STAND Feb 28,2019 chapter ⁸ Hypo Terry section 8 I Introduction

- ^A hypothesis is ^a statement about ^a population parameter
	- . In hypothesis testing, we have two hypothesiss denoted by Ho and H, CHa the null hypotheris thealternative hypothesis

Test to versus H

Suppose the parameter
$$
f
$$
 infeasible is Θ of which she parameter
\nspace is denoted by $(\overline{1-1})$
\nsimple hypothesis
\n eg : $H_0: \Theta = \Theta_0$ vs. $H_1: \Theta \neq \Theta_0$ where Θ_0 is given
\n $H_0: \Theta \leq \Theta_0$ or positive hypothesis
\n $H_0: \Theta = \Theta_0$ vs. $H_1: \Theta > \Theta_0$
\n $H_0: \Theta = \Theta_0$ vs. $H_1: \Theta = \Theta_1$

 General: Ho: $\theta \in \Theta_o$ VS: $H_i: \Theta \in \Theta_i$ where $\Theta_o \wedge \Theta_i \neq \emptyset$

test function
$$
\phi(\underline{x}) = \begin{cases} 1 & \underline{x} \in \mathbb{R} \\ 0 & \underline{x} \notin \mathbb{R} \end{cases}
$$

8 Hypothesis Testing

Complementary reading: Chapter 8 (CB).

8.1 Introduction

Setting: We observe $\mathbf{X} = (X_1, X_2, ..., X_n) \sim f_{\mathbf{X}}(\mathbf{x}|\boldsymbol{\theta})$, where $\boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^k$. For example, $X_1, X_2, ..., X_n$ might constitute a random sample (iid sample) from a population $f_X(x|\theta)$. We regard θ as fixed and unknown.

Definition: A statistical hypothesis is a statement about θ . This statement specifies a collection of distributions that X can possibly have. Two complementary hypotheses in a testing problem are the null hypothesis

$$
H_0: \boldsymbol{\theta} \in \Theta_0
$$

and the alternative hypothesis

$$
H_1: \boldsymbol{\theta} \in \Theta_0^c,
$$

where $\Theta_0^c = \Theta \setminus \Theta_0$. We call Θ_0 the **null parameter space** and Θ_0^c the **alternative** parameter space.

Example 8.1. Suppose $X_1, X_2, ..., X_n$ are iid $\mathcal{N}(\theta, \sigma_0^2)$, where $-\infty < \theta < \infty$ and σ_0^2 is known. Consider testing

$$
H_0: \theta = \theta_0
$$

versus

$$
H_1: \theta \neq \theta_0,
$$

where θ_0 is a specified value of θ . The null parameter space $\Theta_0 = {\theta_0}$, a singleton. The alternative parameter space $\Theta_0^c = \mathbb{R} \setminus \{\theta_0\}.$

Terminology: In Example 8.1, we call $H_0: \theta = \theta_0$ a **simple** (or **sharp**) hypothesis. Note that H_0 specifies exactly one distribution, namely, $\mathcal{N}(\theta_0, \sigma_0^2)$. A simple hypothesis specifies a single distribution.

Terminology: In Example 8.1, suppose we wanted to test

$$
H_0: \theta \le \theta_0
$$

versus

$$
H_1: \theta > \theta_0.
$$

We call H_0 a **composite** (or **compound**) hypothesis. Note that H_0 specifies a family of distributions, namely, $\{\mathcal{N}(\theta, \sigma_0^2) : \theta \leq \theta_0\}.$

Goal: In a statistical hypothesis testing problem, we decide between the two complementary hypotheses H_0 and H_1 on the basis of observing $X = x$. In essence, a hypothesis test is a specification of the test function

$$
\phi(\mathbf{x}) = P(\text{Reject } H_0 | \mathbf{X} = \mathbf{x}).
$$

Terminology: Let \mathcal{X} denote the support of **X**.

- The subset of X for which H_0 is rejected is called the **rejection region**, denoted by *R*.
- The subset of X for which H_0 is not rejected is called the **acceptance region**, denoted by R^c .

If

$$
\phi(\mathbf{x}) = I(\mathbf{x} \in R) = \begin{cases} 1, & \mathbf{x} \in R \\ 0, & \mathbf{x} \in R^c, \end{cases}
$$

the test is said to be non-randomized.

Example 8.2. Suppose $X \sim b(10, \theta)$, where $0 < \theta < 1$, and consider testing

$$
H_0: \theta \ge 0.35
$$

versus

$$
H_1: \theta < 0.35.
$$

Here is an example of a randomized test function:

$$
\phi(x) = \begin{cases} 1, & x \le 2 \\ \frac{1}{5}, & x = 3 \\ 0, & x \ge 4. \end{cases}
$$

Using this test function, we would reject H_0 if $x = 0, 1$, or 2. If $x = 3$, we would reject H_0 with probability 1/5. If $x \geq 4$, we would not reject H_0 .

- If we observed $x = 3$, we could then subsequently generate $U \sim \mathcal{U}(0, 1)$.
	- $-$ If $u \leq 0.2$, then reject H_0 .
	- $-$ If $u > 0.2$, then do not reject H_0 .

Remark: In most problems, a test function ϕ depends on **X** through a one-dimensional test statistic, say

$$
W = W(\mathbf{X}) = W(X_1, X_2, ..., X_n).
$$

- 1. We would like to work with test statistics that are sensible and confer tests with nice statistical properties (does sufficiency play a role?)
- 2. We would like to find the **sampling distribution** of *W* under H_0 and H_1 .

Example 8.3. Suppose $X_1, X_2, ..., X_n$ are iid $\mathcal{N}(\mu, \sigma^2)$, where $-\infty < \mu < \infty$ and $\sigma^2 > 0$; i.e., both parameters are unknown. Consider testing

$$
H_0: \sigma^2 = 40
$$

versus

$$
H_1: \sigma^2 \neq 40.
$$

In this problem, both

$$
W_1 = W_1(\mathbf{X}) = |S^2 - 40|
$$

$$
W_2 = W_2(\mathbf{X}) = \frac{(n-1)S^2}{40}
$$

are reasonable test statistics.

- Because S^2 is an unbiased estimator of σ^2 , large values of W_1 (intuitively) are evidence against H_0 . However, what is W_1 's sampling distribution?
- The advantage of working with W_2 is that we know its sampling distribution when H_0 is true; i.e., $W_2 \sim \chi^2_{n-1}$. It is also easy to calculate the sampling distribution of W_2 when H_0 is not true; i.e., for values of $\sigma^2 \neq 40$.

Example 8.4. McCann and Tebbs (2009) summarize a study examining perceived unmet need for dental health care for people with HIV infection. Baseline in-person interviews were conducted with 2,864 HIV infected individuals (aged 18 years and older) as part of the HIV Cost and Services Utilization Study. Define

- X_1 = number of patients with private insurance
- X_2 = number of patients with medicare and private insurance
- X_3 = number of patients without insurance
- *X*⁴ = number of patients with medicare but no private insurance*.*

Set $\mathbf{X} = (X_1, X_2, X_3, X_4)$ and model $\mathbf{X} \sim \text{mult}(2864, p_1, p_2, p_3, p_4; \sum_{i=1}^4 p_i = 1)$. Under this assumption, consider testing

$$
H_0: p_1 = p_2 = p_3 = p_4 = \frac{1}{4}
$$

versus

$$
H_1: H_0 \text{ not true.}
$$

Note that an observation like $\mathbf{x} = (0, 0, 0, 2864)$ should lead to a rejection of H_0 . An observation like $x = (716, 716, 716, 716)$ should not. What about $x = (658, 839, 811, 556)$? Can we find a reasonable one-dimensional test statistic?

8.2 Methods of Finding Tests

Preview: The authors present three methods of finding tests:

- 1. Likelihood ratio tests (LRTs)
- 2. Bayesian tests
- 3. Union-Intersection and Intersection-Union tests (UIT/IUT)

We will focus largely on LRTs. We will discuss Bayesian tests briefly.

8.2.1 Likelihood ratio tests

Recall: Suppose $X = (X_1, X_2, ..., X_n) \sim f_X(x|\theta)$, where $\theta \in \Theta \subseteq \mathbb{R}^k$. The likelihood function is

$$
L(\boldsymbol{\theta}|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\boldsymbol{\theta})
$$

$$
\stackrel{\text{iid}}{=} \prod_{i=1}^{n} f_{X}(x_{i}|\boldsymbol{\theta}),
$$

where $f_X(x|\theta)$ is the common population distribution (in the iid case). Recall that Θ is the parameter space.

Definition: The likelihood ratio test (LRT) statistic for testing

$$
H_0: \boldsymbol{\theta} \in \Theta_0
$$

versus

$$
H_1: \boldsymbol{\theta} \in \Theta \setminus \Theta_0
$$

is defined by

$$
\lambda(\mathbf{x}) = \frac{\sup_{\boldsymbol{\theta} \in \Theta_0} L(\boldsymbol{\theta}|\mathbf{x})}{\sup_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}|\mathbf{x})}.
$$

A LRT is a test that has a rejection region of the form

$$
R = \{ \mathbf{x} \in \mathcal{X} : \lambda(\mathbf{x}) \le c \},
$$

where $0 \leq c \leq 1$.

Intuition: The numerator of $\lambda(\mathbf{x})$ is the largest the likelihood function can be over the null parameter space Θ_0 . The denominator is the largest the likelihood function can be over the entire parameter space Θ . Clearly,

$$
0 \leq \lambda(\mathbf{x}) \leq 1.
$$