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Implication: If a sufficient statistic T" exists, we can immediately restrict attention to its
distribution when deriving an LRT.

Example 8.7. Suppose X, Xs, ..., X, are iid exponential(6), where § > 0. Consider testing

H() 10 = 90
Versus

H1:97£(90.

(a) Show that the LRT statistic based on X = x is

() () =
i=1

(b) Show that the LRT statistic based on T'=T(X) = Y | X is
N (t) = <i> tnet/fo,

7190

establishing that A*(f) = A(x), as stated in Theorem 8.2.4.
(¢) Show that
N(t)<c¢ <= t<c¢ or t>c,

for some ¢; and ¢y satisfying ¢; < cs.

Example 8.8. Suppose X1, Xo, ..., X,, are iid N(u, 0?), where —oo < p < oo and o2 > 0;
i.e., both parameters are unknown. Set 6 = (i, 0?). Consider testing

Ho i = po
Versus

Hy s # o

The null hypothesis Hy above looks simple, but it is not. The relevant parameter spaces are

O = {0=(u0%: p=po, o> 0}
© = {0=(u0%):—0c0<pu<oo, o>>0}

In this problem, we call 02 a nuisance parameter, because it is not the parameter that is
of interest in Hy and H;. The likelihood function is

n

sup [LE1X)
L) = [[ e el ®,

1 V2mo? A(]S): _—
= ( 1 ) e_ﬁ Z?:l(ﬂ—M)Q' e
2o sup L(f 6'(X)
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Unrestricted MLE: In Example 7.6 (notes, pp 33), we showed that

v X
(5 (250 v
S? -y (X;—X)
’ S Mx)€C
maximizes L(6|x) over ©. < leg C
Restricted MLE: It is easy to show that 109
lo Mﬁ-— S l’J ¢
Ho 3™ e

00: 1 - 2
ﬁizl(Xi_,uO) L"j supl - l’jShFL ¢lye

Q\lY}JjL ~ S b\jl S%C

maximizes L(6|x) over O.

(a) Show that

¥ L(é\o’X) B S (z —T)? n/2
Ax) = LOlx) {221(%—#0)2} y L
Lo Z (xe-X4X-Ho)
(b) Show that (/ ) z
Mx)<c <= z/_\/lg > (. ;ug L?j /_LG!'AC)
EWo

This demonstrates that the “one-sample ¢ test” is a LRT under normality.
b sy tolz) € ¢
Exercise: In Example 7.7 (notes, pp 34-35), derive the LRT statistic to test\ @

Hy:p1=ps
versus

Hi :p1 # pa.

Exercise: In Example 8.4 (notes, pp 67), show that the LRT statistic is

4 z;
2864\
)\(X) = /\(ZE1,$2,$3,$4) = H ( ) .

4,
i=1 v

Also, show that
AMx)<e <= —2lnA(x)>/¢.

Under Hy : p1 = po = p3 = ps = i, we will learn later that —2In \(X) is distributed

approximately as x3. This suggests a “large-sample” LRT, namely, to reject Hy if —21n \(x)
is “too large.” We can use the x32 distribution to specify what “too large” actually means.
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8.2.2 Bayesian tests

Remark: Hypothesis tests of the form

H() NS @0
versus

H1:9€®8,

where ©F = © \ Oy, can also be carried out within the Bayesian paradigm, but they are
performed differently. Recall that, for a Bayesian, all inference is carried out using the
posterior distribution 7(0|x).

Realization: The posterior distribution 7(6|x) is a valid probability distribution. It is the
distribution that describes the behavior of the random variable 6, updated after observing
the data x. In this light, the probabilities

P(Hy true|x) = P(0 € Oy|x) :/ m(0])x)do
S}

P(H, true|x) = P(0 € O;|x) :/ 7(0)x)do
95

make perfect sense and be calculated (or approximated) “exactly.” Note that these proba-
bilities make no sense to the non-Bayesian. S/he regards 6 as fixed, so that {§ € 6y} and
{6 € ©§} are not random events. We do not assign probabilities to events that are not
random.

Example 8.9. Suppose that X, Xs, ..., X, are iid Poisson(6), where the prior distribution
for & ~ gamma(a,b), a,b known. In Example 7.10 (notes, pp 38-39), we showed that the
posterior distribution

& 1
0| X = x ~ gamma ri+a, ——|.
| & (Z n+%)

=1

As an application, consider the following data, which summarize the number of goals per
game in the 2013-2014 English Premier League season:

Goals O 1 2 3 4 5 6 7
Frequency 27 73 80 72 65 39 17 4

8 9 10+
1 2 0

There were n = 380 games total. I modeled the number of goals per game X as a Poisson
random variable and assumed that X7, X5, ..., X330 are iid Poisson(f). Before the season
started, I modeled the mean number of goals per game as § ~ gamma(1.5,2), which is a
fairly diffuse prior distribution.
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Figure 8.1: 2013-2014 English Premier League data. Prior distribution (left) and posterior
distribution (right) for #, the mean number of goals scored per game. Note that the horizontal
axes are different in the two figures.

Based on the observed data, I used R to calculate

> sum(goals)
[1] 1060

The posterior distribution is therefare

0|X = x ~ gamma (1060 +1.5, > £ gamma(1061.5,0.002628).

380 + 3

I have depicted the prior distribution 7 (#) and the posterior distribution 7(6|x) in Figure
8.1. Suppose that I wanted to test Hy : 8 > 3 versus H; : # < 3 on the basis of the assumed
Bayesian model and the observed data x. The probability that Hj is true is

PO > 3[x) = / F(01%)d0 ~ 0.008.
3
which I calculated in R using

> 1-pgamma(3,1061.5,1/0.002628)
[1] 0.008019202

Therefore, it is far more likely that H; is true, in fact, with probability over 0.99.

PAGE 78



STAT 713: CHAPTER 8 JOSHUA M. TEBBS

8.3 Methods of Evaluating Tests
Setting: Suppose X = (X1, X, ..., X,,) ~ fx(x]0), where § € © C R and consider testing

H() -0 S @0
Versus

H1:9€®8,

where OF = © \ ©p. I will henceforth assume that 6 is a scalar parameter (for simplicity
only).

8.3.1 Error probabilities and the power function

Definition: For a test (with test function)
é(x) = I(x € RF RR
we can make one of two mistakes:

1. Type I Error: Rejecting Hy when Hj is true

2. Type II Error: Not rejecting Hy when H; is true.

Therefore, for any test that we perform, there are four possible scenarios, described in the
following table:

Decision
Reject Hy Do not reject Hy
Hy | Type I Error ©
Truth H, © Type II Error
Calculations: P(. nga'ﬁ Ho \ OE @°) k
1. Suppose Hy : 6 € Oy is true. For 6 € O, = PL ()\(}@KK l 9&@°) - EO[ ¢ )j

u}lﬁ*f- CE @o
P(Type I Error|0) | Py(X € R) = Ey[I(X € R)] = Ey[o(X)].

2. Suppose H; : 6 € OF is true. For 0 € O,

P(Type 11 Error|d) = Py(X € R°) = 1 — P4(X € R) = 1 — Ey[(X)] = Eg[1 — $(X)].
plolomot-geet H [0e®,) = = P (xerr [O€®)) = (- Eo[P(X)] yhoe 066,

It is very important to note that both of these probabilities depend on 6. This is why we
emphasize this in the notation.
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Definition: The power function of a test ¢(x) is the function of # given by .
?)—o]v ‘ff TYI’C I evverr rf Pe®,
0) = P(X € R) = Eplop(X)]. = _ -
In other words, the power function gives the probability of rejecting H, for all § € ©. Note
that if H; is true, so that 0 € ©f,

B(0) = Py(X € R)=1— Fp(X € R°) =1— P(Type II Error|0).

Example 8.10. Suppose X1, Xs, ..., X,, are iid N (p,08), where —oo < p < oo and o3 is
known. Consider testing

Hy:p < o
Versus
Hy oy > po.

The LRT of Hy versus H; uses the test function
T — Ho

P(x) = " oo/vn

0, otherwise.

>c

The power function for this test is given by

s =nixen - B (2 sc)

= £ (X2 o)

X—p Jntho—p o — Ju
= P > =1—-F
”(Uo/\/ﬁ_ o0/\/n g C+Uo/\/ﬁ ’

where Z ~ N(0,1) and Fy(-) is the standard normal cdf.

Exercise: Determine n and ¢ such that

sup S(pu) = 0.10

n<po

inf B(p) = 0.80.

1> po+00

e The first requirement implies that P(Type I Error|u) will not exceed 0.10 for all u < pg
(Hy true).

e The second requirement implies that P(Type II Error|u) will not exceed 0.20 for all
i > o + oo (these are values of p that make Hy true).
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Figure 8.2: Power function 5(u) in Example 8.10 with ¢ = 1.28, n = 5, ug = 1.5 and oy = 1.
Horizontal lines at 0.10 and 0.80 have been added.

Solution. Note that

3w = | ()

Vn Ho — f4
= Y= > 0;
O_OfZ C+O'0\/ﬁ )

i.e., B(p) is an increasing function of u. Therefore,

set

sup B(p) = B(uo) =1 — Fz(c) =0.10 = ¢=1.28,

H<po

the 0.90 quantile of the N(0, 1) distribution. Also, because 3(u) is increasing,

inf  B(u) = Bluo+00) = 1—Fz(1.28—+/n)=0.80

HZpo+oo
— 128 —+n=-0.84
= n =449,

which would be rounded up to n = 5. The resulting power function with ¢ = 1.28, n = 5,
o = 1.5 and oy = 1 is shown in Figure 8.2.
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Definition: A test ¢(x) with power function 5(0) is a size « test if

sup 5(0) = a.
(ASSH)

The test ¢(x) is a level « test if
sup A(0) < a.
[ISCH

Note that if ¢(x) is a size « test, then it is also level a. The converse is not true. In other
words,
{class of size a tests} C {class of level « tests}.

Remark: Often, it is unnecessary to differentiate between the two classes of tests. How-
ever, in testing problems involving discrete distributions (e.g., binomial, Poisson, etc.), it is
generally not possible to construct a size a test for a specified value of «; e.g., o = 0.05.
Thus (unless one randomizes), we may have to settle for a level « test.

Important: As the definition above indicates, the size of any test ¢(x) is calculated by
maximizing the power function over the null parameter space 6, identified in Hy.

Example 8.11. Suppose X7, X5 are iid Poisson(6), where 6 > 0, and consider testing

H0:€23
Versus
H119<3.

We consider the two tests
¢1 = d1(x1,22) = I(x1=0)
o = Po(T1,m9) = I(x1+ 29 <1).
The power function for the first test is
B1(0) = E[I(X, = 0)] = Py(X; =0) = e’

Recall that T' = T'(X;, X3) = X; + X5 ~ Poisson(260). The power function for the second
test 1s
Ba(0) = Eg[I( X1 + Xy < 1) = Pp( X1+ X, < 1) = e % + 207,

I have plotted both power functions in Figure 8.3 (next page).

Size calculations: The size of each test is calculated as follows. For the first test,

a = sup 31 (0) = 51(3) = e ~ 0.049787.

0>3

For the second test,

o = sup Ba(0) = 2(3) = O + 6e° 22 0.017351.

0>3

Both ¢, and ¢, are level a = 0.05 tests.
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Figure 8.3: Power functions (;(6) and f2(#) in Example 8.11.

Example 8.12. Suppose X, X, ..., X,, are iid from fx(z]|0) = e~ @ 9I(xz > 6), where
—00 < # < oo. In Example 8.6 (notes, pp 72-74), we considered testing

HO .0 S 90
Versus
Hl : 0 > 90

and derived the LRT to take the form ¢(x) = I(x@;) > ¢). Find the value of ¢’ that makes
¢(x) a size « test.

Solution. The pdf of X() is fx, (z]0) = ne =0 (z > 6). We set

a = sup Ey[¢p(X)] = sup Pp(Xq) = ¢)
0<0o 0<0o
= sup/ ne @904y
0<0o J ¢!
= sup efn(c/fe) _ efn(c’feo).
0<0o

Therefore, ¢ =0y —n 'Ina. A size o LRT uses ¢(x) = I(zq) > 0y —n 'Ina).
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