLE, would not exist.

PAGE 30

Uco o

2101 1

In Ilha co
IIILxi o

O Xin 21011 8
OfXca 401 1 0



STAT 713: CHAPTER 7 JOSHUA M. TEBBS

Curiosity: In this uniform example, we derived the MOM estimator to be b✓ = 2X in
Example 7.1. The MLE is b✓ = X(n). Which estimator is “better?”

Note: In general, when the likelihood function L(✓|x) is a di↵erentiable function of ✓, we
can use calculus to maximize L(✓|x). If an MLE b✓ exists, it must satisfy

@

@✓j
L(b✓|x) = 0, j = 1, 2, ..., k.

Of course, second-order conditions must be verified to ensure that b✓ is a maximizer (and not
a minimizer or some other value).

Example 7.5. Suppose that X1, X2, ..., Xn are iid N (✓, 1), where �1 < ✓ < 1. The
likelihood function is

L(✓|x) =
nY

i=1

1p
2⇡

e
�(xi�✓)2/2

=

✓
1p
2⇡

◆n

e
� 1

2

Pn
i=1

(xi�✓)2 .

The derivative

@

@✓
L(✓|x) =

✓
1p
2⇡

◆n

e
� 1

2

Pn
i=1

(xi�✓)2

| {z }
this can never be zero

nX

i=1

(xi � ✓)
set
= 0

=)
nX

i=1

(xi � ✓) = 0.

Therefore, b✓ = x is a first-order critical point of L(✓|x). Is b✓ = x a maximizer? I calculated

@
2

@✓2
L(✓|x) =

✓
1p
2⇡

◆n

e
� 1

2

Pn
i=1

(xi�✓)2

8
<

:

"
nX

i=1

(xi � ✓)

#2

� n

9
=

; .

Because
@
2

@✓2
L(✓|x)

����
✓=x

= �n

✓
1p
2⇡

◆n

e
� 1

2

Pn
i=1

(xi�x)2
< 0,

the function L(✓|x) is concave down when ✓ = x; i.e., b✓ = x maximizes L(✓|x). Therefore,

b✓ = b✓(X) = X

is the MLE of ✓.

Illustration: Under the N (✓, 1) model assumption, I graphed in Figure 7.1 the likelihood
function L(✓|x) after observing x1 = 2.437, x2 = 0.993, x3 = 1.123, x4 = 1.900, and
x5 = 3.794 (an iid sample of size n = 5). The sample mean x = 2.049 is our ML estimate of
✓ based on this sample x.
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Figure 7.1: Plot of L(✓|x) versus ✓ in Example 7.5. The data x were generated from a
N (✓ = 1.5, 1) distribution with n = 5. The sample mean (MLE) is x = 2.049.

Q: What if, in Example 7.5, we constrained the parameter space to be ⇥0 = {✓ : ✓ � 0}?
What is the MLE over ⇥0?
A: We simply maximize L(✓|x) over ⇥0 instead. It is easy to see the restricted MLE is

b✓⇤ = b✓⇤(X) =

⇢
X, X � 0
0, X < 0.

Important: Suppose that L(✓|x) is a likelihood function. Then

b✓(x) = argmax
✓2⇥

L(✓|x)

= argmax
✓2⇥

lnL(✓|x).

The function lnL(✓|x) is called the log-likelihood function. Analytically, it is usually
easier to work with lnL(✓|x) than with the likelihood function directly. The equations

@

@✓j
lnL(✓|x) = 0, j = 1, 2, ..., k,

are called the score equations.
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Example 7.6. Suppose X1, X2, ..., Xn are iid N (µ, �2), where �1 < µ < 1 and �2
> 0;

i.e., both parameters are unknown. Set ✓ = (µ, �2). The likelihood function is

L(✓|x) =
nY

i=1

1p
2⇡�2

e
�(xi�µ)2/2�2

=

✓
1

2⇡�2

◆n/2

e
� 1

2�2

Pn
i=1

(xi�µ)2
.

The log-likelihood function is

lnL(✓|x) = �n

2
ln(2⇡�2)� 1

2�2

nX

i=1

(xi � µ)2.

The score equations are

@

@µ
lnL(✓|x) =

1

�2

nX

i=1

(xi � µ)
set
= 0

@

@�2
lnL(✓|x) = � n

2�2
+

1

2�4

nX

i=1

(xi � µ)2
set
= 0.

Clearly bµ = x solves the first equation; inserting bµ = x into the second equation and solving
for �2 gives b�2 = n

�1
P

n

i=1(xi � x)2. A first-order critical point is (x, n�1
P

n

i=1(xi � x)2).

Q: How can we verify this solution is a maximizer?
A: In general, for a k-dimensional maximization problem, we can calculate the Hessian
matrix

H =
@
2

@✓@✓0 lnL(✓|x),

a k⇥k matrix of second-order partial derivatives, and show this matrix is negative definite
when we evaluate it at the first-order critical point b✓. This is a su�cient condition. Recall
a k ⇥ k matrix H is negative definite if a0Ha < 0 for all a 2 Rk, a 6= 0.

For the N (µ, �2) example, I calculated

H =

0

BBB@

� n

�2
� 1

�4

nX

i=1

(xi � µ)

� 1

�4

nX

i=1

(xi � µ)
n

�4
� 1

�6

nX

i=1

(xi � µ)2

1

CCCA
.

With a0 = (a1, a2), it follows that

a0Ha
���
µ=bµ,�2=b�2

= �na
2
1

b�2
< 0.

This shows that

b✓(X) =

0

B@
X

1

n

nX

i=1

(Xi �X)2

1

CA

is the MLE of ✓ in the N (µ, �2) model.
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Exercise: Find the MLEs of µ and �2 in the respective sub-families:

• N (µ, �2
0), where �

2
0 is known

• N (µ0, �
2), where µ0 is known.

Example 7.7. ML estimation under parameter constraints. Suppose X1, X2 are indepen-
dent random variables where

X1 ⇠ b(n1, p1)

X2 ⇠ b(n2, p2),

where 0 < p1 < 1 and 0 < p2 < 1. The likelihood function of ✓ = (p1, p2) is

L(✓|x1, x2) = fX1
(x1|p1)fX2

(x2|p2)

=

✓
n1

x1

◆
p
x1

1 (1� p1)
n1�x1

✓
n2

x2

◆
p
x2

2 (1� p2)
n2�x2 .

The log-likelihood function is

lnL(✓|x1, x2) = c+ x1 ln p1 + (n1 � x1) ln(1� p1) + x2 ln p2 + (n2 � x2) ln(1� p2),

where c = ln
�
n1

x1

�
+ ln

�
n2

x2

�
is free of ✓. Over

⇥ = {✓ = (p1, p2) : 0 < p1 < 1, 0 < p2 < 1},

it is easy to show that lnL(✓|x1, x2) is maximized at

b✓ = b✓(X1, X2) =

✓
bp1
bp2

◆
=

0

BB@

X1

n1

X2

n2

1

CCA ,

the vector of sample proportions. Because this is the maximizer over the entire parameter
space ⇥, we call b✓ the unrestricted MLE of ✓.

Q: How do we find the MLE of ✓ subject to the constraint that p1 = p2?
A: We would now like to maximize lnL(✓|x1, x2) over

⇥0 = {✓ = (p1, p2) : 0 < p1 < 1, 0 < p2 < 1, p1 = p2}.

We can use Lagrange multipliers to maximize lnL(✓|x1, x2) subject to the constraint that

g(✓) = g(p1, p2) = p1 � p2 = 0.

We are left to solve

@

@✓
lnL(✓|x1, x2) = �

@

@✓
g(✓)

g(✓) = 0.
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This system becomes

x1

p1
� n1 � x1

1� p1
= �

x2

p2
� n2 � x2

1� p2
= ��

p1 � p2 = 0.

Solving this system for p1 and p2, we get

b✓
⇤
= b✓

⇤
(X1, X2) =

✓
bp⇤1
bp⇤2

◆
=

0

BB@

X1 +X2

n1 + n2

X1 +X2

n1 + n2

1

CCA .

Because this is the maximizer over the subspace ⇥0, we call b✓
⇤
the restricted MLE; i.e.,

the MLE of ✓ subject to the p1 = p2 restriction.

Discussion: The parameter constraint p1 = p2 might arise in a hypothesis test; e.g.,
H0 : p1 = p2 versus H1 : p1 6= p2. If H0 is true, then we would expect b✓

⇤
and b✓ to be “close”

and the ratio

�(x1, x2) =
L(b✓

⇤
|x1, x2)

L(b✓|x1, x2)
⇡ 1.

The farther b✓
⇤
is from b✓, the smaller �(x1, x2) becomes. Therefore, it would make sense to

reject H0 when �(x1, x2) is small. This is the idea behind likelihood ratio tests.

Example 7.8. Logistic regression. In practice, finding maximum likelihood estimates usu-
ally requires numerical methods. Suppose Y1, Y2, ..., Yn are independent Bernoulli random
variables; specifically, Yi ⇠ Bernoulli(pi), where

ln

✓
pi

1� pi

◆
= �0 + �1xi () pi =

exp(�0 + �1xi)

1 + exp(�0 + �1xi)
.

In this model, the xi’s are fixed constants. The likelihood function of ✓ = (�0, �1) is

L(✓|y) =
nY

i=1

p
yi
i
(1� pi)

1�yi

=
nY

i=1


exp(�0 + �1xi)

1 + exp(�0 + �1xi)

�yi 
1� exp(�0 + �1xi)

1 + exp(�0 + �1xi)

�1�yi

.

Taking logarithms and simplifying gives

lnL(✓|y) =
nX

i=1

⇥
yi(�0 + �1xi)� ln(1 + e

�0+�1xi)
⇤
.

Closed-form expressions for the maximizers b�0 and b�1 do not exist except in very simple
situations. Numerical methods are needed to maximize lnL(✓|y); e.g., iteratively re-weighted
least squares (the default method in R’s glm function).
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Theorem 7.2.10 (Invariance property of MLEs). Suppose b✓ is the MLE of ✓. For any
function ⌧(✓), the MLE of ⌧(✓) is ⌧(b✓).
Proof. For simplicity, suppose ✓ is a scalar parameter and that ⌧ : R ! R is one-to-one (over
⇥). In this case,

⌘ = ⌧(✓) () ✓ = ⌧
�1(⌘).

The likelihood function of interest is L⇤(⌘). It su�ces to show that L⇤(⌘) is maximized when
⌘ = ⌧(b✓), where b✓ is the maximizer of L(✓). For simplicity in notation, I drop emphasis of a
likelihood function’s dependence on x. Let b⌘ be a maximizer of L⇤(⌘). Then

L
⇤(b⌘) = sup

⌘

L
⇤(⌘)

= sup
⌘

L(⌧�1(⌘))

= sup
✓

L(✓).

Therefore, the maximizer b⌘ satisfies ⌧�1(b⌘) = b✓. Because ⌧ is one-to-one, b⌘ = ⌧(b✓). 2

Remark: Our proof assumes that ⌧ is a one-to-one function. However, Theorem 7.2.10 is
true for any function; see pp 319-320 (CB).

Example 7.8 (continued). In the logistic regression model

ln

✓
pi

1� pi

◆
= �0 + �1xi () pi =

exp(�0 + �1xi)

1 + exp(�0 + �1xi)
= ⌧(�0, �1), say,

the MLE of pi is

bpi = ⌧(b�0, b�1) =
exp(b�0 + b�1xi)

1 + exp(b�0 + b�1xi)
.

Example 7.9. Suppose X1, X2, ..., Xn are iid exponential(�), where � > 0. The likelihood
function is

L(�|x) =
nY

i=1

1

�
e
�xi/� =

1

�n
e
�

Pn
i=1

xi/�.

The log-likelihood function is

lnL(�|x) = �n ln � �
P

n

i=1 xi

�

The score equation becomes

@

@�
lnL(�|x) = �n

�
+

P
n

i=1 xi

�2

set
= 0.

Solving the score equation for � gives b� = x. It is easy to show that this value maximizes
lnL(�|x). Therefore,

b� = b�(X) = X

is the MLE of �.
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Applications of invariance: In Example 7.9,

• X
2
is the MLE of �2

• 1/X is the MLE of 1/�

• For t fixed, e�t/X is the MLE of SX(t|�) = e
�t/�, the survivor function of X at t.

7.2.3 Bayesian estimation

Remark: Non-Bayesians think of inference in the following way:

Observe X ⇠ fX(x|✓) �! Use x to make statement about ✓.

In this paradigm, the model parameter ✓ is fixed (and unknown). I have taken ✓ to be a
scalar here for ease of exposition.

Bayesians do not consider the parameter ✓ to be fixed. They regard ✓ as random, having its
own probability distribution. Therefore, Bayesians think of inference in this way:

Model ✓ ⇠ ⇡(✓) �! Observe X|✓ ⇠ fX(x|✓) �! Update with ⇡(✓|x).

The model for ✓ on the front end is called the prior distribution. The model on the
back end is called the posterior distribution. The posterior distribution combines prior
information (supplied through the prior model) and the observed data x. For a Bayesian,
all inference flows from the posterior distribution.

Important: Here are the relevant probability distributions that arise in a Bayesian context.
These are given “in order” as to how the Bayesian uses them. Continue to assume that ✓ is
a scalar.

1. Prior distribution: ✓ ⇠ ⇡(✓). This distribution incorporates the information avail-
able about ✓ before any data are observed.

2. Conditional distribution: X|✓ ⇠ fX(x|✓). This is the distribution of X, but now
viewed conditionally on ✓:

fX(x|✓) = L(✓|x)
iid
=

nY

i=1

fX|✓(xi|✓).

Mathematically, the conditional distribution is the same as the likelihood function.

3. Joint distribution: This distribution describes how X and ✓ vary jointly. From the
definition of a conditional distribution,

fX,✓(x, ✓) = fX|✓(x|✓)| {z }
likelihood

⇡(✓)|{z}
prior

.
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4. Marginal distribution. This describes how X is distributed marginally. From the
definition of a marginal distribution,

mX(x) =

Z

⇥

fX,✓(x, ✓)d✓

=

Z

⇥

fX|✓(x|✓)⇡(✓)d✓,

where ⇥ is the “support” of ✓ (remember, we are now treating ✓ as a random variable).

5. Posterior distribution. This is the Bayesian’s “updated” distribution of ✓, given that
the data X = x have been observed. From the definition of a conditional distribution,

⇡(✓|x) =
fX,✓(x, ✓)

mX(x)

=
fX|✓(x|✓)⇡(✓)R

⇥ fX|✓(x|✓)⇡(✓)d✓
.

Remark: The process of starting with ⇡(✓) and performing the necessary calculations to
end up with ⇡(✓|x) is informally known as “turning the Bayesian crank.” The distributions
above can be viewed as steps in a “recipe” for posterior construction (i.e., start with the
prior and the conditional, calculate the joint, calculate the marginal, calculate the posterior).
We will see momentarily that not all steps are needed. In fact, in practice, computational
techniques are used to essentially bypass Step 4 altogether. You can see that this might be
desirable, especially if ✓ is a vector (and perhaps high-dimensional).

Example 7.10. Suppose that, conditional on ✓, X1, X2, ..., Xn are iid Poisson(✓), where the
prior distribution for ✓ ⇠ gamma(a, b), a, b known. We now turn the Bayesian crank.

1. Prior distribution.

⇡(✓) =
1

�(a)ba
✓
a�1

e
�✓/b

I(✓ > 0).

2. Conditional distribution. For xi = 0, 1, 2, ...,

fX|✓(x|✓) =
nY

i=1

✓
xie

�✓

xi!
=
✓

Pn
i=1

xie
�n✓

Q
n

i=1 xi!
.

Recall that this is the same function as the likelihood function.

3. Joint distribution. For xi = 0, 1, 2, ..., and ✓ > 0,

fX,✓(x, ✓) = fX|✓(x|✓)⇡(✓)

=
✓

Pn
i=1

xie
�n✓

Q
n

i=1 xi!

1

�(a)ba
✓
a�1

e
�✓/b

=
1Q

n

i=1 xi! �(a)ba| {z }
does not depend on ✓

✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

.
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4. Marginal distribution. For xi = 0, 1, 2, ...,

mX(x) =

Z

⇥

fX,✓(x, ✓)d✓

=
1Q

n

i=1 xi! �(a)ba

Z 1

0

✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

| {z }
gamma(a⇤, b⇤) kernel

d✓,

where

a
⇤ =

nX

i=1

xi + a and b
⇤ =

1

n+ 1
b

.

Therefore,

mX(x) =
1Q

n

i=1 xi! �(a)ba
�

 
nX

i=1

xi + a

!✓
1

n+ 1
b

◆Pn
i=1

xi+a

.

5. Posterior distribution. For ✓ > 0,

⇡(✓|x) =
fX,✓(x, ✓)

mX(x)

=

1Q
n

i=1 xi! �(a)ba
✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

1Q
n

i=1 xi! �(a)ba
�

 
nX

i=1

xi + a

!✓
1

n+ 1
b

◆Pn
i=1

xi+a

=
1

� (
P

n

i=1 xi + a)
⇣

1
n+ 1

b

⌘Pn
i=1

xi+a
✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

,

which we recognize as the gamma pdf with parameters

a
⇤ =

nX

i=1

xi + a

b
⇤ =

1

n+ 1
b

.

That is, the posterior distribution

✓|X = x ⇠ gamma

 
nX

i=1

xi + a,
1

n+ 1
b

!
.

Remark: Note that the shape and scale parameters of the posterior distribution ⇡(✓|x)
depend on

• a and b, the prior distribution parameters (i.e., the “hyperparameters”)

• the data x through the su�cient statistic t(x) =
P

n

i=1 xi.

In this sense, the posterior distribution combines information from the prior and the data.
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