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STAT 713: CHAPTER 7 JOSHUA M. TEBBS

Example 7.12. Suppose X1, X2, ..., Xn are iid N (µ, �2), where �1 < µ < 1 and �2
> 0.

• If �2 is known, a conjugate prior for µ is

µ ⇠ N (⇠, ⌧ 2), ⇠, ⌧
2 known.

• If µ is known, a conjugate prior for �2 is

�
2 ⇠ IG(a, b) a, b known.

7.3 Methods of Evaluating Estimators

7.3.1 Bias, variance, and MSE

Definition: Suppose W = W (X) is a point estimator. We call W an unbiased estimator
of ✓ if

E✓(W ) = ✓ for all ✓ 2 ⇥.

More generally, we call W an unbiased estimator of ⌧(✓) if

E✓(W ) = ⌧(✓) for all ✓ 2 ⇥.

Definition: The mean-squared error (MSE) of a point estimator W = W (X) is

MSE✓(W ) = E✓[(W � ✓)2]

= var✓(W ) + [E✓(W )� ✓]2

= var✓(W ) + Bias2
✓
(W ),

where Bias✓(W ) = E✓(W ) � ✓ is the bias of W as an estimator of ✓. Note that if W is an
unbiased estimator of ✓, then for all ✓ 2 ⇥,

E✓(W ) = ✓ =) Bias✓(W ) = E✓(W )� ✓ = 0.

In this case,
MSE✓(W ) = var✓(W ).

Remark: In general, the MSE incorporates two components:

• var✓(W ); this measures precision

• Bias✓(W ); this measures accuracy.

Obviously, we prefer estimators with small MSE because these estimators have small bias
(i.e., high accuracy) and small variance (i.e., high precision).

PAGE 42

I fEoW
bias

Eo W EocustEolw 05
Eo WEolwD'tCEolusOI
12 w Eolw Edw07

Eo CwEocust

Eo Edw 012

12 Eo CwEolus Edw01



STAT 713: CHAPTER 7 JOSHUA M. TEBBS

Example 7.13. Suppose X1, X2, ..., Xn are iid N (µ, �2), where �1 < µ < 1 and �2
> 0;

i.e., both parameters unknown. Set ✓ = (µ, �2). Recall that our “usual” sample variance
estimator is

S
2 =

1

n� 1

nX

i=1

(Xi �X)2

and for all ✓,

E✓(S
2) = �

2

var✓(S
2) =

2�4

n� 1
.

Consider the “competing estimator:”

S
2
b
=

1

n

nX

i=1

(Xi �X)2,

which recall is the MOM and MLE of �2.

Note that

S
2
b
=

✓
n� 1

n

◆
S
2 =) E✓(S

2
b
) = E✓

✓
n� 1

n

◆
S
2

�
=

✓
n� 1

n

◆
E✓(S

2) =

✓
n� 1

n

◆
�
2
.

That is, the estimator S2
b
is biased; it underestimates �2 on average.

Comparison: Let’s compare S
2 and S

2
b
on the basis of MSE. Because S

2 is an unbiased
estimator of �2,

MSE✓(S
2) = var✓(S

2) =
2�4

n� 1
.

The MSE of S2
b
is

MSE✓(S
2
b
) = var✓(S

2
b
) + Bias2✓(S

2
b
).

The variance of S2
b
is

var✓(S
2
b
) = var✓

✓
n� 1

n

◆
S
2

�

=

✓
n� 1

n

◆2

var✓(S
2) =

✓
n� 1

n

◆2 2�4

n� 1
=

2(n� 1)�4

n2
.

The bias of S2
b
is

E✓(S
2
b
� �

2) = E✓(S
2
b
)� �

2 =

✓
n� 1

n

◆
�
2 � �

2
.

Therefore,

MSE✓(S
2
b
) =

2(n� 1)�4

n2| {z }
var✓(S2

b )

+

✓
n� 1

n

◆
�
2 � �

2

�2

| {z }
Bias2✓(S

2

b )

=

✓
2n� 1

n2

◆
�
4
.
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Finally, to compare MSE✓(S2) with MSE✓(S2
b
), we are left to compare the constants

2

n� 1
and

2n� 1

n2
.

Note that the ratio
2n� 1

n2

2

n� 1

=
2n2 � 3n+ 1

2n2
< 1,

for all n � 2. Therefore,
MSE✓(S

2
b
) < MSE✓(S

2),

showing that S2
b
is a “better” estimator than S

2 on the basis of MSE.

Discussion: In general, how should we compare two competing estimators W1 and W2?

• If both W1 and W2 are unbiased, we prefer the estimator with the smaller variance.

• If either W1 or W2 is biased (or perhaps both are biased), we prefer the estimator with
the smaller MSE.

There is no guarantee that one estimator, say W1, will always beat the other for all ✓ 2 ⇥
(i.e., for all values of ✓ in the parameter space). For example, it may be that W1 has smaller
MSE for some values of ✓ 2 ⇥, but larger MSE for other values.

Remark: In some situations, we might have a biased estimator, but we can calculate its
bias. We can then “adjust” the (biased) estimator to make it unbiased. I like to call this
“making biased estimators unbiased.” The following example illustrates this.

Example 7.14. Suppose that X1, X2, ..., Xn are iid U [0, ✓], where ✓ > 0. We know (from
Example 7.4) that the MLE of ✓ is X(n), the maximum order statistic. It is easy to show
that

E✓(X(n)) =

✓
n

n+ 1

◆
✓.

The MLE is biased because E✓(X(n)) 6= ✓. However, the estimator

✓
n+ 1

n

◆
X(n),

an “adjusted version” of X(n), is unbiased.

Remark: In the previous example, we might compare the following estimators:

W1 = W1(X) =

✓
n+ 1

n

◆
X(n)

W2 = W2(X) = 2X.
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The estimator W1 is an unbiased version of the MLE. The estimator W2 is the MOM (which
is also unbiased). I have calculated

var✓(W1) =
✓
2

n(n+ 2)
and var✓(W2) =

✓
2

3n
.

It is easy to see that var✓(W1)  var✓(W2), for all n � 2. Therefore, W1 is a “better”
estimator on the basis of this variance comparison. Are you surprised?

Curiosity: Might there be another unbiased estimator, say W3 = W3(X) that is “better”
than both W1 and W2? If a better (unbiased) estimator does exist, how do we find it?

7.3.2 Best unbiased estimators

Goal: Consider the class of estimators

C⌧ = {W = W (X) : E✓(W ) = ⌧(✓) 8✓ 2 ⇥}.

That is, C⌧ is the collection of all unbiased estimators of ⌧(✓). Our goal is to find the
(unbiased) estimator W ⇤ 2 C⌧ that has the smallest variance.

Remark: On the surface, this task seems somewhat insurmountable because C⌧ is a very
large class. In Example 7.14, for example, both W1 =

�
n+1
n

�
X(n) and W2 = 2X are unbiased

estimators of ✓. However, so is the convex combination

Wa = Wa(X) = a

✓
n+ 1

n

◆
X(n) + (1� a)2X,

for all a 2 (0, 1).

Remark: It seems that our discussion of “best” estimators starts with the restriction that
we will consider only those that are unbiased. If we did not make a restriction like this,
then we would have to deal with too many estimators, many of which are nonsensical. For
example, suppose X1, X2, ..., Xn are iid Poisson(✓), where ✓ > 0.

• The estimators X and S
2 emerge as candidate estimators because they are unbiased.

• However, suppose we widen our search to consider all possible estimators and then try
to find the one with the smallest MSE. Consider the estimator b✓ = 17.

– If ✓ = 17, then b✓ can never be beaten in terms of MSE; its MSE = 0.

– If ✓ 6= 17, then b✓ may be a terrible estimator; its MSE = (17� ✓)2.

• We want to exclude nonsensical estimators like this. Our solution is to restrict attention
to estimators that are unbiased.

PAGE 45

EEwif_o

EwYiE.o.w.ec
Wa AW 14 a WZ Elwa

a014010
0

WaCGo



STAT 713: CHAPTER 7 JOSHUA M. TEBBS

Definition: An estimator W
⇤ = W

⇤(X) is a uniformly minimum variance unbiased
estimator (UMVUE) of ⌧(✓) if

1. E✓(W ⇤) = ⌧(✓) for all ✓ 2 ⇥

2. var✓(W ⇤)  var✓(W ), for all ✓ 2 ⇥, where W is any other unbiased estimator of ⌧(✓).

Note: This definition is stated in full generality. Most of the time (but certainly not always),
we will be interested in estimating ✓ itself; i.e., ⌧(✓) = ✓. Also, as the notation suggests, we
assume that ⌧(✓) is a scalar parameter and that estimators are also scalar.

Discussion/Preview: How do we find UMVUEs? We start by noting the following:

• UMVUEs may not exist.

• If a UMVUE does exist, it is unique (we’ll prove this later).

We present two approaches to find UMVUEs:

Approach 1: Determine a lower bound, say B(✓), on the variance of any unbiased esti-
mator of ⌧(✓). Then, if we can find an unbiased estimator W ⇤ whose variance attains this
lower bound, that is,

var✓(W
⇤) = B(✓),

for all ✓ 2 ⇥, then we know that W ⇤ is UMVUE.

Approach 2: Link the notion of being “best” with that of su�ciency and completeness.

Theorem 7.3.9 (Cramér-Rao Inequality). Suppose X ⇠ fX(x|✓), where

1. the support of X is free of all unknown parameters

2. for any function h(x) such that E✓[h(X)] < 1 for all ✓ 2 ⇥, the interchange

d

d✓

Z

Rn

h(x)fX(x|✓)dx =

Z

Rn

@

@✓
h(x)fX(x|✓)dx

is justified; i.e., we can interchange the derivative and integral (derivative and sum if
X is discrete).

For any estimator W (X) with var✓[W (X)] < 1, the following inequality holds:

var✓[W (X)] �
�

d

d✓
E✓[W (X)]

 2

E✓

n⇥
@

@✓
ln fX(X|✓)

⇤2o .

The quantity on the RHS is called the Cramér-Rao Lower Bound (CRLB) on the
variance of the estimator W (X).

Remark: Note that in the statement of the CRLB in Theorem 7.3.9, we haven’t said exactly
whatW (X) is an estimator for. This is to preserve the generality of the result; Theorem 7.3.9
holds for any estimator with finite variance. However, given our desire to restrict attention
to unbiased estimators, we will usually consider one of these cases:
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• If W (X) is an unbiased estimator of ⌧(✓), then the numerator becomes


d

d✓
⌧(✓)

�2
= [⌧ 0(✓)]2.

• If W (X) is an unbiased estimator of ⌧(✓) = ✓, then the numerator equals 1.

Important special case (Corollary 7.3.10): When X consists of X1, X2, ..., Xn which are
iid from the population fX(x|✓), then the denominator in Theorem 7.3.9

E✓

(
@

@✓
ln fX(X|✓)

�2)
= nE✓

(
@

@✓
ln fX(X|✓)

�2)
,

or, using other notation,
In(✓) = nI1(✓).

We call In(✓) the Fisher information based on the sample X. We call I1(✓) the Fisher
information based on one observation X.

Lemma 7.3.11 (Information Equality): Under fairly mild assumptions (which hold for
exponential families, for example), the Fisher information based on one observation

I1(✓) = E✓

(
@

@✓
ln fX(X|✓)

�2)
= �E✓


@
2

@✓2
ln fX(X|✓)

�
.

The second expectation is often easier to calculate.

Preview: In Chapter 10, we will investigate the large-sample properties of MLEs. Under
certain regularity conditions, we will show an MLE b✓ satisfies

p
n(b✓ � ✓)

d�! N (0, �2
b✓),

where the asymptotic variance

�
2
b✓ =

1

I1(✓)
.

This is an extremely useful (large-sample) result; e.g., it makes getting large-sample CIs
and performing large-sample tests straightforward. Furthermore, an analogous large-sample
result holds for vector-valued MLEs. If b✓ is the MLE of a k ⇥ 1 dimensional parameter ✓,
then p

n(b✓ � ✓)
d�! mvnk(0,⌃),

where the asymptotic variance-covariance matrix (now, k ⇥ k)

⌃ = [I1(✓)]
�1

is the inverse of the k ⇥ k Fisher information matrix I1(✓).
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