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Example 7.15. Suppose X1, X2, ..., Xn are iid Poisson(✓), where ✓ > 0. Find the CRLB on
the variance of unbiased estimators of ⌧(✓) = ✓.
Solution. We know that the CRLB is

1

In(✓)
=

1

nI1(✓)
,

where

I1(✓) = E✓

(
@

@✓
ln fX(X|✓)

�2)
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@✓2
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For x = 0, 1, 2, ...,

ln fX(x|✓) = ln

✓
✓
x
e
�✓

x!

◆
= x ln ✓ � ✓ � ln x!.

Therefore,
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ln fX(x|✓) =
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The Fisher information based on one observation is

I1(✓) = �E✓


@
2

@✓2
ln fX(X|✓)

�

= �E✓

✓
�X

✓2

◆
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✓
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Therefore, the CRLB on the variance of all unbiased estimators of ⌧(✓) = ✓ is

CRLB =
1

nI1(✓)
=
✓

n
.

Observation: Because W (X) = X is an unbiased estimator of ⌧(✓) = ✓ in the Poisson(✓)
model and because

var✓(X) =
✓

n
,

we see that var✓(X) does attain the CRLB. This means that W (X) = X is the UMVUE for
⌧(✓) = ✓.

Example 7.16. Suppose X1, X2, ..., Xn are iid gamma(↵0, �), where ↵0 is known and � > 0.
Find the CRLB on the variance of unbiased estimators of �.
Solution. We know that the CRLB is

1

In(�)
=

1

nI1(�)
,
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where

I1(�) = E�
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�
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For x > 0,
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The Fisher information based on one observation is
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Therefore, the CRLB on the variance of all unbiased estimators of � is

CRLB =
1

nI1(�)
=

�
2

n↵0
.

Observation: Consider the estimator

W (X) =
X

↵0
.

Note that

E�[W (X)] = E�

✓
X

↵0

◆
=
↵0�

↵0
= �

and

var�[W (X)] = var�

✓
X

↵0

◆
=
↵0�

2

n↵
2
0

=
�
2

n↵0
.

We see that W (X) = X/↵0 is an unbiased estimator for � and var�(X/↵0) attains the
CRLB. This means that W (X) = X/↵0 is the UMVUE for �.
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Discussion: Instead of estimating � in Example 7.16, suppose that we were interested in
estimating ⌧(�) = 1/� instead.

1. Show that

W (X) =
n↵0 � 1

nX

is an unbiased estimator of ⌧(�) = 1/�.

2. Derive the CRLB for the variance of unbiased estimators of ⌧(�) = 1/�.

3. Calculate var�[W (X)] and show that it is strictly larger than the CRLB (i.e., the
variance does not attain the CRLB).

Q: Does this necessarily imply that W (X) cannot be the UMVUE of ⌧(�) = 1/�?

Remark: In general, the CRLB o↵ers a lower bound on the variance of any unbiased
estimator of ⌧(✓). However, this lower bound may be unattainable. That is, the CRLB may
be strictly smaller than the variance of any unbiased estimator. If this is the case, then our
“CRLB approach” to finding an UMVUE will not be helpful.

Corollary 7.3.15 (Attainment). Suppose X1, X2, ..., Xn is an iid sample from fX(x|✓),
where ✓ 2 ⇥, a family that satisfies the regularity conditions stated for the Cramér-Rao
Inequality. If W (X) is an unbiased estimator of ⌧(✓), then var✓[W (X)] attains the CRLB if
and only if the score function

S(✓|x) = a(✓)[W (x)� ⌧(✓)]

is a linear function of W (x).

Recall: The score function is given by

S(✓|x) =
@

@✓
lnL(✓|x)

=
@

@✓
ln fX(x|✓).

Example 7.16 (continued). SupposeX1, X2, ..., Xn are iid gamma(↵0, �), where ↵0 is known
and � > 0. The likelihood function is

L(�|x) =
nY

i=1

1

�(↵0)�↵0

x
↵0�1
i

e
�xi/�

=


1

�(↵0)�↵0

�n nY

i=1

xi

!↵0�1

e
�

Pn
i=1

xi/�.

The log-likelihood function is

lnL(�|x) = �n ln�(↵0)� n↵0 ln � + (↵0 � 1)
nX

i=1

ln xi �
P

n

i=1 xi

�
.
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The score function is

S(�|x) = @

@�
lnL(�|x) = �n↵0

�
+

P
n

i=1 xi

�2

=
n↵0

�2

✓P
n

i=1 xi

n↵0
� �

◆

= a(�)[W (x)� ⌧(�)],

where

W (x) =

P
n

i=1 xi

n↵0
=

x

↵0
.

We have written the score function S(�|x) as a linear function of W (x) = x/↵0. Because
W (X) = X/↵0 is an unbiased estimator of ⌧(�) = � (shown previously), the variance
var�[W (X)] attains the CRLB for the variance of unbiased estimators of ⌧(�) = �.

Remark: The attainment result is interesting, but I have found that its usefulness may be
limited if you want to find the UMVUE. Even if we can write

S(✓|x) = a(✓)[W (x)� ⌧(✓)]

where E✓[W (X)] = ⌧(✓), the RHS might involve a function ⌧(✓) for which there is no desire
to estimate. To illustrate this, suppose X1, X2, ..., Xn are iid beta(✓, 1), where ✓ > 0. The
score function is

S(✓|x) =
n

✓
+

nX

i=1

ln xi

= n

P
n

i=1 ln xi

n
�
✓
�1

✓

◆�

= a(✓)[W (x)� ⌧(✓)].

It turns out that

E✓[W (X)] = E✓

 
1

n

nX

i=1

lnXi

!
= �1

✓
.

We have shown that var✓[W (X)] attains the CRLB on the variance of unbiased estimators
of ⌧(✓) = �1/✓, a parameter we likely have no desire to estimate.

Unresolved issues:

1. What if fX(x|✓) does not satisfy the regularity conditions needed for the Cramér-Rao
Inequality to apply? For example, X ⇠ U(0, ✓).

2. What if the CRLB is unattainable? Can we still find the UMVUE?
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7.3.3 Su�ciency and completeness

Remark: We now move to our “second approach” on how to find UMVUEs. This approach
involves su�ciency and completeness�two topics we discussed in the last chapter. We can
also address the unresolved issues on the previous page.

Theorem 7.3.17 (Rao-Blackwell). Let W = W (X) be an unbiased estimator of ⌧(✓) .
Let T = T (X) be a su�cient statistic for ✓. Define

�(T ) = E(W |T ).

Then

1. E✓[�(T )] = ⌧(✓) for all ✓ 2 ⇥

2. var✓[�(T )]  var✓(W ) for all ✓ 2 ⇥.

That is, �(T ) = E(W |T ) is a uniformly better unbiased estimator than W .
Proof. This result follows from the iterated rules for means and variances. First,

E✓[�(T )] = E✓[E(W |T )] = E✓(W ) = ⌧(✓).

Second,

var✓(W ) = E✓[var(W |T )] + var✓[E(W |T )]
= E✓[var(W |T )] + var✓[�(T )]

� var✓[�(T )],

because var(W |T ) � 0 (a.s.) and hence E✓[var(W |T )] � 0. 2

Implication: We can always “improve” the unbiased estimator W by conditioning on a
su�cient statistic.

Remark: To use the Rao-Blackwell Theorem, some students think they have to

1. Find an unbiased estimator W .

2. Find a su�cient statistic T .

3. Derive the conditional distribution fW |T (w|t).

4. Find the mean E(W |T ) of this conditional distribution.

This is not the case at all! Because �(T ) = E(W |T ) is a function of the su�cient statistic
T , the Rao-Blackwell result simply convinces us that in our search for the UMVUE, we can
restrict attention to those estimators that are functions of a su�cient statistic.
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