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Applications of invariance: In Example 7.9,

• X
2
is the MLE of �2

• 1/X is the MLE of 1/�

• For t fixed, e�t/X is the MLE of SX(t|�) = e
�t/�, the survivor function of X at t.

7.2.3 Bayesian estimation

Remark: Non-Bayesians think of inference in the following way:

Observe X ⇠ fX(x|✓) �! Use x to make statement about ✓.

In this paradigm, the model parameter ✓ is fixed (and unknown). I have taken ✓ to be a
scalar here for ease of exposition.

Bayesians do not consider the parameter ✓ to be fixed. They regard ✓ as random, having its
own probability distribution. Therefore, Bayesians think of inference in this way:

Model ✓ ⇠ ⇡(✓) �! Observe X|✓ ⇠ fX(x|✓) �! Update with ⇡(✓|x).

The model for ✓ on the front end is called the prior distribution. The model on the
back end is called the posterior distribution. The posterior distribution combines prior
information (supplied through the prior model) and the observed data x. For a Bayesian,
all inference flows from the posterior distribution.

Important: Here are the relevant probability distributions that arise in a Bayesian context.
These are given “in order” as to how the Bayesian uses them. Continue to assume that ✓ is
a scalar.

1. Prior distribution: ✓ ⇠ ⇡(✓). This distribution incorporates the information avail-
able about ✓ before any data are observed.

2. Conditional distribution: X|✓ ⇠ fX(x|✓). This is the distribution of X, but now
viewed conditionally on ✓:

fX(x|✓) = L(✓|x)
iid
=

nY

i=1

fX|✓(xi|✓).

Mathematically, the conditional distribution is the same as the likelihood function.

3. Joint distribution: This distribution describes how X and ✓ vary jointly. From the
definition of a conditional distribution,

fX,✓(x, ✓) = fX|✓(x|✓)| {z }
likelihood

⇡(✓)|{z}
prior

.
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4. Marginal distribution. This describes how X is distributed marginally. From the
definition of a marginal distribution,

mX(x) =

Z

⇥

fX,✓(x, ✓)d✓

=

Z

⇥

fX|✓(x|✓)⇡(✓)d✓,

where ⇥ is the “support” of ✓ (remember, we are now treating ✓ as a random variable).

5. Posterior distribution. This is the Bayesian’s “updated” distribution of ✓, given that
the data X = x have been observed. From the definition of a conditional distribution,

⇡(✓|x) =
fX,✓(x, ✓)

mX(x)

=
fX|✓(x|✓)⇡(✓)R

⇥ fX|✓(x|✓)⇡(✓)d✓
.

Remark: The process of starting with ⇡(✓) and performing the necessary calculations to
end up with ⇡(✓|x) is informally known as “turning the Bayesian crank.” The distributions
above can be viewed as steps in a “recipe” for posterior construction (i.e., start with the
prior and the conditional, calculate the joint, calculate the marginal, calculate the posterior).
We will see momentarily that not all steps are needed. In fact, in practice, computational
techniques are used to essentially bypass Step 4 altogether. You can see that this might be
desirable, especially if ✓ is a vector (and perhaps high-dimensional).

Example 7.10. Suppose that, conditional on ✓, X1, X2, ..., Xn are iid Poisson(✓), where the
prior distribution for ✓ ⇠ gamma(a, b), a, b known. We now turn the Bayesian crank.

1. Prior distribution.

⇡(✓) =
1

�(a)ba
✓
a�1

e
�✓/b

I(✓ > 0).

2. Conditional distribution. For xi = 0, 1, 2, ...,

fX|✓(x|✓) =
nY

i=1

✓
xie

�✓

xi!
=
✓

Pn
i=1

xie
�n✓

Q
n

i=1 xi!
.

Recall that this is the same function as the likelihood function.

3. Joint distribution. For xi = 0, 1, 2, ..., and ✓ > 0,

fX,✓(x, ✓) = fX|✓(x|✓)⇡(✓)

=
✓

Pn
i=1

xie
�n✓

Q
n

i=1 xi!

1

�(a)ba
✓
a�1

e
�✓/b

=
1Q

n

i=1 xi! �(a)ba| {z }
does not depend on ✓

✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

.
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4. Marginal distribution. For xi = 0, 1, 2, ...,

mX(x) =

Z

⇥

fX,✓(x, ✓)d✓

=
1Q

n

i=1 xi! �(a)ba

Z 1

0

✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

| {z }
gamma(a⇤, b⇤) kernel

d✓,

where

a
⇤ =

nX

i=1

xi + a and b
⇤ =

1

n+ 1
b

.

Therefore,

mX(x) =
1Q

n

i=1 xi! �(a)ba
�

 
nX

i=1

xi + a

!✓
1

n+ 1
b

◆Pn
i=1

xi+a

.

5. Posterior distribution. For ✓ > 0,

⇡(✓|x) =
fX,✓(x, ✓)

mX(x)

=

1Q
n

i=1 xi! �(a)ba
✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

1Q
n

i=1 xi! �(a)ba
�

 
nX

i=1

xi + a

!✓
1

n+ 1
b

◆Pn
i=1

xi+a

=
1

� (
P

n

i=1 xi + a)
⇣

1
n+ 1

b

⌘Pn
i=1

xi+a
✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

,

which we recognize as the gamma pdf with parameters

a
⇤ =

nX

i=1

xi + a

b
⇤ =

1

n+ 1
b

.

That is, the posterior distribution

✓|X = x ⇠ gamma

 
nX

i=1

xi + a,
1

n+ 1
b

!
.

Remark: Note that the shape and scale parameters of the posterior distribution ⇡(✓|x)
depend on

• a and b, the prior distribution parameters (i.e., the “hyperparameters”)

• the data x through the su�cient statistic t(x) =
P

n

i=1 xi.

In this sense, the posterior distribution combines information from the prior and the data.
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Q: In general, which functional of ⇡(✓|x) should we use as a point estimator?
A: Answering this question technically would require us to discuss loss functions (see
Section 7.3.4, CB). In practice, it is common to use one of

b✓B = E(✓|X = x) �! posterior mean
e✓B = med(✓|X = x) �! posterior median
b✓⇤
B

= mode(✓|X = x) �! posterior mode.

Note that in Example 7.10 (the Poisson-gamma example), the posterior mean equals

b✓B = E(✓|X = x) =

P
n

i=1 xi + a

n+ 1
b

=

✓
nb

nb+ 1

◆
x+

✓
1

nb+ 1

◆
ab.

That is, the posterior mean is a weighted average of the sample mean x and the prior
mean ab. Note also that as the sample size n increases, more weight is given to the data
(through x) and less weight is given to the the prior (through the prior mean).

Remark: In Example 7.10, we wrote the joint distribution (in Step 3) as

fX,✓(x, ✓) = fX|✓(x|✓)⇡(✓)

=
✓

Pn
i=1

xie
�n✓

Q
n

i=1 xi!

1

�(a)ba
✓
a�1

e
�✓/b

=
1Q

n

i=1 xi! �(a)ba| {z }
does not depend on ✓

✓

Pn
i=1

xi+a�1
e
�✓/(n+ 1

b )
�1

| {z }
gamma(a⇤, b⇤) kernel

.

At this step, we can clearly identify the kernel of the posterior distribution. We can therefore
skip calculating the marginal distribution mX(x) in Step 4, because we know mX(x) does
not depend on ✓. Because of this, it is common to write, in general,

⇡(✓|x) / fX|✓(x|✓)⇡(✓)
= L(✓|x)⇡(✓).

The posterior distribution is proportional to the likelihood function times the prior distri-
bution. A (classical) Bayesian analysis requires these two functions L(✓|x) and ⇡(✓) only.

Remark: Suppose X|✓ ⇠ fX|✓(x|✓). If T = T (X) is su�cient, we can write

fX|✓(x|✓) = g(t|✓)h(x),

by the Factorization Theorem. Therefore, the posterior distribution

⇡(✓|x) / fX|✓(x|✓)⇡(✓)
/ g(t|✓)⇡(✓).
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This shows that the posterior distribution will depend on the data x through the value of the
su�cient statistic t = T (x). We can therefore write the posterior distribution as depending
on t only; i.e.,

⇡(✓|t) / fT |✓(t|✓)⇡(✓),

and restrict attention to the (sampling) distribution of T = T (X) from the beginning.

Example 7.11. Suppose thatX1, X2, ..., Xn are iid Bernoulli(✓), where the prior distribution
for ✓ ⇠ beta(a, b), a, b known. We know that

T = T (X) =
nX

i=1

Xi

is a su�cient statistic for the Bernoulli family and that T ⇠ b(n, ✓). Therefore, for t =
0, 1, 2, ..., n and 0 < ✓ < 1, the posterior distribution

⇡(✓|t) / fT |✓(t|✓)⇡(✓)

=

✓
n

t

◆
✓
t(1� ✓)n�t

�(a+ b)

�(a)�(b)
✓
a�1(1� ✓)b�1

=

✓
n

t

◆
�(a+ b)

�(a)�(b)| {z }
does not depend on ✓

✓
t+a�1(1� ✓)n�t+b�1

| {z }
beta(a⇤, b⇤) kernel

,

where a
⇤ = t + a and b

⇤ = n � t + b. From here, we can immediately conclude that the
posterior distribution

✓|T = t ⇠ beta(t+ a, n� t+ b),

where t = T (x) =
P

n

i=1 xi.

Discussion: In Examples 7.10 and 7.11, we observed the following occurrence:

• Example 7.10. ✓ ⇠ gamma (prior) �! ✓|X = x ⇠ gamma (posterior).

• Example 7.11. ✓ ⇠ beta (prior) �! ✓|T = t ⇠ beta (posterior).

Definition: Let F = {fX(x|✓) : ✓ 2 ⇥} denote a class of pdfs or pmfs. A class ⇧ of prior
distributions is said to be a conjugate prior family for F if the posterior distribution also
belongs to ⇧.

As we have already seen in Examples 7.10 and 7.11,

• The gamma family is conjugate for the Poisson family.

• The beta family is conjugate for the binomial family.
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Example 7.12. Suppose X1, X2, ..., Xn are iid N (µ, �2), where �1 < µ < 1 and �2
> 0.

• If �2 is known, a conjugate prior for µ is

µ ⇠ N (⇠, ⌧ 2), ⇠, ⌧
2 known.

• If µ is known, a conjugate prior for �2 is

�
2 ⇠ IG(a, b) a, b known.

7.3 Methods of Evaluating Estimators

7.3.1 Bias, variance, and MSE

Definition: Suppose W = W (X) is a point estimator. We call W an unbiased estimator
of ✓ if

E✓(W ) = ✓ for all ✓ 2 ⇥.

More generally, we call W an unbiased estimator of ⌧(✓) if

E✓(W ) = ⌧(✓) for all ✓ 2 ⇥.

Definition: The mean-squared error (MSE) of a point estimator W = W (X) is

MSE✓(W ) = E✓[(W � ✓)2]

= var✓(W ) + [E✓(W )� ✓]2

= var✓(W ) + Bias2
✓
(W ),

where Bias✓(W ) = E✓(W ) � ✓ is the bias of W as an estimator of ✓. Note that if W is an
unbiased estimator of ✓, then for all ✓ 2 ⇥,

E✓(W ) = ✓ =) Bias✓(W ) = E✓(W )� ✓ = 0.

In this case,
MSE✓(W ) = var✓(W ).

Remark: In general, the MSE incorporates two components:

• var✓(W ); this measures precision

• Bias✓(W ); this measures accuracy.

Obviously, we prefer estimators with small MSE because these estimators have small bias
(i.e., high accuracy) and small variance (i.e., high precision).

PAGE 42


	STAT 713 Feb 14, 2019
	713

