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STAT 713: CHAPTER 7 JOSHUA M. TEBBS

7.3.3 Sufficiency and completeness

Remark: We now move to our “second approach” on how to find UMVUEs. This approach
involves sufficiency and completeness—two topics we discussed in the last chapter. We can
also address the unresolved issues on the previous page.

Theorem 7.3.17 (Rao-Blackwell). Let W = W (X) be an unbiased estimator of 7(6) .
Let T'= T(X) be a sufficient statistic for §. Define e ¢CT) . g{af«‘rf«‘c??')

o(T) = E(WIT).
Then ¢CT) = E [ W()Q IT(ZS)P&
1. Eylp(T)] =7(0) forall § € © = j \A/(’ﬁ) ][X[T ()f'T)&QS

2. varg[p(T')] < varg(IV) for all § € ©.
1§ (1) wrbimsel
That is, ¢(T) = E(W|T) is a uniformly better unbiased estimator than W

1
Proof. This result follows from the iterated rules for means and variances. First, Qc‘v wue) .

Ealo(T) = Bl EOVIT) = Es(W) =7(0). £ [ O]z E [ gcwﬁﬂ

Second, = E ( W)
varg(W) = Ep[var(W|T)] + varg[E(W|T)] =)
= Ey[var(W|T)] + varg[¢(T)]
> varg [¢(T)]v

because var(W|T) > 0 (a.s.) and hence Ey[var(W|T)] > 0. O

Implication: We can always “improve” the unbiased estimator W by conditioning on a
sufficient statistic.

Remark: To use the Rao-Blackwell Theorem, some students think they have to

1. Find an unbiased estimator W.
2. Find a sufficient statistic 7.
3. Derive the conditional distribution fyr(w|t).

4. Find the mean E(W|T) of this conditional distribution.

This is not the case at alll Because ¢(T') = E(W|T) is a function of the sufficient statistic
T, the Rao-Blackwell result simply convinces us that in our search for the UMVUE, we can
restrict attention to those estimators that are functions of a sufficient statistic.
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Q: In the proof of the Rao-Blackwell Theorem, where did we use the fact that T was
sufficient?

A: Nowhere. Thus, it would seem that conditioning on any statistic, sufficient or not, will
result in an improvement over the unbiased W. However, there is a catch:

e If T is not sufficient, then there is no guarantee that ¢(7) = E(W|T) will be an
estimator; i.e., it could depend on 6. See Example 7.3.18 (CB, pp 343).

Remark: To understand how we can use the Rao-Blackwell result in our quest to find a
UMVUE, we need two additional results. One deals with uniqueness; the other describes an
interesting characterization of a UMVUE itself.

Theorem 7.3.19 (Uniqueness). If W is UMVUE for 7(0), then it is unique.
Proof. Suppose that W' is also UMVUE. It suffices to show that W = W’ with probability
one. Define

1
Note that ]
Ey(W*) = §[E9(W) + Ep(W')] = 7(0), for all 6 € O,

showing that W* is an unbiased estimator of 7(#). The variance of W* is

1
varg(W*) = vary [§(W+W’)] /L \/ow,lc/”)

1 1N
= Zvarg(W) - Zvarg(W’) §COV0(W w’

1Vaurg(I/V) + lVaurg(VV’) - [Varg(W)Val"g(W/)]l/2

4 4 2 e«
_ V&Y@(W), 41— \/a’g (,W)

IN

where the inequality arises from the covariance inequality (CB, pp 188, application of
@auchy—SChwarz) and the final equality holds because both W and W’ are UMVUE by
assumption (so their variances must be equal). Therefore, we have shown that

1. W* is unbiased for 7(0)

2. varg(W*) < vare(W).

Because W is UMVUE (by assumption), the inequality in (2) can not be strict (or else it
would contradict the fact that W is UMVUE). Therefore, it must be true that

varg (W) = varg(W).

This implies that the inequality above (arising from the covariance inequality) is an equality;
therefore,

covg(W, W') = [varg(W)varg(W')]"/*.
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Therefore,

corrg(W, W'y =+1 = W'= a(6)W +b(6) , with probability 1,
—_———

linear function of W

by Theorem 4.5.7 (CB, pp 172), where a(f) and b(f) are constants. It therefore suffices to
show that a(f) = 1 and b(d) = 0. Note that

covg(W, W') = covg[W,a(0)W + b(0)] = a(B)cove(W, W)
= a(@)vary(W).

However, we have previously shown that

covg(W, W') = [varg(W)varg(W))]"? = [vars(W )varg(W)]'/?
varg(W).

This implies a(f) = 1. Finally,

Eg(W') = Egla(0)W +b(0)] = Ey[W +b(0)]
= Eo(W)+b(9).

Because both W and W' are unbiased, this implies b(#) = 0. O

Theorem 7.3.20. Suppose Ep(W) = 7(0) for all 6 € ©. W is UMVUE of 7(0) if and only
if W is uncorrelated with all unbiased estimators of 0.
Proof. Necessity (=>): Suppose Eyp(W) = 7(0) for all § € ©. Suppose W is UMVUE of
7(6). Suppose Ey(U) = 0 for all § € O. It suffices to show covy(W,U) = 0 for all 6 € ©.
Define

o =W + al,

where a is a constant. It is easy to see that ¢, is an unbiased estimator of 7(0); for all § € ©,

E@(¢a) = E@(W + CLU) = EQ(W) + CLE@(U) = T(@)
7

Also,
varg(¢,) = varg(W + al)
= varg(W) + a®vary(U) + 2a cove(W,U) .

~
Key question: Can this be negative?

e Case 1: Suppose 3 6, € O such that covy, (W, U) < 0. Then

a*varg,(U) + 2a cove,(W,U) < 0 <= a?varg,(U) < —2a covg, (W, U)
— a2<_2a COV@O(VV,U)'
varg, (U)
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I can make this true by picking

2 covg, (W, U)

0<a<
¢ varg, (U)

and therefore I have shown that
varg, (¢,) < varg,(W).

However, this contradicts the assumption that W is UMVUE. Therefore, it must be
true that cove(W,U) > 0.

e Case 2: Suppose 3 6y € O such that covy,(W,U) > 0. Then

a*varg,(U) + 2a covg,(W,U) < 0 <= a*varg,(U) < —2a covg, (W, U)
— a2<_2a coveo(I/V,U)‘
varg, (U)

I can make this true by picking

_ 2 cove, (W, U)

<a<0
varg, (U) “

and therefore I have shown that
varg, (¢q) < varg, ().
However, this again contradicts the assumption that W is UMVUE. Therefore, it must
be true that covy(W,U) < 0.
Combining Case 1 and Case 2, we are forced to conclude that covy(W,U) = 0. This proves

the necessity.

Sufficiency (<=): Suppose Ep(W) = 7(0) for all § € ©. Suppose covy(W,U) = 0 for all
6 € © where U is any unbiased estimator of zero; i.e., Ey(U) = 0 for all § € ©. Let W’ be
any other unbiased estimator of 7(6). It suffices to show that varg(W) < varg(W'). Write

W =W+ W —-W)
and calculate
varg(W') = varg(W) + varg(W' — W) + 2covg(W, W' — W).
However, coveg(W, W' — W) = 0 because W’ — W is an unbiased estimator of 0. Therefore,

varg(W') = varg(W) + varg(W' — W) > varg(W).
—_———
>0

This proves the sufficiency. O
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Summary: We are now ready to put Theorem 7.3.17 (Rao-Blackwell), Theorem 7.3.19
(UMVUE uniqueness) and Theorem 7.3.20 together. Suppose X ~ fx(x|f), where 6 € ©.
Our goal is to find the UMVUE of 7(6).

e Theorem 7.3.17 (Rao-Blackwell) assures us that we can restrict attention to functions
of sufficient statistics.

Therefore, suppose T is a sufficient statistic for . Suppose that ¢(T'), a function of T, is an
unbiased estimator of 7(6); i.e.,

Eylp(T)] = 7(0), for all § € O©.

e Theorem 7.3.20 assures us that ¢(7') is UMVUE if and only if ¢(7") is uncorrelated
with all unbiased estimators of 0.

Add the assumption that T is a complete statistic. The only unbiased estimator of 0 in
complete families is the zero function itself. Because covy|p(T'),0] = 0 holds trivially, we
have shown that ¢(7") is uncorrelated with “all” unbiased estimators of 0. Theorem 7.3.20
says that ¢(T") must be UMVUE; Theorem 7.3.19 guarantees that ¢(7) is unique.

Recipe for finding UMV UESs: Suppose we want to find the UMVUE for 7(0).

1. Start by finding a statistic 7" that is both sufficient and complete.

2. Find a function of T, say ¢(7'), that satisfies

Eo[¢(T)] = 7(6), for all 6 € ©.

Then ¢(7T') is the UMVUE for 7(¢). This is essentially what is summarized in Theorem
7.3.23 (CB, pp 347).

Example 7.17. Suppose Xi, Xs, ..., X, are iid Poisson(6), where 6 > 0.

e We already know that X is UMVUE for #; we proved this by showing that X is unbiased
and that vary(X) attains the CRLB on the variance of all unbiased estimators of 6.

e We now show X is UMVUE for 6 by using sufficiency and completeness.

The pmf of X is

gre=?
fx(z|0) = o I(x=0,1,2,...,)
I(x=0,1,2, ...
— (x 07 » < 7) efae(me)z

z!

= h(z)c(0) exp{wi (0)t1(x)}-

PAGE 56




STAT 713: CHAPTER 7 JOSHUA M. TEBBS

Therefore X has pmf in the exponential family. Theorem 6.2.10 says that
T=T(X)=)» X
i=1

is a sufficient statistic. Because d = k =1 (i.e., a full family), Theorem 6.2.25 says that T

is complete. Now,
Ey(T) = Ey (Z XZ) = Ey(X;) =nb.
i=1 i=1

Therefore,
Ey <Z> = Ey(X)=0.

n

Because X is unbiased and is a function of T, a complete and sufficient statistic, we know
that X is the UMVUE.

Example 7.18. Suppose Xi, X, ..., X, are iid U(0,0), where § > 0. We have previously
shown that
T=T(X)= X(n)

is sufficient and complete (see Example 6.5 and Example 6.16, respectively, in the notes). It
follows that

Ba(T) = EoX) = (17 )

n+1

o (5

Because (n+1)X(,)/n is unbiased and is a function of X(,), a complete and sufficient statistic,
it must be the UMVUE.

for all # > 0. Therefore,

Example 7.19. Suppose X, Xs, ..., X,, are iid gamma(ayg, £), where aq is known and § > 0.
Find the UMVUE of 7(5) = 1/5.
Solution. The pdf of X is

1

fx(z]B) = Wxaofleﬂ/ﬁf(l’>0)
_ e @>0) 1y
') peo

= h(z)c(B) exp{wi(B)t1(z)}

a one-parameter exponential family with d = k£ = 1 (a full family). Theorem 6.2.10 and
Theorem 6.2.25 assure that

T = T(X) =iX@-
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is a sufficient and complete statistic, respectively. In Example 7.16 (notes), we saw that

_n&o—l
T

is an unbiased estimator of 7(5) = 1/3. Therefore, ¢(7') must be the UMV UE.

¢(T)

Remark: In Example 7.16, recall that the CRLB on the variance of unbiased estimators of
7(8) = 1/ was unattainable.

Example 7.20. Suppose X, Xo, ..., X,, are iid Poisson(#), where 6 > 0. Find the UMVUE
for
7(0) = Py(X =0) = e,

Solution. We use an approach known as “direct conditioning.” We start with
T=T(X)=)Y X,
i=1

which is sufficient and complete. We know that the UMVUE therefore is a function of T
Consider forming

¢(T) = E(W|T),

where W is any unbiased estimator of 7(f) = e~?. We know that ¢(T') by this construction
is the UMVUE; clearly ¢(T') = E(W|T) is a function of T and

Eg[¢(T)] = Eg[E(WI|T)] = Eg(W) = e
How should we choose W7 Any unbiased W will “work,” so let’s keep our choice simple, say
W =W(X)=1(X; =0).

Note that
Ey(W) = Eg[I(X, =0)] = Py(X; =0) =e?,

showing that TV is an unbiased estimator. Now, we just calculate ¢(7') = E(W|T') directly.
For t fixed, we have

o(t)=EW[T'=1t) = E[I(X,=0)T =1
= P(X,=0T =1t
Py(X,=0,T =t)
Py(T =1t)
Py (X; =0, Z?:z X;=1)

Py(T =1t)
indep PG(Xl = O)PH (22;2 X; = t)
Py(T =1) '
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We can now calculate each of these probabilities. Recall that X; ~ Poisson(6), > 1 , X; ~
Poisson((n — 1)), and T ~ Poisson(nf). Therefore,

Py(Xi =0)Py (3oL, Xi =1t)
Py(T = 1)
g [(n—1)g]f e~ (1P
- € t! - n—1 t
- ()

t!

ot) =

Therefore,

is the UMVUE of 7(0) = e~*.
Remark: It is interesting to note that in this example

o= () [T [0-)T =

for n large. Recall that e~ is the MLE of 7(f) = e~Y by invariance.

Remark: The last subsection in CB (Section 7.3.4) is on loss-function optimality. This
material will be covered in STAT 822.

7.4 Appendix: CRLB Theory

Remark: In this section, we provide the proofs that pertain to the CRLB approach to
finding UMVUEs. These proofs are also relevant for later discussions on MLEs and their
large-sample characteristics.

Remark: We start by reviewing the Cauchy-Schwarz Inequality. Essentially, the main
Cramér-Rao inequality result (Theorem 7.3.9) follows as an application of this inequality.

Recall: Suppose X and Y are random variables. Then
[B(XY)| < B(XY]) < [E(X?)2[E(Y?)]2

This is called the Cauchy-Schwarz Inequality. In this inequality, if we replace X with
X —px and Y with Y — py, we get

[BIX = )Y = py)]| < {BIX = px)?BHELY — )32

Squaring both sides, we get
[cov(X,Y)]? < o075

This is called the covariance inequality.
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Theorem 7.3.9 (Cramér-Rao Inequality). Suppose X ~ fx(x|6), where

1. the support of X is free of all unknown parameters
2. for any function h(x) such that Ey[h(X)] < oo for all § € O, the interchange

d

0
i Rnh(x)fx(xw)dx: 7 h(x) fx (x]0)dx

is justified; i.e., we can interchange the derivative and integral (derivative and sum if
X is discrete).
For any estimator W (X) with varg[W(X)] < oo, the following inequality holds:

2

{ G EW(X)]}

varg[W(X)] = 2%
Ee{[%lnfx(xm] }

Proof. First we state and prove a lemma.

LEMMA. Let 5
S(O1X) = 59 fx(X]0)

denote the score function. The score function is a zero-mean random variable; that is,

BSOX)) = £ [ 251 fx(XI0)] =o.

Proof of Lemma: Note that

9 0 g5 /x (%[0
9
_ [ 9 xio)a
/R e Ix(xl0)dx
_ d% [ x(ltix = 0.

=1

The interchange of derivative and integral above is justified based on the assumptions stated
in Theorem 7.3.9. Therefore, the lemma is proven. O

Note: Because the score function is a zero-mean random variable,
varg[S(0]X)] = Eo{[S(0]X))*};

that is,

varg [%m fX(X|0)} — E, { [% In fX(X|6’)]2} .
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We now return to the CRLB proof. Consider

0 0 0
20 50 fx(X|9) — Ep[W(X)] Ey {aa In fx(xw)]

[\ /
-~

=0

1an(X|e>] = By |[W(X)=

covg | W(X),

0
= B [W(X)5

- W(X)%lnfx(X!e)fx(XW)dx

; g /x(x10)
= x) % x (x]0)dx
= LV Fxl0) (x[6)d

0
= W(x)— 0)d
[ W03 x(xi0)ax
— 5 | Weorxioyx

d
= W)

Now, write the covariance inequality with

lan(X|9)

1. W(X) playing the role of “X”
S(0|X) = & In fx(X|0) playing the role of “Y".”

We get
Leova [0, 2 m xxi)] | vl 00 v [ 2 m k)]
that is,
{‘j" EQ[W(X”}Q < varg[W (X)) Ey { {% In fx(X\e)} } |

Dividing both sides by FEy { [% In fX(X\Q)} 2} gives the result. O

Corollary 7.3.10 (Cramér-Rao Inequality—iid case). With the same regularity conditions
stated in Theorem 7.3.9, in the iid case,

B WX
nEy { [5n fx(x10)]"}

varg[W(X)] >

Proof. Tt suffices to show

Ey { [% In fX(X|6’)]2} = nE, { [% In fX(XIH)} 2} .
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Because X1, X, ..., X,, are iid,

LHS = Eg{ lanXX|9

)
— E(,{ ZlanXG)_}
|
'}

o0

= Ee{ 0 In fx (X;|0)

+ZZE9 1an (Xil60) 55 0 5 10 fx (X; !9)}

i#]

= ZE@H In fx(X;|0)
indep ZE@H lanXIG}}JrZZEg{ lnfoIG)} Lf@lan(X\@]

Z#] . AN /

-~ -~

=0 =0

Therefore, all cross product expectations are zero and thus

LHS = ZEQ { {— In fX(Xi|9)} 2} et By { {% In fX(X|9)]2} .

This proves the iid case. O

Remark: Recall our notation:

I.(0) = Ey { [% In fX(X]H)} 2}

L) = Eg{[%mfx(xye)r}.

In the iid case, we have just proven that I,,(6) = nl(#). Therefore, in the iid case,

e If W(X) is an unbiased estimator of 7(), then

[~(0))*
CRLB = "7

o If W(X) is an unbiased estimator of 7(f) = 6, then

LB = )
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Lemma 7.3.11 (Information Equality). Under regularity conditions,

msz{L%mmmwﬂ?z—a{;gmwxm]

Proof. From the definition of mathematical expectation,

82 62 o |2 0

N /

-—
use quotient rule here

Note: A sum replaces the integral above if X is discrete. The derivative

a[%hmm]: 5 fx (210) fe (210) — & Fx (216) B Fx (216)

90 | fx(xl0) (@l
g fx(216) [ fx(xl0)]”

fx(x]0) [fx(x|0)]?

Therefore, the last integral becomes
92 P 2 ) 2
goz fx (2]0) [ fx(xl0)] S0 — 02 |55/ x (]0)] .
A{fﬂW) [h@W?}h<Wd“/{eJ“9) fxl)
[ [ [Brxeo)]”
= [ mtxtetois - [ BEEEL

:(W/hﬂMm/{lme$h@M$

R { [5)9 lan(X|0)]2}.

We have shown

Ey [86—; In fX(X|0)} — _E, { [%m fX(Xw)r} .

Multiplying both sides by —1 gives the information equality. O
Remark: We now finish by proving the attainment result.

Corollary 7.3.15. Suppose Xi, Xo, ..., X, is an iid sample from fx(z|f), where § € O, a
family that satisfies the regularity conditions stated for the Cramér-Rao Inequality. If W (X)
is an unbiased estimator of 7(#), then varg[W(X)] attains the CRLB if and only if the score
function

S(0]x) = a(@)[W(x) — 7(0)]

is a linear function of W (x).
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Proof. From the CRLB proof, recall that we had

1. W(X) playing the role of “X”

2. % In fx(X]#) playing the role of “Y”

in applying the covariance inequality, which yields

[7'(0)]?
varg[W(X)| > 5
Ey {[41n fx(X16)]"}
iid [7'(0)]?

By { [ TTL, fx(X00)" )

Now, in the covariance inequality, we have equality when the correlation of W (X) and
2 In fx(X|) equals £1, which in turn implies

(X —px) =Y —py as.,

or restated,

cW(X)—-71(0)] = % In fx(X|0) — 0 a.s.

This is an application of Theorem 4.5.7 (CB, pp 172); i.e., two random variables are per-
fectly correlated if and only if the random variables are perfectly linearly related. In these
equations, ¢ is a constant. Also, I have written “—0” on the RHS of the last equation to
emphasize that

00

a n
Also, W (X) is an unbiased estimator of 7(#) by assumption. Therefore, we have

AWX) (O] = - fx(X)

a n
— %mﬂfx(xiw)

)
= ;LX)

= S(01X),

where S(0|X) is the score function. The constant ¢ cannot depend on W(X) nor on
% In fx(X]|#), but it can depend on #. To emphasize this, we write

S(01X) = a(0)[W(X) = 7(0)].

Thus, varg[W(X)] attains the CRLB when the score function S(0|X) can be written as a
linear function of the unbiased estimator W (X). O
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