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Example 7.12. Suppose X, Xo, ..., X,, are iid N (i, 0%), where —oco < 1 < oo and o2 > 0.
e If 02 is known, a conjugate prior for p is

p~N(E T, &1 known.

e If ;1 is known, a conjugate prior for o2 is

0? ~1G(a,b) a,bknown.

7.3 Methods of Evaluating Estimators

7.3.1 Bias, variance, and MSE

Definition: Suppose W = W(X) is a point estimator. We call W an unbiased estimator

of 4 if
@W} =0 forall §ec0:
More generally, we call W an unbiased estimator of 7(0) if EQ (W) -6

Eg(W) =17(0) forall § € O. L) b[‘ag

Definition: The mean-squared error (MSE) of a point estimator W = W (X) is

MSE((W) = BlW-0? = Ee [ ( W'EG‘W),*EG"“’)‘Q)l
= (W) + [E(W) 0 - £ T (w-Gole) § (Eplir8)

—_— ] 2
= van(W) + Biass(V), £2 ( w-Eplw) ) (Bpled-0) |
where Biasg(W) = Ey(W) — 6 is the bias of W as an estimator of §. Note that if W is an
biased estimator of @, then for all § € O,
unbiased estimator o en for a - Ee[ (w- Ee(,p)j]

EQ(W) =0 = Biasa(W) = E@(W) —0=0.

+E, [ (BL-0) "
SE, (V) = var, (). £2 B[ (w-tole) (B8]

Remark: In general, the MSE incorporates two components:

In this case,

e varyg(W); this measures precision

e Biasy(W); this measures accuracy.

Obviously, we prefer estimators with small MSE because these estimators have small bias
(i.e., high accuracy) and small variance (i.e., high precision).
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Example 7.13. Suppose X, Xs, ..., X,, are iid N (u, 0?), where —oo < u < oo and o2 > 0;
i.e., both parameters unknown. Set @ = (u,0?). Recall that our “usual” sample variance
estimator is

1 —
S? = X, — X)?
= . o
and for all @, MSE (g )-— ,,\f\
EQ(S2) == 0'2
20"
2y _—
varg(S®) = —T
Consider the “competing estimator:” N an-| 6.‘4

" * b
which recall is the MOM and MLE of o2 E@ [ _— g'o = 6

Note that

52 = (”;1) S? — Bp(S?) = E, [(";1) 52} - (”; 1) Eo(S?) = (”; 1) o2,

That is, the estimator S? is biased; it underestimates o on average.

Comparison: Let’s compare S? and S? on the basis of MSE. Because S? is an unbiased
estimator of o2,
20*

n—1

MSE@(SQ) = V&I‘g<52> =

The MSE of 5% is
MSEg(S?) = varg(S7) + Biasa(S?).

The variance of S7 is

varg(S2) = Varg[<n21>52]

The bias of S? is

Therefore,
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Finally, to compare MSEg(S?) with MSE(S?), we are left to compare the constants

2 2n —1
and i .
n—1 n?
Note that the ratio
2n—1
7122 _ o2n? —3n+1 <1
2n2
n—1

for all n > 2. Therefore,
MSEg(S7) < MSEg(S?),

showing that S? is a “better” estimator than S on the basis of MSE.

Discussion: In general, how should we compare two competing estimators W; and W5?

e If both W; and W, are unbiased, we prefer the estimator with the smaller variance.

o If either W or W, is biased (or perhaps both are biased), we prefer the estimator with
the smaller MSE.

—

There is no guarantee that one estimator, say W, will always beat the other for all 8 € ©
(i.e., for all values of # in the parameter space). For example, it may be that W) has smaller
MSE for some values of # € ©, but larger MSE for other values.

Remark: In some situations, we might have a biased estimator, but we can calculate its
bias. We can then “adjust” the (biased) estimator to make it unbiased. I like to call this
“making biased estimators unbiased.” The following example illust¥ates this.

= REXR
Example 7.14. Suppose that X7, X», ..., X,, are iid U[0, 0], where § > 0. We know (from
Example 7.4) that the MLE of 6 is X(,), the maximum order statistic. It is easy to show

that
n
Bt = (2o

The MLE is biased because Ey(X(n)) # 6. However, the estimator

n-+1
X

an “adjusted version” of X(,), is unbiased.

Remark: In the previous example, we might compare the following estimators:

+1
Wi = Wi(X) = <” >X<n>
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The estimator W) is an unbiased version of the MLE. The estimator W, is the MOM (which
is also unbiased). I have calculated

62 02
Vare(Wl) = m and Var9<W2> = 3_n

It is easy to see that varg(W;) < varg(Ws), for all n > 2. Therefore, W; is a “better”
estimator on the basis of this variance comparison. Are you surprised?

Curiosity: Might there be another unbiased estimator, say W3 = W3(X) that is “better”
than both W, and W57 If a better (unbiased) estimator does exist, how do we find it?

7.3.2 Best unbiased estimators

Goal: Consider the class of estimators
C,={W =W(X): Eg(W)=17(0) VO € O}

That is, C, is the collection of all unbiased estimators of 7(f). Our goal is to find the
(unbiased) estimator W* € C, that has the smallest variance.

Remark: On the surface, this task seems somewhat insurmountable because C; is a very
large class. In Example 7.14, for example, both W, = ("T“) X(n and Wy = 2X are unbiased

estimators of 6. However, so is the convex combination E[Wu]i 9
1 — -
Wa—Wa(X)—a(n—'— >X(n)+(1—a)2 , E[Wt]’e
—_— - W, € Co , Wi€Co

for all a € (0,1). Wa =z QW,t(-c) Ws E[Wa.]

Remark: It seems that our discussion of “best” estimators starts with the restriction that
we will consider only those that are unbiased. If we did not make a restriction like this,
then we would have to deal with too many estimators, many of which are nonsensical. For = &

example, suppose Xy, Xo, ..., X, are iid Poisson(0), where 6 > 0. Wh &Ce

~a el @

e The estimators X and S? emerge as candidate estimators because they are unbiased.

e However, suppose we widen our search to consider all possible estimators and then try
to find the one with the smallest MSE. Consider the estimator 6 = 17.

— If 6 =17, then f can never be beaten in terms of MSE; its MSE = 0.
— If § # 17, then 6 may be a terrible estimator; its MSE = (17 — 6)2.

e We want to exclude nonsensical estimators like this. Our solution is to restrict attention
to estimators that are unbiased.
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Definition: An estimator W* = W*(X) is a uniformly minimum variance unbiased
estimator (UMVUE) of 7(6) if

1. Eg(W*)=7(0) forallfecO
2. varyg(W*) < varg(W), for all @ € ©, where IV is any other unbiased estimator of 7(6).

Note: This definition is stated in full generality. Most of the time (but certainly not always),
we will be interested in estimating 6 itself; i.e., 7(0) = 6. Also, as the notation suggests, we
assume that 7(0) is a scalar parameter and that estimators are also scalar.

Discussion/Preview: How do we find UMVUEs? We start by noting the following:
e UMVUESs may not exist.
e If a UMVUE does exist, it is unique (we’ll prove this later).

We present two approaches to find UMV UEs:

Approach 1: Determine a lower bound, say B(f), on the variance of any unbiased esti-
mator of 7(#). Then, if we can find an unbiased estimator W* whose variance attains this
lower bound, that is,

varg(W*) = B(6),

for all 8 € O, then we know that W* is UMVUE.

Approach 2: Link the notion of being “best” with that of sufficiency and completeness.

Theorem 7.3.9 (Cramér-Rao Inequality).(Suppose X ~ fx(x|6)) where

1. the support of X is free of all unknown parameters

W
2. for any function h(x) such that Fy[h(X)] < oo for all § € O, the interchange
G- T

[ st = [ ne) el

is justified; i.e., we can interchange the derivative and integral (derivative and sum if
X is discrete).

For any estimator W (X) with vary[W(X)] < oo, the following inequality holds:
4 ByW (X))}
varg[W(X)] > {d(’a oW Xl} 5T
Ee{[@lnfﬂXI@)} }

The quantity on the RHS is called the Cramér-Rao Lower Bound (CRLB) on the
variance of the estimator W (X).

Remark: Note that in the statement of the CRLB in Theorem 7.3.9, we haven’t said exactly
what W (X) is an estimator for. This is to preserve the generality of the result; Theorem 7.3.9
holds for any estimator with finite variance. However, given our desire to restrict attention
to unbiased estimators, we will usually consider one of these cases:
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1

e If W(X) is an unbiased estimator of 7(6), then the numerator becomes [’CI( o
] o Vg N7 %/mﬂ
— f— . v e
a0 EB[(;OJ"’W

o If W(X) is an unbiased estimator of 7(0) = 0, then the numerator equals 1. \ 1]
~ro
Vﬂvvlm17/ Ed,(;’ x{xlﬁ))
Important special case (Corollary 7.3.10): When X consists of X, Xy, ..., X;, which are
iid from the population fx(z|@), then the denominator in Theorem 7.3.9

Ey [% lan(X|9)r} -

or, using other notation,

1,(0) = nli(6).
(6) =n1,(6) CRL
We call I,,(0) the Fisher information based on the sample X. We call [;(0) the Fisher j wnbiased

information based on one observation X. et

Lemma 7.3.11 (Information Equality): ‘Under fairly mild assumptions (which hold for
exponential families, for example), the Fisher information based on one observatio

2

1,(0) = E, { [% In fX(X|9)]2} S [% 1an(X|9)] .

The second expectation is often easier to calculate.

Preview: In Chapter 10, we will investigate the large-sample properties of MLEs. Under
certain regularity conditions, we will show an MLE 6 satisfies

Vil —0) -5 N(0,02),

where the asymptotic variance
1

2
AT

This is an extremely useful (large-sample) result; e.g., it makes getting large-sample Cls
and performing large-sample tests straightforward. Furthermore, an analogous large-sample
result holds for vector-valued MLEs. If 0 is the MLE of a k x 1 dimensional parameter 0,
then

\/ﬁ(é —0) N mvng(0, 3),

where the asymptotic variance-covariance matrix (now, k X k)
% =[n6)]"

is the inverse of the k x k Fisher information matrix 7;(0).
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