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7.3.3 Su�ciency and completeness

Remark: We now move to our “second approach” on how to find UMVUEs. This approach
involves su�ciency and completeness�two topics we discussed in the last chapter. We can
also address the unresolved issues on the previous page.

Theorem 7.3.17 (Rao-Blackwell). Let W = W (X) be an unbiased estimator of ⌧(✓) .
Let T = T (X) be a su�cient statistic for ✓. Define

�(T ) = E(W |T ).

Then

1. E✓[�(T )] = ⌧(✓) for all ✓ 2 ⇥

2. var✓[�(T )]  var✓(W ) for all ✓ 2 ⇥.

That is, �(T ) = E(W |T ) is a uniformly better unbiased estimator than W .
Proof. This result follows from the iterated rules for means and variances. First,

E✓[�(T )] = E✓[E(W |T )] = E✓(W ) = ⌧(✓).

Second,

var✓(W ) = E✓[var(W |T )] + var✓[E(W |T )]
= E✓[var(W |T )] + var✓[�(T )]

� var✓[�(T )],

because var(W |T ) � 0 (a.s.) and hence E✓[var(W |T )] � 0. 2

Implication: We can always “improve” the unbiased estimator W by conditioning on a
su�cient statistic.

Remark: To use the Rao-Blackwell Theorem, some students think they have to

1. Find an unbiased estimator W .

2. Find a su�cient statistic T .

3. Derive the conditional distribution fW |T (w|t).

4. Find the mean E(W |T ) of this conditional distribution.

This is not the case at all! Because �(T ) = E(W |T ) is a function of the su�cient statistic
T , the Rao-Blackwell result simply convinces us that in our search for the UMVUE, we can
restrict attention to those estimators that are functions of a su�cient statistic.
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Q: In the proof of the Rao-Blackwell Theorem, where did we use the fact that T was
su�cient?
A: Nowhere. Thus, it would seem that conditioning on any statistic, su�cient or not, will
result in an improvement over the unbiased W . However, there is a catch:

• If T is not su�cient, then there is no guarantee that �(T ) = E(W |T ) will be an
estimator; i.e., it could depend on ✓. See Example 7.3.18 (CB, pp 343).

Remark: To understand how we can use the Rao-Blackwell result in our quest to find a
UMVUE, we need two additional results. One deals with uniqueness; the other describes an
interesting characterization of a UMVUE itself.

Theorem 7.3.19 (Uniqueness). If W is UMVUE for ⌧(✓), then it is unique.
Proof. Suppose that W 0 is also UMVUE. It su�ces to show that W = W

0 with probability
one. Define

W
⇤ =

1

2
(W +W

0).

Note that

E✓(W
⇤) =

1

2
[E✓(W ) + E✓(W

0)] = ⌧(✓), for all ✓ 2 ⇥,

showing that W ⇤ is an unbiased estimator of ⌧(✓). The variance of W ⇤ is

var✓(W
⇤) = var✓


1

2
(W +W

0)

�

=
1

4
var✓(W ) +

1

4
var✓(W

0) +
1

2
cov✓(W,W

0)

 1

4
var✓(W ) +

1

4
var✓(W

0) +
1

2
[var✓(W )var✓(W

0)]1/2

= var✓(W ),

where the inequality arises from the covariance inequality (CB, pp 188, application of
Cauchy-Schwarz) and the final equality holds because both W and W

0 are UMVUE by
assumption (so their variances must be equal). Therefore, we have shown that

1. W
⇤ is unbiased for ⌧(✓)

2. var✓(W ⇤)  var✓(W ).

Because W is UMVUE (by assumption), the inequality in (2) can not be strict (or else it
would contradict the fact that W is UMVUE). Therefore, it must be true that

var✓(W
⇤) = var✓(W ).

This implies that the inequality above (arising from the covariance inequality) is an equality;
therefore,

cov✓(W,W
0) = [var✓(W )var✓(W

0)]1/2 .
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Therefore,

corr✓(W,W
0) = ±1 =) W

0 = a(✓)W + b(✓)| {z }
linear function of W

, with probability 1,

by Theorem 4.5.7 (CB, pp 172), where a(✓) and b(✓) are constants. It therefore su�ces to
show that a(✓) = 1 and b(✓) = 0. Note that

cov✓(W,W
0) = cov✓[W, a(✓)W + b(✓)] = a(✓)cov✓(W,W )

= a(✓)var✓(W ).

However, we have previously shown that

cov✓(W,W
0) = [var✓(W )var✓(W

0)]1/2 = [var✓(W )var✓(W )]1/2

= var✓(W ).

This implies a(✓) = 1. Finally,

E✓(W
0) = E✓[a(✓)W + b(✓)] = E✓[W + b(✓)]

= E✓(W ) + b(✓).

Because both W and W
0 are unbiased, this implies b(✓) = 0. 2

Theorem 7.3.20. Suppose E✓(W ) = ⌧(✓) for all ✓ 2 ⇥. W is UMVUE of ⌧(✓) if and only
if W is uncorrelated with all unbiased estimators of 0.
Proof. Necessity (=)): Suppose E✓(W ) = ⌧(✓) for all ✓ 2 ⇥. Suppose W is UMVUE of
⌧(✓). Suppose E✓(U) = 0 for all ✓ 2 ⇥. It su�ces to show cov✓(W,U) = 0 for all ✓ 2 ⇥.
Define

�a = W + aU,

where a is a constant. It is easy to see that �a is an unbiased estimator of ⌧(✓); for all ✓ 2 ⇥,

E✓(�a) = E✓(W + aU) = E✓(W ) + aE✓(U)| {z }
= 0

= ⌧(✓).

Also,

var✓(�a) = var✓(W + aU)

= var✓(W ) + a
2var✓(U) + 2a cov✓(W,U)| {z }

Key question: Can this be negative?

.

• Case 1: Suppose 9 ✓0 2 ⇥ such that cov✓0(W,U) < 0. Then

a
2var✓0(U) + 2a cov✓0(W,U) < 0 () a

2var✓0(U) < �2a cov✓0(W,U)

() a
2
< �2a cov✓0(W,U)

var✓0(U)
.
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I can make this true by picking

0 < a < �2 cov✓0(W,U)

var✓0(U)

and therefore I have shown that

var✓0(�a) < var✓0(W ).

However, this contradicts the assumption that W is UMVUE. Therefore, it must be
true that cov✓(W,U) � 0.

• Case 2: Suppose 9 ✓0 2 ⇥ such that cov✓0(W,U) > 0. Then

a
2var✓0(U) + 2a cov✓0(W,U) < 0 () a

2var✓0(U) < �2a cov✓0(W,U)

() a
2
< �2a cov✓0(W,U)

var✓0(U)
.

I can make this true by picking

�2 cov✓0(W,U)

var✓0(U)
< a < 0

and therefore I have shown that

var✓0(�a) < var✓0(W ).

However, this again contradicts the assumption that W is UMVUE. Therefore, it must
be true that cov✓(W,U)  0.

Combining Case 1 and Case 2, we are forced to conclude that cov✓(W,U) = 0. This proves
the necessity.

Su�ciency ((=): Suppose E✓(W ) = ⌧(✓) for all ✓ 2 ⇥. Suppose cov✓(W,U) = 0 for all
✓ 2 ⇥ where U is any unbiased estimator of zero; i.e., E✓(U) = 0 for all ✓ 2 ⇥. Let W 0 be
any other unbiased estimator of ⌧(✓). It su�ces to show that var✓(W )  var✓(W 0). Write

W
0 = W + (W 0 �W )

and calculate

var✓(W
0) = var✓(W ) + var✓(W

0 �W ) + 2cov✓(W,W
0 �W ).

However, cov✓(W,W
0 �W ) = 0 because W

0 �W is an unbiased estimator of 0. Therefore,

var✓(W
0) = var✓(W ) + var✓(W

0 �W )| {z }
�0

� var✓(W ).

This proves the su�ciency. 2
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Summary: We are now ready to put Theorem 7.3.17 (Rao-Blackwell), Theorem 7.3.19
(UMVUE uniqueness) and Theorem 7.3.20 together. Suppose X ⇠ fX(x|✓), where ✓ 2 ⇥.
Our goal is to find the UMVUE of ⌧(✓).

• Theorem 7.3.17 (Rao-Blackwell) assures us that we can restrict attention to functions
of su�cient statistics.

Therefore, suppose T is a su�cient statistic for ✓. Suppose that �(T ), a function of T , is an
unbiased estimator of ⌧(✓); i.e.,

E✓[�(T )] = ⌧(✓), for all ✓ 2 ⇥.

• Theorem 7.3.20 assures us that �(T ) is UMVUE if and only if �(T ) is uncorrelated
with all unbiased estimators of 0.

Add the assumption that T is a complete statistic. The only unbiased estimator of 0 in

complete families is the zero function itself. Because cov✓[�(T ), 0] = 0 holds trivially, we
have shown that �(T ) is uncorrelated with “all” unbiased estimators of 0. Theorem 7.3.20
says that �(T ) must be UMVUE; Theorem 7.3.19 guarantees that �(T ) is unique.

Recipe for finding UMVUEs: Suppose we want to find the UMVUE for ⌧(✓).

1. Start by finding a statistic T that is both su�cient and complete.

2. Find a function of T , say �(T ), that satisfies

E✓[�(T )] = ⌧(✓), for all ✓ 2 ⇥.

Then �(T ) is the UMVUE for ⌧(✓). This is essentially what is summarized in Theorem
7.3.23 (CB, pp 347).

Example 7.17. Suppose X1, X2, ..., Xn are iid Poisson(✓), where ✓ > 0.

• We already know thatX is UMVUE for ✓; we proved this by showing thatX is unbiased
and that var✓(X) attains the CRLB on the variance of all unbiased estimators of ✓.

• We now show X is UMVUE for ✓ by using su�ciency and completeness.

The pmf of X is

fX(x|✓) =
✓
x
e
�✓

x!
I(x = 0, 1, 2, ..., )

=
I(x = 0, 1, 2, ..., )

x!
e
�✓
e
(ln ✓)x

= h(x)c(✓) exp{w1(✓)t1(x)}.
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Therefore X has pmf in the exponential family. Theorem 6.2.10 says that

T = T (X) =
nX

i=1

Xi

is a su�cient statistic. Because d = k = 1 (i.e., a full family), Theorem 6.2.25 says that T
is complete. Now,

E✓(T ) = E✓

 
nX

i=1

Xi

!
=

nX

i=1

E✓(Xi) = n✓.

Therefore,

E✓

✓
T

n

◆
= E✓(X) = ✓.

Because X is unbiased and is a function of T , a complete and su�cient statistic, we know
that X is the UMVUE.

Example 7.18. Suppose X1, X2, ..., Xn are iid U(0, ✓), where ✓ > 0. We have previously
shown that

T = T (X) = X(n)

is su�cient and complete (see Example 6.5 and Example 6.16, respectively, in the notes). It
follows that

E✓(T ) = E✓(X(n)) =

✓
n

n+ 1

◆
✓

for all ✓ > 0. Therefore,

E✓

✓
n+ 1

n

◆
X(n)

�
= ✓.

Because (n+1)X(n)/n is unbiased and is a function ofX(n), a complete and su�cient statistic,
it must be the UMVUE.

Example 7.19. Suppose X1, X2, ..., Xn are iid gamma(↵0, �), where ↵0 is known and � > 0.
Find the UMVUE of ⌧(�) = 1/�.
Solution. The pdf of X is

fX(x|�) =
1

�(↵0)�↵0

x
↵0�1

e
�x/�

I(x > 0)

=
x
↵0�1

I(x > 0)

�(↵0)

1

�↵0

e
(�1/�)x

= h(x)c(�) exp{w1(�)t1(x)}

a one-parameter exponential family with d = k = 1 (a full family). Theorem 6.2.10 and
Theorem 6.2.25 assure that

T = T (X) =
nX

i=1

Xi
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is a su�cient and complete statistic, respectively. In Example 7.16 (notes), we saw that

�(T ) =
n↵0 � 1

T

is an unbiased estimator of ⌧(�) = 1/�. Therefore, �(T ) must be the UMVUE.

Remark: In Example 7.16, recall that the CRLB on the variance of unbiased estimators of
⌧(�) = 1/� was unattainable.

Example 7.20. Suppose X1, X2, ..., Xn are iid Poisson(✓), where ✓ > 0. Find the UMVUE
for

⌧(✓) = P✓(X = 0) = e
�✓
.

Solution. We use an approach known as “direct conditioning.” We start with

T = T (X) =
nX

i=1

Xi,

which is su�cient and complete. We know that the UMVUE therefore is a function of T .
Consider forming

�(T ) = E(W |T ),

where W is any unbiased estimator of ⌧(✓) = e
�✓. We know that �(T ) by this construction

is the UMVUE; clearly �(T ) = E(W |T ) is a function of T and

E✓[�(T )] = E✓[E(W |T )] = E✓(W ) = e
�✓
.

How should we choose W? Any unbiased W will “work,” so let’s keep our choice simple, say

W = W (X) = I(X1 = 0).

Note that
E✓(W ) = E✓[I(X1 = 0)] = P✓(X1 = 0) = e

�✓
,

showing that W is an unbiased estimator. Now, we just calculate �(T ) = E(W |T ) directly.
For t fixed, we have

�(t) = E(W |T = t) = E[I(X1 = 0)|T = t]

= P (X1 = 0|T = t)

=
P✓(X1 = 0, T = t)

P✓(T = t)

=
P✓ (X1 = 0,

P
n

i=2 Xi = t)

P✓(T = t)

indep
=

P✓(X1 = 0)P✓ (
P

n

i=2 Xi = t)

P✓(T = t)
.
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We can now calculate each of these probabilities. Recall that X1 ⇠ Poisson(✓),
P

n

i=2 Xi ⇠
Poisson((n� 1)✓), and T ⇠ Poisson(n✓). Therefore,

�(t) =
P✓(X1 = 0)P✓ (

P
n

i=2 Xi = t)

P✓(T = t)

=
e
�✓ [(n� 1)✓]te�(n�1)✓

t!
(n✓)te�n✓

t!

=

✓
n� 1

n

◆t

.

Therefore,

�(T ) =

✓
n� 1

n

◆T

is the UMVUE of ⌧(✓) = e
�✓.

Remark: It is interesting to note that in this example

�(t) =

✓
n� 1

n

◆t

=

✓
n� 1

n

◆n�x
=

✓
1� 1

n

◆n�x
⇡ e

�x
,

for n large. Recall that e�X is the MLE of ⌧(✓) = e
�✓ by invariance.

Remark: The last subsection in CB (Section 7.3.4) is on loss-function optimality. This
material will be covered in STAT 822.

7.4 Appendix: CRLB Theory

Remark: In this section, we provide the proofs that pertain to the CRLB approach to
finding UMVUEs. These proofs are also relevant for later discussions on MLEs and their
large-sample characteristics.

Remark: We start by reviewing the Cauchy-Schwarz Inequality. Essentially, the main
Cramér-Rao inequality result (Theorem 7.3.9) follows as an application of this inequality.

Recall: Suppose X and Y are random variables. Then

|E(XY )|  E(|XY |)  [E(X2)]1/2[E(Y 2)]1/2.

This is called the Cauchy-Schwarz Inequality. In this inequality, if we replace X with
X � µX and Y with Y � µY , we get

|E[(X � µX)(Y � µY )]|  {E[(X � µX)
2]}1/2{E[(Y � µY )

2]}1/2.

Squaring both sides, we get
[cov(X, Y )]2  �

2
X
�
2
Y
.

This is called the covariance inequality.
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Theorem 7.3.9 (Cramér-Rao Inequality). Suppose X ⇠ fX(x|✓), where

1. the support of X is free of all unknown parameters

2. for any function h(x) such that E✓[h(X)] < 1 for all ✓ 2 ⇥, the interchange

d

d✓

Z

Rn

h(x)fX(x|✓)dx =

Z

Rn

@

@✓
h(x)fX(x|✓)dx

is justified; i.e., we can interchange the derivative and integral (derivative and sum if
X is discrete).

For any estimator W (X) with var✓[W (X)] < 1, the following inequality holds:

var✓[W (X)] �
�

d

d✓
E✓[W (X)]

 2

E✓

n⇥
@

@✓
ln fX(X|✓)

⇤2o .

Proof. First we state and prove a lemma.

Lemma. Let

S(✓|X) =
@

@✓
ln fX(X|✓)

denote the score function. The score function is a zero-mean random variable; that is,

E✓[S(✓|X)] = E✓


@

@✓
ln fX(X|✓)

�
= 0.

Proof of Lemma: Note that

E✓


@

@✓
ln fX(X|✓)

�
=

Z

Rn

@

@✓
ln fX(x|✓)fX(x|✓)dx =

Z

Rn

@

@✓
fX(x|✓)
fX(x|✓)

fX(x|✓)dx

=

Z

Rn

@

@✓
fX(x|✓)dx

=
d

d✓

Z

Rn

fX(x|✓)dx
| {z }

= 1

= 0.

The interchange of derivative and integral above is justified based on the assumptions stated
in Theorem 7.3.9. Therefore, the lemma is proven. 2

Note: Because the score function is a zero-mean random variable,

var✓[S(✓|X)] = E✓{[S(✓|X)]2};

that is,

var✓


@

@✓
ln fX(X|✓)

�
= E✓

(
@

@✓
ln fX(X|✓)

�2)
.
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We now return to the CRLB proof. Consider

cov✓


W (X),

@

@✓
ln fX(X|✓)

�
= E✓


W (X)

@

@✓
ln fX(X|✓)

�
� E✓[W (X)]E✓


@

@✓
ln fX(X|✓)

�

| {z }
= 0

= E✓


W (X)

@

@✓
ln fX(X|✓)

�

=

Z

Rn

W (x)
@

@✓
ln fX(x|✓)fX(x|✓)dx

=

Z

Rn

W (x)
@

@✓
fX(x|✓)
fX(x|✓)

fX(x|✓)dx

=

Z

Rn

W (x)
@

@✓
fX(x|✓)dx

=
d

d✓

Z

Rn

W (x)fX(x|✓)dx

=
d

d✓
E✓[W (X)].

Now, write the covariance inequality with

1. W (X) playing the role of “X”

2. S(✓|X) = @

@✓
ln fX(X|✓) playing the role of “Y .”

We get
⇢
cov✓


W (X),

@

@✓
ln fX(X|✓)

��2

 var✓[W (X)] var✓


@

@✓
ln fX(X|✓)

�
,

that is, ⇢
d

d✓
E✓[W (X)]

�2

 var✓[W (X)] E✓

(
@

@✓
ln fX(X|✓)

�2)
.

Dividing both sides by E✓

n⇥
@

@✓
ln fX(X|✓)

⇤2o
gives the result. 2

Corollary 7.3.10 (Cramér-Rao Inequality�iid case). With the same regularity conditions
stated in Theorem 7.3.9, in the iid case,

var✓[W (X)] �
�

d

d✓
E✓[W (X)]

 2

nE✓

n⇥
@

@✓
ln fX(X|✓)

⇤2o .

Proof. It su�ces to show

E✓

(
@

@✓
ln fX(X|✓)

�2)
= nE✓

(
@

@✓
ln fX(X|✓)

�2)
.
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Because X1, X2, ..., Xn are iid,

LHS = E✓

8
<

:

"
@

@✓
ln

nY

i=1

fX(Xi|✓)
#2
9
=

;

= E✓

8
<

:

"
@

@✓

nX

i=1

ln fX(Xi|✓)
#2
9
=

;

= E✓

8
<

:

"
nX

i=1

@

@✓
ln fX(Xi|✓)

#2
9
=

;

=
nX

i=1

E✓

(
@

@✓
ln fX(Xi|✓)

�2)
+
XX

i 6=j

E✓


@

@✓
ln fX(Xi|✓)

@

@✓
ln fX(Xj|✓)

�

indep
=

nX

i=1

E✓

(
@

@✓
ln fX(Xi|✓)

�2)
+
XX

i 6=j

E✓


@

@✓
ln fX(Xi|✓)

�

| {z }
= 0

E✓


@

@✓
ln fX(Xj|✓)

�

| {z }
= 0

.

Therefore, all cross product expectations are zero and thus

LHS =
nX

i=1

E✓

(
@

@✓
ln fX(Xi|✓)

�2)
ident
= nE✓

(
@

@✓
ln fX(X|✓)

�2)
.

This proves the iid case. 2

Remark: Recall our notation:

In(✓) = E✓

(
@

@✓
ln fX(X|✓)

�2)

I1(✓) = E✓

(
@

@✓
ln fX(X|✓)

�2)
.

In the iid case, we have just proven that In(✓) = nI(✓). Therefore, in the iid case,

• If W (X) is an unbiased estimator of ⌧(✓), then

CRLB =
[⌧ 0(✓)]2

nI1(✓)
.

• If W (X) is an unbiased estimator of ⌧(✓) = ✓, then

CRLB =
1

nI1(✓)
.
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Lemma 7.3.11 (Information Equality). Under regularity conditions,

I1(✓) = E✓

(
@

@✓
ln fX(X|✓)

�2)
= �E✓


@
2

@✓2
ln fX(X|✓)

�
.

Proof. From the definition of mathematical expectation,

E✓


@
2

@✓2
ln fX(X|✓)

�
=

Z

R

@
2

@✓2
ln fX(x|✓)fX(x|✓)dx =

Z

R

@

@✓

"
@

@✓
fX(x|✓)
fX(x|✓)

#

| {z }
use quotient rule here

fX(x|✓)dx

Note: A sum replaces the integral above if X is discrete. The derivative

@

@✓

"
@

@✓
fX(x|✓)
fX(x|✓)

#
=

@
2

@✓2
fX(x|✓)fX(x|✓)� @

@✓
fX(x|✓) @@✓fX(x|✓)

[fX(x|✓)]2

=
@
2

@✓2
fX(x|✓)

fX(x|✓)
�
⇥
@

@✓
fX(x|✓)

⇤2

[fX(x|✓)]2
.

Therefore, the last integral becomes

Z

R

(
@2

@✓2 fX(x|✓)
fX(x|✓) �

⇥
@
@✓fX(x|✓)

⇤2

[fX(x|✓)]2

)
fX(x|✓)dx =

Z

R

(
@2

@✓2
fX(x|✓)�

⇥
@
@✓fX(x|✓)

⇤2

fX(x|✓)

)
dx

=

Z

R

@2

@✓2
fX(x|✓)dx�

Z

R

⇥
@
@✓fX(x|✓)

⇤2

fX(x|✓) dx

=
d2

d✓2

Z

R
fX(x|✓)dx

| {z }
= 1

�
Z

R


@

@✓
ln fX(x|✓)

�2
fX(x|✓)dx

= �E✓

(
@

@✓
ln fX(X|✓)

�2)
.

We have shown

E✓


@
2

@✓2
ln fX(X|✓)

�
= �E✓

(
@

@✓
ln fX(X|✓)

�2)
.

Multiplying both sides by �1 gives the information equality. 2

Remark: We now finish by proving the attainment result.

Corollary 7.3.15. Suppose X1, X2, ..., Xn is an iid sample from fX(x|✓), where ✓ 2 ⇥, a
family that satisfies the regularity conditions stated for the Cramér-Rao Inequality. If W (X)
is an unbiased estimator of ⌧(✓), then var✓[W (X)] attains the CRLB if and only if the score
function

S(✓|x) = a(✓)[W (x)� ⌧(✓)]

is a linear function of W (x).
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Proof. From the CRLB proof, recall that we had

1. W (X) playing the role of “X”

2. @

@✓
ln fX(X|✓) playing the role of “Y ”

in applying the covariance inequality, which yields

var✓[W (X)] � [⌧ 0(✓)]2

E✓

n⇥
@

@✓
ln fX(X|✓)

⇤2o

iid
=

[⌧ 0(✓)]2

E✓

n⇥
@

@✓
ln
Q

n

i=1 fX(Xi|✓)
⇤2o .

Now, in the covariance inequality, we have equality when the correlation of W (X) and
@

@✓
ln fX(X|✓) equals ±1, which in turn implies

c(X � µX) = Y � µY a.s.,

or restated,

c[W (X)� ⌧(✓)] =
@

@✓
ln fX(X|✓)� 0 a.s.

This is an application of Theorem 4.5.7 (CB, pp 172); i.e., two random variables are per-
fectly correlated if and only if the random variables are perfectly linearly related. In these
equations, c is a constant. Also, I have written “�0” on the RHS of the last equation to
emphasize that

E✓


@

@✓
ln fX(X|✓)

�
= E✓

"
@

@✓
ln

nY

i=1

fX(Xi|✓)
#
= 0.

Also, W (X) is an unbiased estimator of ⌧(✓) by assumption. Therefore, we have

c[W (X)� ⌧(✓)] =
@

@✓
ln fX(X|✓)

=
@

@✓
ln

nY

i=1

fX(Xi|✓)

=
@

@✓
lnL(✓|X)

= S(✓|X),

where S(✓|X) is the score function. The constant c cannot depend on W (X) nor on
@

@✓
ln fX(X|✓), but it can depend on ✓. To emphasize this, we write

S(✓|X) = a(✓)[W (X)� ⌧(✓)].

Thus, var✓[W (X)] attains the CRLB when the score function S(✓|X) can be written as a
linear function of the unbiased estimator W (X). 2
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