

Attainment Corollary

$$f = S(\Theta|X) = \alpha(\Theta) [W(X) - \tau(\Theta)]$$
 and $W(X)$ is an unbiased eservices for $\tau(\Theta)$
then, $Var[W(X)]$ attains $CR2B$ (for $\tau(\Theta)$; i.e., $w(X)$ is the $VMWE$ of $\tau(\Theta)$

Approach 2: based on sufficiency and completeness.
• If T is a sufficient and complete statistic for
$$\Theta$$

and there exists a function ϕ
such that $E_{\Theta}[\phi(T)] = T(\Theta) = \Theta$
Then $\phi(T)$ is the UMVUE of $T(\Theta)$

$$\begin{aligned} & \phi(\tau) = E[W|T] \\ & \text{ Then } \cdot \phi(\tau) \text{ is also an unbrased esc. of } \tau(\theta) \\ & \cdot Var[\phi(\tau)] \leq Var[W|X|] \\ & \text{ also implies : If UMVUE exists is must be a function of sufficience scare is stic.} \end{aligned}$$

Why completeness
(1) UMVUE is unique, as. (if exists)
(2)
$$W(X)$$
 is the UMVUE of $T(B)$
if and only if $Cov(W(X), U)=0$ for any U where
U is an unbiased estimator
of O .
 $E_{\Theta}(U)=0$ for all B .

proof of (1): suppose both W and W' are the UMVUE.
Let
$$W^* = \frac{1}{2} (W + W')$$

We have $E[W^*] = T(0)$ for all 0 .
Then W^* is an unbiased est. of $T(0)$
 $Var(W^*) = \frac{1}{4} Var(W)t \frac{1}{4} Var(W')t \frac{1}{2} Cov(W,W')$
 $= \frac{1}{2} Var(W) + \frac{1}{2} Cov(W,W')$
 $i = \frac{1}{2} Var(W) + \frac{1}{2} \int Var(W) Var(W')$
 $i = \frac{1}{2} Var(W) + \frac{1}{2} \int Var(W) Var(W')$
 $i = \frac{1}{2} Var(W) + \frac{1}{2} Var(W) = Var(W)$
Because W is the UMVUE. $Var(W') = Var(W)$
 $= Var(W') = Var(W) = Ovr(W)$

Var(W-W') = Var(W) + Var(W') - 2Cov(W, W') = Var(W) + Var(W') - 2Var(W) = 0Then W-W' must be a constant (a.s.) If $W-W' = C \neq 0$ C = E[W-W'] = T(0) - T(0) contradiction So W-W' = 0 (a.s.) W=W' (a.s.)

proof of (2) "(=)"
start with "(=", meaning we want to prove that

$$\begin{cases} SIf & Cov(W,U)=0 \text{ for all unbiased excinction } U \neq 0 \\ Then & Wits the UMVILE \end{cases}$$

Suppose W' is an unbiased estimate of $T(\theta)$
 $E[W']=T(\theta)$ for θ
 $U=W'-W$ is an unbiased estimated estimated estimated $E[W']=0$ for θ
 $U=W'-W$ is an unbiased estimated estimated $T(\theta)$
 $Cov(W, U) = Cov(W, W'-W) = 0$
 $Var(W') = Var(W+W'-W)$
 $= Var(W) + Var(W'-W) + 2Cov(W, W-W)$
 $U = Var(W) + Var(W'-W) + 2Cov(W, W-W)$
 $V = Var(W) + Var(W'-W) + 2Cov(W, W-W)$

,

a² Var
$$(u)$$
 + 29 cov $(w, u) \ge 0$ hold for any $G \in R$
. it implies $D = [2 cov (w, u)]^2 - 0 \le 0$
 $= 2 cov (w, u) = 0$

Back to Approach 2, we now prove it.
T is a sufficient and complete statistic
and
$$\phi$$
 is a function such that $E[\phi(\tau)] = \tau(\theta)$ for all θ
Then $\phi(\tau)$ is the UMVUE of $\tau(\theta)$
proof: it suffices to show that
i for any unboinsed estimator, V , of 0 ; i.e. $E[U] = 0$ for all θ
 $Cov [\phi(\tau), V] = 0$
This is the because. $Cov[\phi(\tau), U]$
 $= E[\phi(\tau) U] - E[\phi(\tau)] E[U]$

$$= E[\phi(\tau) \cup] - E[\phi(\tau)] \times 0$$

$$= E[\phi(\tau) \cup]$$

"iterated" = $E[E[\phi(\tau) \cup [\tau]]$

$$= E[\phi(\tau) E[\cup|\tau]]$$

because T is sufficient, $E[\cup|\tau]$ does not depend on 0
Let $g(\tau) = E[\cup|T]$

$$= E[0|\tau] = E[E[\cup|T]] = E[U] = 0$$

because T is complete.

$$P_0[g(t) = 0] = |; i.e., g is almost suly 2ero$$

So $E[\cup|T] = 0$ (a.s)
Thus $C_0 \cup [\phi(\tau), \cup] = E[\phi(\tau) E[\cup|T]]$

$$= E[\phi(\tau) \times 0] = 0$$

Hence $\phi(\tau)$ is the UMV UE of $T(0)$

=F(w)

7.3.3Sufficiency and completeness

Remark: We now move to our "second approach" on how to find UMVUEs. This approach involves sufficiency and completeness-two topics we discussed in the last chapter. We can also address the unresolved issues on the previous page.

Theorem 7.3.17 (Rao-Blackwell). Let $W = W(\mathbf{X})$ be an unbiased estimator of $\tau(\theta)$. Let $T = T(\mathbf{X})$ be a sufficient statistic for θ . Define a statistic??? $\hat{I}s \phi(T)$

 $\phi(T) = E(W|T).$

Then

1. $E_{\theta}[\phi(T)] = \tau(\theta)$ for all $\theta \in \Theta$ 2. $\operatorname{var}_{\theta}[\phi(T)] < \operatorname{var}_{\theta}(W)$ for all $\theta \in \Theta$.

= $\int W(x) \int_{x_{1}\tau} (x_{1}\tau) dx$ testimator than W. $f_{x_{1}\tau} = \phi(\tau)$ unbiased for $\tau(\theta)$? That is, $\phi(T) = E(W|T)$ is a uniformly better unbiased estimator than W. Proof. This result follows from the iterated rules for means and variances. First,

Second.

$$\begin{aligned} \operatorname{var}_{\theta}(W) &= E_{\theta}[\operatorname{var}(W|T)] + \operatorname{var}_{\theta}[E(W|T)] \\ &= E_{\theta}[\operatorname{var}(W|T)] + \operatorname{var}_{\theta}[\phi(T)] \\ &\geq \operatorname{var}_{\theta}[\phi(T)], \end{aligned}$$

 $\phi(\tau) = E \left[W(X) | T(X) \right]$

because $\operatorname{var}(W|T) \geq 0$ (a.s.) and hence $E_{\theta}[\operatorname{var}(W|T)] \geq 0$.

Implication: We can always "improve" the unbiased estimator W by conditioning on a sufficient statistic.

Remark: To use the Rao-Blackwell Theorem, some students think they have to

- 1. Find an unbiased estimator W.
- 2. Find a sufficient statistic T.
- 3. Derive the conditional distribution $f_{W|T}(w|t)$.
- 4. Find the mean E(W|T) of this conditional distribution.

This is not the case at all! Because $\phi(T) = E(W|T)$ is a function of the sufficient statistic T, the Rao-Blackwell result simply convinces us that in our search for the UMVUE, we can restrict attention to those estimators that are functions of a sufficient statistic.

Q: In the proof of the Rao-Blackwell Theorem, where did we use the fact that T was sufficient?

A: Nowhere. Thus, it would seem that conditioning on any statistic, sufficient or not, will result in an improvement over the unbiased W. However, there is a catch:

• If T is not sufficient, then there is no guarantee that $\phi(T) = E(W|T)$ will be an estimator; i.e., it could depend on θ . See Example 7.3.18 (CB, pp 343).

Remark: To understand how we can use the Rao-Blackwell result in our quest to find a UMVUE, we need two additional results. One deals with uniqueness; the other describes an interesting characterization of a UMVUE itself.

Theorem 7.3.19 (Uniqueness). If W is UMVUE for $\tau(\theta)$, then it is unique.

Proof. Suppose that W' is also UMVUE. It suffices to show that W = W' with probability one. Define

$$W^* = \frac{1}{2}(W + W').$$

Note that

$$E_{\theta}(W^*) = \frac{1}{2} [E_{\theta}(W) + E_{\theta}(W')] = \tau(\theta), \text{ for all } \theta \in \Theta,$$

showing that W^* is an unbiased estimator of $\tau(\theta)$. The variance of W^* is

where the inequality arises from the covariance inequality (CB, pp 188, application of Cauchy-Schwarz) and the final equality holds because both W and W' are UMVUE by assumption (so their variances must be equal). Therefore, we have shown that

- 1. W^* is unbiased for $\tau(\theta)$
- 2. $\operatorname{var}_{\theta}(W^*) \leq \operatorname{var}_{\theta}(W)$.

Because W is UMVUE (by assumption), the inequality in (2) can not be strict (or else it would contradict the fact that W is UMVUE). Therefore, it must be true that

$$\operatorname{var}_{\theta}(W^*) = \operatorname{var}_{\theta}(W).$$

This implies that the inequality above (arising from the covariance inequality) is an equality; therefore,

$$\operatorname{cov}_{\theta}(W, W') = \left[\operatorname{var}_{\theta}(W)\operatorname{var}_{\theta}(W')\right]^{1/2}.$$

Therefore,

$$\operatorname{corr}_{\theta}(W, W') = \pm 1 \implies W' = \underbrace{a(\theta)W + b(\theta)}_{\text{linear function of } W}, \text{ with probability } 1,$$

by Theorem 4.5.7 (CB, pp 172), where $a(\theta)$ and $b(\theta)$ are constants. It therefore suffices to show that $a(\theta) = 1$ and $b(\theta) = 0$. Note that

$$\operatorname{cov}_{\theta}(W, W') = \operatorname{cov}_{\theta}[W, a(\theta)W + b(\theta)] = a(\theta)\operatorname{cov}_{\theta}(W, W)$$
$$= a(\theta)\operatorname{var}_{\theta}(W).$$

However, we have previously shown that

$$\operatorname{cov}_{\theta}(W, W') = \left[\operatorname{var}_{\theta}(W)\operatorname{var}_{\theta}(W')\right]^{1/2} = \left[\operatorname{var}_{\theta}(W)\operatorname{var}_{\theta}(W)\right]^{1/2} \\ = \operatorname{var}_{\theta}(W).$$

This implies $a(\theta) = 1$. Finally,

$$E_{\theta}(W') = E_{\theta}[a(\theta)W + b(\theta)] = E_{\theta}[W + b(\theta)]$$

= $E_{\theta}(W) + b(\theta)$

Because both W and W' are unbiased, this implies $b(\theta) = 0$. \Box

Theorem 7.3.20. Suppose $E_{\theta}(W) = \tau(\theta)$ for all $\theta \in \Theta$. W is UMVUE of $\tau(\theta)$ if and only if W is uncorrelated with all unbiased estimators of 0.

Proof. Necessity (\Longrightarrow) : Suppose $E_{\theta}(W) = \tau(\theta)$ for all $\theta \in \Theta$. Suppose W is UMVUE of $\tau(\theta)$. Suppose $E_{\theta}(U) = 0$ for all $\theta \in \Theta$. It suffices to show $\operatorname{cov}_{\theta}(W, U) = 0$ for all $\theta \in \Theta$. Define

$$\phi_a = W + aU,$$

where a is a constant. It is easy to see that ϕ_a is an unbiased estimator of $\tau(\theta)$; for all $\theta \in \Theta$,

$$E_{\theta}(\phi_a) = E_{\theta}(W + aU) = E_{\theta}(W) + a\underbrace{E_{\theta}(U)}_{= 0} = \tau(\theta).$$

Also,

$$\operatorname{var}_{\theta}(\phi_{a}) = \operatorname{var}_{\theta}(W + aU)$$

=
$$\operatorname{var}_{\theta}(W) + \underbrace{a^{2}\operatorname{var}_{\theta}(U) + 2a \operatorname{cov}_{\theta}(W,U)}_{\text{Key question: Can this be negative?}}.$$

• Case 1: Suppose $\exists \theta_0 \in \Theta$ such that $\operatorname{cov}_{\theta_0}(W, U) < 0$. Then

$$a^{2} \operatorname{var}_{\theta_{0}}(U) + 2a \operatorname{cov}_{\theta_{0}}(W, U) < 0 \iff a^{2} \operatorname{var}_{\theta_{0}}(U) < -2a \operatorname{cov}_{\theta_{0}}(W, U)$$
$$\iff a^{2} < -\frac{2a \operatorname{cov}_{\theta_{0}}(W, U)}{\operatorname{var}_{\theta_{0}}(U)}.$$

I can make this true by picking

$$0 < a < -\frac{2 \operatorname{cov}_{\theta_0}(W, U)}{\operatorname{var}_{\theta_0}(U)}$$

and therefore I have shown that

$$\operatorname{var}_{\theta_0}(\phi_a) < \operatorname{var}_{\theta_0}(W).$$

However, this contradicts the assumption that W is UMVUE. Therefore, it must be true that $\operatorname{cov}_{\theta}(W, U) \geq 0$.

• Case 2: Suppose $\exists \theta_0 \in \Theta$ such that $\operatorname{cov}_{\theta_0}(W, U) > 0$. Then

$$a^{2} \operatorname{var}_{\theta_{0}}(U) + 2a \operatorname{cov}_{\theta_{0}}(W, U) < 0 \iff a^{2} \operatorname{var}_{\theta_{0}}(U) < -2a \operatorname{cov}_{\theta_{0}}(W, U)$$
$$\iff a^{2} < -\frac{2a \operatorname{cov}_{\theta_{0}}(W, U)}{\operatorname{var}_{\theta_{0}}(U)}.$$

I can make this true by picking

$$-\frac{2\,\operatorname{cov}_{\theta_0}(W,U)}{\operatorname{var}_{\theta_0}(U)} < a < 0$$

and therefore I have shown that

$$\operatorname{var}_{\theta_0}(\phi_a) < \operatorname{var}_{\theta_0}(W).$$

However, this again contradicts the assumption that W is UMVUE. Therefore, it must be true that $\operatorname{cov}_{\theta}(W, U) \leq 0$.

Combining Case 1 and Case 2, we are forced to conclude that $cov_{\theta}(W, U) = 0$. This proves the necessity.

Sufficiency (\Leftarrow): Suppose $E_{\theta}(W) = \tau(\theta)$ for all $\theta \in \Theta$. Suppose $\operatorname{cov}_{\theta}(W, U) = 0$ for all $\theta \in \Theta$ where U is any unbiased estimator of zero; i.e., $E_{\theta}(U) = 0$ for all $\theta \in \Theta$. Let W' be any other unbiased estimator of $\tau(\theta)$. It suffices to show that $\operatorname{var}_{\theta}(W) \leq \operatorname{var}_{\theta}(W')$. Write

$$W' = W + (W' - W)$$

and calculate

$$\operatorname{var}_{\theta}(W') = \operatorname{var}_{\theta}(W) + \operatorname{var}_{\theta}(W' - W) + 2\operatorname{cov}_{\theta}(W, W' - W).$$

However, $\operatorname{cov}_{\theta}(W, W' - W) = 0$ because W' - W is an unbiased estimator of 0. Therefore,

$$\operatorname{var}_{\theta}(W') = \operatorname{var}_{\theta}(W) + \underbrace{\operatorname{var}_{\theta}(W' - W)}_{\geq 0} \geq \operatorname{var}_{\theta}(W).$$

This proves the sufficiency. \Box

Summary: We are now ready to put Theorem 7.3.17 (Rao-Blackwell), Theorem 7.3.19 (UMVUE uniqueness) and Theorem 7.3.20 together. Suppose $\mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}|\theta)$, where $\theta \in \Theta$. Our goal is to find the UMVUE of $\tau(\theta)$.

• Theorem 7.3.17 (Rao-Blackwell) assures us that we can restrict attention to functions of sufficient statistics.

Therefore, suppose T is a sufficient statistic for θ . Suppose that $\phi(T)$, a function of T, is an unbiased estimator of $\tau(\theta)$; i.e.,

$$E_{\theta}[\phi(T)] = \tau(\theta), \text{ for all } \theta \in \Theta.$$

• Theorem 7.3.20 assures us that $\phi(T)$ is UMVUE if and only if $\phi(T)$ is uncorrelated with all unbiased estimators of 0.

Add the assumption that T is a complete statistic. The only unbiased estimator of 0 in complete families is the zero function itself. Because $\cos_{\theta}[\phi(T), 0] = 0$ holds trivially, we have shown that $\phi(T)$ is uncorrelated with "all" unbiased estimators of 0. Theorem 7.3.20 says that $\phi(T)$ must be UMVUE; Theorem 7.3.19 guarantees that $\phi(T)$ is unique.

Recipe for finding UMVUEs: Suppose we want to find the UMVUE for $\tau(\theta)$.

- 1. Start by finding a statistic T that is both sufficient and complete.
- 2. Find a function of T, say $\phi(T)$, that satisfies

$$E_{\theta}[\phi(T)] = \tau(\theta), \text{ for all } \theta \in \Theta.$$

Then $\phi(T)$ is the UMVUE for $\tau(\theta)$. This is essentially what is summarized in Theorem 7.3.23 (CB, pp 347).

Example 7.17. Suppose $X_1, X_2, ..., X_n$ are iid Poisson(θ), where $\theta > 0$.

- We already know that \overline{X} is UMVUE for θ ; we proved this by showing that \overline{X} is unbiased and that $\operatorname{var}_{\theta}(\overline{X})$ attains the CRLB on the variance of all unbiased estimators of θ .
- We now show \overline{X} is UMVUE for θ by using sufficiency and completeness.

The pmf of X is

$$f_X(x|\theta) = \frac{\theta^x e^{-\theta}}{x!} I(x=0,1,2,...,)$$

= $\frac{I(x=0,1,2,...,)}{x!} e^{-\theta} e^{(\ln\theta)x}$
= $h(x)c(\theta) \exp\{w_1(\theta)t_1(x)\}.$

Therefore X has pmf in the exponential family. Theorem 6.2.10 says that

$$T = T(\mathbf{X}) = \sum_{i=1}^{n} X_i$$

is a sufficient statistic. Because d = k = 1 (i.e., a full family), Theorem 6.2.25 says that T is complete. Now,

$$E_{\theta}(T) = E_{\theta}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E_{\theta}(X_{i}) = n\theta.$$

Therefore,

$$E_{\theta}\left(\frac{T}{n}\right) = E_{\theta}(\overline{X}) = \theta.$$

Because \overline{X} is unbiased and is a function of T, a complete and sufficient statistic, we know that \overline{X} is the UMVUE.

Example 7.18. Suppose $X_1, X_2, ..., X_n$ are iid $\mathcal{U}(0, \theta)$, where $\theta > 0$. We have previously shown that

$$T = T(\mathbf{X}) = X_{(n)}$$

is sufficient and complete (see Example 6.5 and Example 6.16, respectively, in the notes). It follows that

$$E_{\theta}(T) = E_{\theta}(X_{(n)}) = \left(\frac{n}{n+1}\right)\theta$$

for all $\theta > 0$. Therefore,

$$E_{\theta}\left[\left(\frac{n+1}{n}\right)X_{(n)}\right] = \theta.$$

Because $(n+1)X_{(n)}/n$ is unbiased and is a function of $X_{(n)}$, a complete and sufficient statistic, it must be the UMVUE.

Example 7.19. Suppose $X_1, X_2, ..., X_n$ are iid gamma (α_0, β) , where α_0 is known and $\beta > 0$. Find the UMVUE of $\tau(\beta) = 1/\beta$. Solution. The pdf of X is

$$f_X(x|\beta) = \frac{1}{\Gamma(\alpha_0)\beta^{\alpha_0}} x^{\alpha_0 - 1} e^{-x/\beta} I(x>0)$$
$$= \frac{x^{\alpha_0 - 1}I(x>0)}{\Gamma(\alpha_0)} \frac{1}{\beta^{\alpha_0}} e^{(-1/\beta)x}$$
$$= h(x)c(\beta) \exp\{w_1(\beta)t_1(x)\}$$

a one-parameter exponential family with d = k = 1 (a full family). Theorem 6.2.10 and Theorem 6.2.25 assure that

$$T = T(\mathbf{X}) = \sum_{i=1}^{n} X_i$$

is a sufficient and complete statistic, respectively. In Example 7.16 (notes), we saw that

$$\phi(T) = \frac{n\alpha_0 - 1}{T}$$

is an unbiased estimator of $\tau(\beta) = 1/\beta$. Therefore, $\phi(T)$ must be the UMVUE.

Remark: In Example 7.16, recall that the CRLB on the variance of unbiased estimators of $\tau(\beta) = 1/\beta$ was unattainable.

Example 7.20. Suppose $X_1, X_2, ..., X_n$ are iid Poisson(θ), where $\theta > 0$. Find the UMVUE for

$$\tau(\theta) = P_{\theta}(X = 0) = e^{-\theta}.$$

Solution. We use an approach known as "direct conditioning." We start with

$$T = T(\mathbf{X}) = \sum_{i=1}^{n} X_i,$$

which is sufficient and complete. We know that the UMVUE therefore is a function of T. Consider forming

$$\phi(T) = E(W|T),$$

where W is any unbiased estimator of $\tau(\theta) = e^{-\theta}$. We know that $\phi(T)$ by this construction is the UMVUE; clearly $\phi(T) = E(W|T)$ is a function of T and

$$E_{\theta}[\phi(T)] = E_{\theta}[E(W|T)] = E_{\theta}(W) = e^{-\theta}.$$

How should we choose W? Any unbiased W will "work," so let's keep our choice simple, say

$$W = W(\mathbf{X}) = I(X_1 = 0).$$

Note that

$$E_{\theta}(W) = E_{\theta}[I(X_1 = 0)] = P_{\theta}(X_1 = 0) = e^{-\theta},$$

showing that W is an unbiased estimator. Now, we just calculate $\phi(T) = E(W|T)$ directly. For t fixed, we have

$$\begin{split} \phi(t) &= E(W|T=t) &= E[I(X_1=0)|T=t] \\ &= P(X_1=0|T=t) \\ &= \frac{P_{\theta}(X_1=0,T=t)}{P_{\theta}(T=t)} \\ &= \frac{P_{\theta}(X_1=0,\sum_{i=2}^n X_i=t)}{P_{\theta}(T=t)} \\ &\stackrel{\text{indep}}{=} \frac{P_{\theta}(X_1=0)P_{\theta}(\sum_{i=2}^n X_i=t)}{P_{\theta}(T=t)}. \end{split}$$

We can now calculate each of these probabilities. Recall that $X_1 \sim \text{Poisson}(\theta)$, $\sum_{i=2}^n X_i \sim \text{Poisson}((n-1)\theta)$, and $T \sim \text{Poisson}(n\theta)$. Therefore,

$$\phi(t) = \frac{P_{\theta}(X_1 = 0)P_{\theta}\left(\sum_{i=2}^n X_i = t\right)}{P_{\theta}(T = t)}$$
$$= \frac{e^{-\theta} \frac{\left[(n-1)\theta\right]^t e^{-(n-1)\theta}}{t!}}{\frac{(n\theta)^t e^{-n\theta}}{t!}} = \left(\frac{n-1}{n}\right)^t$$

Therefore,

$$\phi(T) = \left(\frac{n-1}{n}\right)^T$$

is the UMVUE of $\tau(\theta) = e^{-\theta}$.

Remark: It is interesting to note that in this example

$$\phi(t) = \left(\frac{n-1}{n}\right)^t = \left[\left(\frac{n-1}{n}\right)^n\right]^{\overline{x}} = \left[\left(1-\frac{1}{n}\right)^n\right]^{\overline{x}} \approx e^{-\overline{x}},$$

for *n* large. Recall that $e^{-\overline{X}}$ is the MLE of $\tau(\theta) = e^{-\theta}$ by invariance.

Remark: The last subsection in CB (Section 7.3.4) is on loss-function optimality. This material will be covered in STAT 822.

7.4 Appendix: CRLB Theory

Remark: In this section, we provide the proofs that pertain to the CRLB approach to finding UMVUEs. These proofs are also relevant for later discussions on MLEs and their large-sample characteristics.

Remark: We start by reviewing the Cauchy-Schwarz Inequality. Essentially, the main Cramér-Rao inequality result (Theorem 7.3.9) follows as an application of this inequality.

Recall: Suppose X and Y are random variables. Then

$$|E(XY)| \le E(|XY|) \le [E(X^2)]^{1/2} [E(Y^2)]^{1/2}.$$

This is called the **Cauchy-Schwarz Inequality**. In this inequality, if we replace X with $X - \mu_X$ and Y with $Y - \mu_Y$, we get

$$|E[(X - \mu_X)(Y - \mu_Y)]| \le \{E[(X - \mu_X)^2]\}^{1/2} \{E[(Y - \mu_Y)^2]\}^{1/2}.$$

Squaring both sides, we get

$$[\operatorname{cov}(X,Y)]^2 \le \sigma_X^2 \sigma_Y^2.$$

This is called the **covariance inequality**.

Theorem 7.3.9 (Cramér-Rao Inequality). Suppose $\mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}|\theta)$, where

- 1. the support of \mathbf{X} is free of all unknown parameters
- 2. for any function $h(\mathbf{x})$ such that $E_{\theta}[h(\mathbf{X})] < \infty$ for all $\theta \in \Theta$, the interchange

$$\frac{d}{d\theta} \int_{\mathbb{R}^n} h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} = \int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

is justified; i.e., we can interchange the derivative and integral (derivative and sum if \mathbf{X} is discrete).

For any estimator $W(\mathbf{X})$ with $\operatorname{var}_{\theta}[W(\mathbf{X})] < \infty$, the following inequality holds:

$$\operatorname{var}_{\theta}[W(\mathbf{X})] \geq \frac{\left\{\frac{d}{d\theta}E_{\theta}[W(\mathbf{X})]\right\}^{2}}{E_{\theta}\left\{\left[\frac{\partial}{\partial\theta}\ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right]^{2}\right\}}.$$

Proof. First we state and prove a lemma.

LEMMA. Let

$$S(\theta|\mathbf{X}) = \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta)$$

denote the score function. The score function is a zero-mean random variable; that is,

$$E_{\theta}[S(\theta|\mathbf{X})] = E_{\theta}\left[\frac{\partial}{\partial\theta}\ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = 0.$$

Proof of Lemma: Note that

$$E_{\theta} \left[\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) \right] = \int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{x}|\theta) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} = \int_{\mathbb{R}^n} \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{x}|\theta)} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$
$$= \int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$
$$= \frac{d}{d\theta} \underbrace{\int_{\mathbb{R}^n} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}}_{= 1} = 0.$$

The interchange of derivative and integral above is justified based on the assumptions stated in Theorem 7.3.9. Therefore, the lemma is proven. \Box

Note: Because the score function is a zero-mean random variable,

$$\operatorname{var}_{\theta}[S(\theta|\mathbf{X})] = E_{\theta}\{[S(\theta|\mathbf{X})]^{2}\};$$

that is,

$$\operatorname{var}_{\theta}\left[\frac{\partial}{\partial\theta}\ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E_{\theta}\left\{\left[\frac{\partial}{\partial\theta}\ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right]^{2}\right\}$$

We now return to the CRLB proof. Consider

$$\operatorname{cov}_{\theta} \left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) \right] = E_{\theta} \left[W(\mathbf{X}) \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) \right] - E_{\theta} [W(\mathbf{X})] \underbrace{E_{\theta} \left[\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) \right]}_{= 0}}_{= 0}$$

$$= E_{\theta} \left[W(\mathbf{X}) \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) \right]$$

$$= \int_{\mathbb{R}^{n}} W(\mathbf{x}) \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{x}|\theta) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbb{R}^{n}} W(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{x}|\theta)} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbb{R}^{n}} W(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \frac{d}{d\theta} \int_{\mathbb{R}^{n}} W(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \frac{d}{d\theta} E_{\theta} [W(\mathbf{X})].$$

Now, write the covariance inequality with

- 1. $W(\mathbf{X})$ playing the role of "X"
- 2. $S(\theta|\mathbf{X}) = \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta)$ playing the role of "Y."

We get

$$\left\{\operatorname{cov}_{\theta}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right]\right\}^{2} \leq \operatorname{var}_{\theta}[W(\mathbf{X})] \operatorname{var}_{\theta}\left[\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right],$$

that is,

$$\left\{\frac{d}{d\theta}E_{\theta}[W(\mathbf{X})]\right\}^{2} \leq \operatorname{var}_{\theta}[W(\mathbf{X})] E_{\theta}\left\{\left[\frac{\partial}{\partial\theta}\ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right]^{2}\right\}.$$

Dividing both sides by $E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) \right]^2 \right\}$ gives the result. \Box

Corollary 7.3.10 (Cramér-Rao Inequality–iid case). With the same regularity conditions stated in Theorem 7.3.9, in the iid case,

$$\operatorname{var}_{\theta}[W(\mathbf{X})] \geq \frac{\left\{\frac{d}{d\theta}E_{\theta}[W(\mathbf{X})]\right\}^{2}}{nE_{\theta}\left\{\left[\frac{\partial}{\partial\theta}\ln f_{X}(X|\theta)\right]^{2}\right\}}.$$

Proof. It suffices to show

$$E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) \right]^2 \right\} = n E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_X(X|\theta) \right]^2 \right\}.$$

PAGE 61

Because $X_1, X_2, ..., X_n$ are iid,

LHS =
$$E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln \prod_{i=1}^{n} f_X(X_i|\theta) \right]^2 \right\}$$

= $E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \ln f_X(X_i|\theta) \right]^2 \right\}$
= $E_{\theta} \left\{ \left[\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ln f_X(X_i|\theta) \right]^2 \right\}$
= $\sum_{i=1}^{n} E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_X(X_i|\theta) \right]^2 \right\} + \sum_{i \neq j} E_{\theta} \left[\frac{\partial}{\partial \theta} \ln f_X(X_i|\theta) \frac{\partial}{\partial \theta} \ln f_X(X_j|\theta) \right]$
indep $\sum_{i=1}^{n} E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_X(X_i|\theta) \right]^2 \right\} + \sum_{i \neq j} \underbrace{E_{\theta} \left[\frac{\partial}{\partial \theta} \ln f_X(X_i|\theta) \right]}_{= 0} \underbrace{E_{\theta} \left[\frac{\partial}{\partial \theta} \ln f_X(X_j|\theta) \right]}_{= 0} \underbrace{E_{\theta} \left[\frac{\partial}{\partial \theta} \ln f_X(X_$

Therefore, all cross product expectations are zero and thus

LHS =
$$\sum_{i=1}^{n} E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_X(X_i | \theta) \right]^2 \right\} \stackrel{\text{ident}}{=} n E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_X(X | \theta) \right]^2 \right\}.$$

This proves the iid case. \square

Remark: Recall our notation:

$$I_{n}(\theta) = E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) \right]^{2} \right\}$$
$$I_{1}(\theta) = E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_{X}(X|\theta) \right]^{2} \right\}.$$

In the iid case, we have just proven that $I_n(\theta) = nI(\theta)$. Therefore, in the iid case,

• If $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$, then

$$CRLB = \frac{[\tau'(\theta)]^2}{nI_1(\theta)}$$

• If $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta) = \theta$, then

$$CRLB = \frac{1}{nI_1(\theta)}.$$

Lemma 7.3.11 (Information Equality). Under regularity conditions,

$$I_1(\theta) = E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_X(X|\theta) \right]^2 \right\} = -E_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \ln f_X(X|\theta) \right].$$

Proof. From the definition of mathematical expectation,

$$E_{\theta}\left[\frac{\partial^2}{\partial\theta^2}\ln f_X(X|\theta)\right] = \int_{\mathbb{R}} \frac{\partial^2}{\partial\theta^2}\ln f_X(x|\theta)f_X(x|\theta)dx = \int_{\mathbb{R}} \underbrace{\frac{\partial}{\partial\theta}\left[\frac{\partial}{\partial\theta}f_X(x|\theta)\right]}_{\text{use quotient rule here}} f_X(x|\theta)dx$$

Note: A sum replaces the integral above if X is discrete. The derivative

$$\frac{\partial}{\partial \theta} \left[\frac{\frac{\partial}{\partial \theta} f_X(x|\theta)}{f_X(x|\theta)} \right] = \frac{\frac{\partial^2}{\partial \theta^2} f_X(x|\theta) f_X(x|\theta) - \frac{\partial}{\partial \theta} f_X(x|\theta) \frac{\partial}{\partial \theta} f_X(x|\theta)}{[f_X(x|\theta)]^2} \\ = \frac{\frac{\partial^2}{\partial \theta^2} f_X(x|\theta)}{f_X(x|\theta)} - \frac{\left[\frac{\partial}{\partial \theta} f_X(x|\theta)\right]^2}{[f_X(x|\theta)]^2}.$$

Therefore, the last integral becomes

$$\begin{split} \int_{\mathbb{R}} \left\{ \frac{\frac{\partial^2}{\partial \theta^2} f_X(x|\theta)}{f_X(x|\theta)} - \frac{\left[\frac{\partial}{\partial \theta} f_X(x|\theta)\right]^2}{\left[f_X(x|\theta)\right]^2} \right\} f_X(x|\theta) dx &= \int_{\mathbb{R}} \left\{ \frac{\partial^2}{\partial \theta^2} f_X(x|\theta) - \frac{\left[\frac{\partial}{\partial \theta} f_X(x|\theta)\right]^2}{f_X(x|\theta)} \right\} dx \\ &= \int_{\mathbb{R}} \frac{\partial^2}{\partial \theta^2} f_X(x|\theta) dx - \int_{\mathbb{R}} \frac{\left[\frac{\partial}{\partial \theta} f_X(x|\theta)\right]^2}{f_X(x|\theta)} dx \\ &= \frac{d^2}{d\theta^2} \underbrace{\int_{\mathbb{R}} f_X(x|\theta) dx}_{=1} - \int_{\mathbb{R}} \left[\frac{\partial}{\partial \theta} \ln f_X(x|\theta)\right]^2 f_X(x|\theta) dx \\ &= -E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_X(X|\theta)\right]^2 \right\}. \end{split}$$

We have shown

$$E_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \ln f_X(X|\theta) \right] = -E_{\theta} \left\{ \left[\frac{\partial}{\partial \theta} \ln f_X(X|\theta) \right]^2 \right\}.$$

Multiplying both sides by -1 gives the information equality. \Box

Remark: We now finish by proving the attainment result.

Corollary 7.3.15. Suppose $X_1, X_2, ..., X_n$ is an iid sample from $f_X(x|\theta)$, where $\theta \in \Theta$, a family that satisfies the regularity conditions stated for the Cramér-Rao Inequality. If $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$, then $\operatorname{var}_{\theta}[W(\mathbf{X})]$ attains the CRLB if and only if the score function

$$S(\theta | \mathbf{x}) = a(\theta) [W(\mathbf{x}) - \tau(\theta)]$$

is a linear function of $W(\mathbf{x})$.

Proof. From the CRLB proof, recall that we had

- 1. $W(\mathbf{X})$ playing the role of "X"
- 2. $\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta)$ playing the role of "Y"

in applying the covariance inequality, which yields

$$\operatorname{var}_{\theta}[W(\mathbf{X})] \geq \frac{[\tau'(\theta)]^{2}}{E_{\theta}\left\{\left[\frac{\partial}{\partial \theta}\ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right]^{2}\right\}}$$
$$\stackrel{\text{iid}}{=} \frac{[\tau'(\theta)]^{2}}{E_{\theta}\left\{\left[\frac{\partial}{\partial \theta}\ln \prod_{i=1}^{n} f_{X}(X_{i}|\theta)\right]^{2}\right\}}.$$

Now, in the covariance inequality, we have *equality* when the correlation of $W(\mathbf{X})$ and $\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta)$ equals ± 1 , which in turn implies

$$c(X - \mu_X) = Y - \mu_Y \quad \text{a.s.},$$

or restated,

$$c[W(\mathbf{X}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta) - 0$$
 a.s.

This is an application of Theorem 4.5.7 (CB, pp 172); i.e., two random variables are perfectly correlated if and only if the random variables are perfectly linearly related. In these equations, c is a constant. Also, I have written "-0" on the RHS of the last equation to emphasize that

$$E_{\theta}\left[\frac{\partial}{\partial\theta}\ln f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E_{\theta}\left[\frac{\partial}{\partial\theta}\ln\prod_{i=1}^{n}f_{X}(X_{i}|\theta)\right] = 0.$$

Also, $W(\mathbf{X})$ is an unbiased estimator of $\tau(\theta)$ by assumption. Therefore, we have

$$c[W(\mathbf{X}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta)$$
$$= \frac{\partial}{\partial \theta} \ln \prod_{i=1}^{n} f_{X}(X_{i}|\theta)$$
$$= \frac{\partial}{\partial \theta} \ln L(\theta|\mathbf{X})$$
$$= S(\theta|\mathbf{X}),$$

where $S(\theta|\mathbf{X})$ is the score function. The constant *c* cannot depend on $W(\mathbf{X})$ nor on $\frac{\partial}{\partial \theta} \ln f_{\mathbf{X}}(\mathbf{X}|\theta)$, but it can depend on θ . To emphasize this, we write

$$S(\theta | \mathbf{X}) = a(\theta) [W(\mathbf{X}) - \tau(\theta)].$$

Thus, $\operatorname{var}_{\theta}[W(\mathbf{X})]$ attains the CRLB when the score function $S(\theta|\mathbf{X})$ can be written as a linear function of the unbiased estimator $W(\mathbf{X})$. \Box