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STAT 713: CHAPTER 8 JOSHUA M. TEBBS

8 Hypothesis Testing

Complementary reading: Chapter 8 (CB).

8.1 Introduction

Setting: We observe X = (X, Xy, ..., X,,) ~ fx(x|0), where 8 € © C RF. For example,
Xi, Xa, ..., X;, might constitute a random sample (iid sample) from a population fx(x|0).
We regard 0 as fixed and unknown.

Definition: A statistical hypothesis is a statement about 8. This statement specifies a
collection of distributions that X can possibly have. Two complementary hypotheses in a
testing problem are the null hypothesis

H() 10 € @0
and the alternative hypothesis
H1 10 € @8,
where ©f = 0\ ©p. We call Oy the null parameter space and ©f the alternative

parameter space.

Example 8.1. Suppose X, Xs, ..., X,, are iid N(,02), where —co < 6 < oo and of is
known. Consider testing

HO 10 = 090
VEersus

HI:Q#GO,

where 6 is a specified value of #. The null parameter space ©9 = {6y}, a singleton. The
alternative parameter space ©f = R\ {60}.

Terminology: In Example 8.1, we call Hy : § = 0 a simple (or sharp) hypothesis. Note
that Hy specifies exactly one distribution, namely, N'(6y,02). A simple hypothesis specifies
a single distribution.

Terminology: In Example 8.1, suppose we wanted to test
HO 0 S 60

versus
Hy:0> 90.

We call Hy a composite (or compound) hypothesis. Note that H, specifies a family of
distributions, namely, {N(0,02) : 6 < 6,}.
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Goal: In a statistical hypothesis testing problem, we decide between the two complementary
hypotheses Hy and H; on the basis of observing X = x. In essence, a hypothesis test is a
specification of the test function

¢(x) = P(Reject Hy|X = x).
Terminology: Let X denote the support of X.

e The subset of X for which Hj is rejected is called the rejection region, denoted by

R.
e The subset of X for which Hj is not rejected is called the acceptance region, denoted
by R°.
If
1, xeR
o =1xe R ={ ;' XS

the test is said to be non-randomized.

Example 8.2. Suppose X ~ b(10,6), where 0 < § < 1, and consider testing

Hy:02>0.35
Versus
Hy 60 <0.35.

Here is an example of a randomized test function:

, <2

1
() = %, =3
0, >4

Using this test function, we would reject Hy if x = 0,1, or 2. If z = 3, we would reject Hy
with probability 1/5. If x > 4, we would not reject Hy.

e If we observed x = 3, we could then subsequently generate U ~ U(0, 1).

— If u < 0.2, then reject Hy.
— If w > 0.2, then do not reject H.

Remark: In most problems, a test function ¢ depends on X through a one-dimensional
test statistic, say
W - W(X) = W(XhXQ, 7Xn)
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1. We would like to work with test statistics that are sensible and confer tests with nice
statistical properties (does sufficiency play a role?)

2. We would like to find the sampling distribution of W under H, and H;.

Example 8.3. Suppose X1, Xy, ..., X,, are iid N (u, 0?), where —0co < pu < oo and o2 > 0;
i.e., both parameters are unknown. Consider testing

Hy:0? =40
Versus
Hy : 0% # 40.
In this problem, both
W, =Wi(X) = |S?*—40|
(n—1)52
e X_ — _—
Wa = Wa(X) 40

are reasonable test statistics.

e Because S? is an unbiased estimator of o2, large values of W, (intuitively) are evidence
against Hy. However, what is W;’s sampling distribution?

e The advantage of working with W is that we know its sampling distribution when H,
is true; i.e., Wy ~ x2_,. It is also easy to calculate the sampling distribution of W,
when Hj is not true; i.e., for values of o2 # 40.

Example 8.4. McCann and Tebbs (2009) summarize a study examining perceived unmet
need for dental health care for people with HIV infection. Baseline in-person interviews were
conducted with 2,864 HIV infected individuals (aged 18 years and older) as part of the HIV
Cost and Services Utilization Study. Define

X; = number of patients with private insurance

X, = number of patients with medicare and private insurance
X3 = number of patients without insurance

X4 = number of patients with medicare but no private insurance.

Set X = (X1, Xo, X3, Xy) and model X ~ mult(2864, p1, ps, ps, p4; Z?:l p; = 1). Under this
assumption, consider testing

Ho:p1 =p2=p3=ps Z}l
Versus
H, : Hy not true.

Note that an observation like x = (0,0, 0,2864) should lead to a rejection of Hy. An obser-
vation like x = (716,716,716, 716) should not. What about x = (658,839,811, 556)7 Can
we find a reasonable one-dimensional test statistic?
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8.2 Methods of Finding Tests
Preview: The authors present three methods of finding tests:

1. Likelihood ratio tests (LRTSs)
2. Bayesian tests

3. Union-Intersection and Intersection-Union tests (UIT/IUT)

We will focus largely on LRTs. We will discuss Bayesian tests briefly.

8.2.1 Likelihood ratio tests

Recall: Suppose X = (X, Xy, ..., X,,) ~ fx(x]0), where 8 € © C R*. The likelihood
function is

L) = fx(x10)
“ L sxle),

where fx(x]@) is the common population distribution (in the iid case). Recall that © is the
parameter space.

Definition: The likelihood ratio test (LRT) statistic for testing

Ho . 0 € @0
versus

H1:068\60

is defined by L6
su X
ocy

sup L(0]x)
EC)

Ax) =

A LRT is a test that has a rejection region of the form
R={xe X :\x)<c},
where 0 < ¢ < 1.

Intuition: The numerator of A\(x) is the largest the likelihood function can be over the null
parameter space Oy. The denominator is the largest the likelihood function can be over the
entire parameter space ©. Clearly,

0<\x) <1
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