

Power function. $\beta(\theta) = P_{\theta}(x \in RR)$ $= P_{\theta}(x \in RR)$ $\phi(x) = \begin{cases} 1 & x \in RR \\ 0 & x \in RR \end{cases}$ $\beta(\theta) = E_{\theta}[\phi(x)]$

Type I error: rejear the when the is true

$$\beta(\theta)$$
 when $\Theta \in \Theta_0$
Type II error: do not rejear the when H_1 , is true
 $I - \beta(\theta)$ when $\Theta \in \Theta$,

Leval α test: $\sup_{\Theta \in \Theta} \beta(\Theta) \leq \alpha$

Size & test:

SUP ((8) = ~

$$UMP: \quad uniformly \quad most \quad powerful \quad test.$$

$$(A \ test \quad with \quad power \quad function \quad (BLO) \ is \quad a \ UMP \ test.$$

$$if \qquad (BLO) \geq (S^{*}(O) \quad for \ all \ O \in O_{1}$$

$$where \qquad (B^{*}(O) \quad is \ the \quad power \quad function \quad of \ any \ other \ test.$$

$$(B) \qquad vesture \ to \quad a \ class \ of \ tests$$

$$(A \ tests)$$

Ho:
$$\Theta = \Theta_0$$
 versus $H_1: \Theta = \Theta_1$ (x)
simple -versus - simply.
denote by $\int_X |x| |\theta_0$ the just pull of $X = (x_1, ..., X_n)$ at $\Theta = \Theta_1$
 $\int_X (x_1 |\theta_0)$ the just pull of $X = (K_1, ..., X_n)$ at $\Theta = \Theta_1$
let $\psi(x) = \begin{cases} 1 & \frac{\int_X (x_1 |\theta_1)}{\int_X (x_1 |\theta_0)} > k \\ 0 & \frac{\int_X (x_1 |\theta_1)}{\int_X (x_1 |\theta_0)} < k \end{cases}$
for $k \ge 0$. where k is determined by
 $d = P \Theta_0 (X \in KR) = E_{\Theta} [\psi(X)]$
Theorem 8.3.12 (Negment Pearson Lemmn)
This $\psi(x)$ gives as a (UMP fort for (x_1))
meaning: if you have conother text $\psi^{*}(x)$, where $E_{\Theta} [\psi^{*}(x)] \le d$.
 $Then E_{\Theta_1} [\psi^{*}(x_1)] \le E_{\Theta_1} [\psi(x_1)]$

Prof:
$$E_{\theta_{0}}\left[\phi(x)\right] = d$$
for any other leve of $\phi^{*}(x)$

$$E_{\theta_{0}}\left[\phi^{*}(x)\right] \leq d$$

$$\left[cont: E_{\theta_{1}}\left[\phi^{*}(x)\right] \leq E_{\theta_{1}}\left[\phi(x)\right]\right]$$

$$end{tabular}$$

$$end{tabul$$

Then
$$\int [\phi(\underline{x}) - \phi^{*}(\underline{x})] f_{\underline{x}} [\underline{x} | \theta_{1}) d\underline{x}$$

$$\geq k \int [\phi(\underline{x}) - \phi^{*}(\underline{x})] f_{\underline{x}} (\underline{x} | \theta_{2}) d\underline{x}$$

$$\underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) - \phi^{*}(\underline{x}) \right]}_{\geq 0} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] - E_{\theta_{1}} \left[\phi^{*}(\underline{x}) \right]}_{\uparrow} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] - E_{\theta_{1}} \left[\phi^{*}(\underline{x}) \right]}_{\uparrow} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] - E_{\theta_{1}} \left[\phi^{*}(\underline{x}) \right]}_{\uparrow} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] - E_{\theta_{1}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] - E_{\theta_{1}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] - E_{\theta_{1}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] - E_{\theta_{2}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] - E_{\theta_{2}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right] = \underbrace{E_{\theta_{1}} \left[\phi(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{2}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{2}} \left[\phi(\underline{x}) \right] = \underbrace{E_{\theta_{2}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{2}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{2}} \left[\phi^{*}(\underline{x}) \right] = \underbrace{E_{\theta_{2}} \left[\phi^{*}(\underline{x}) \right]}_{\downarrow} = \underbrace{E_{\theta_{2}} \left[\phi^{*}(\underline{x}) \right]}_{\underline{x}} = \underbrace{E_{\theta_{2}} \left$$

8.3.2 Most powerful tests

Definition: Let \mathcal{C} be a class of tests for testing

$$H_0: \theta \in \Theta_0$$

versus
$$H_1: \theta \in \Theta_0^c,$$

where $\Theta_0^c = \Theta \setminus \Theta_0$. A test in C with power function $\beta(\theta)$ is a **uniformly most powerful** (**UMP**) class C test if

$$\beta(\theta) \ge \beta^*(\theta)$$
 for all $\theta \in \Theta_0^c$,

where $\beta^*(\theta)$ is the power function of any other test in \mathcal{C} . The "uniformly" part in this definition refers to the fact that the power function $\beta(\theta)$ is larger than (i.e., at least as large as) the power function of any other class \mathcal{C} test for all $\theta \in \Theta_0^c$.

Important: In this course, we will restrict attention to tests $\phi(\mathbf{x})$ that are level α tests. That is, we will take

$$\mathcal{C} = \{ \text{all level } \alpha \text{ tests} \}.$$

This restriction is analogous to the restriction we made in the "optimal estimation problem" in Chapter 7. Recall that we restricted attention to unbiased estimators first; we then wanted to find the one with the smallest variance (uniformly, for all $\theta \in \Theta$). In the same spirit, we make the same type of restriction here by considering only those tests that are level α tests. This is done so that we can avoid having to consider "silly tests," e.g.,

$$\phi(\mathbf{x}) = 1 \text{ for all } \mathbf{x} \in \mathcal{X}.$$

The power function for this test is $\beta(\theta) = 1$, for all $\theta \in \Theta$. This test cannot be beaten in terms of power when H_1 is true! Unfortunately, it is not a very good test when H_0 is true.

Recall: A test $\phi(\mathbf{x})$ with power function $\beta(\theta)$ is a **level** α test if

$$\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha.$$

That is, $P(\text{Type I Error}|\theta)$ can be **no larger** than α for all $\theta \in \Theta_0$.

Starting point: We start by considering the simple-versus-simple test:

$$H_0: \theta = \theta_0$$
versus
$$H_1: \theta = \theta_1.$$

Both H_0 and H_1 specify exactly one probability distribution.

Remark: This type of test is rarely of interest in practice. However, it is the "building block" situation for more interesting problems.

Theorem 8.3.12 (Neyman-Pearson Lemma). Consider testing

$$H_0: \theta = \theta_0$$

versus
$$H_1: \theta = \theta_1$$

and denote by $f_{\mathbf{X}}(\mathbf{x}|\theta_0)$ and $f_{\mathbf{X}}(\mathbf{x}|\theta_1)$ the pdfs (pmfs) of $\mathbf{X} = (X_1, X_2, ..., X_n)$ corresponding to θ_0 and θ_1 , respectively. Consider the test function

$$\phi(\mathbf{x}) = \begin{cases} 1, & \frac{f_{\mathbf{X}}(\mathbf{x}|\theta_1)}{f_{\mathbf{X}}(\mathbf{x}|\theta_0)} > k \\ 0, & \frac{f_{\mathbf{X}}(\mathbf{x}|\theta_1)}{f_{\mathbf{X}}(\mathbf{x}|\theta_0)} < k, \end{cases}$$

for $k \ge 0$, where

$$\alpha = P_{\theta_0}(\mathbf{X} \in R) = E_{\theta_0}[\phi(\mathbf{X})].$$
(8.1)

Sufficiency: Any test satisfying the definition of $\phi(\mathbf{x})$ above and Equation (8.1) is a most powerful (MP) level α test.

Remarks:

- The necessity part of the Neyman-Pearson (NP) Lemma is less important for our immediate purposes (see CB, pp 388).
- In a simple-versus-simple test, any MP level α test is obviously also UMP level α . Recall that the "uniformly" part in UMP refers to all $\theta \in \Theta_0^c$. However, in a simple H_1 , there is only one value of $\theta \in \Theta_0^c$. I choose to distinguish MP from UMP in this situation (whereas the authors of CB do not).

Example 8.13. Suppose that $X_1, X_2, ..., X_n$ are iid $beta(\theta, 1)$, where $\theta > 0$; i.e., the population pdf is

$$f_X(x|\theta) = \theta x^{\theta - 1} I(0 < x < 1).$$

Derive the MP level α test for

 $H_0: \theta = 1 \qquad \text{Oo-1} \qquad \text{where if } H_1: \theta = \frac{1}{2}$ $H_1: \theta = 2. \qquad \theta_1: 2 \qquad \text{if } H_1: \theta = 3$

$$\begin{pmatrix}
\frac{f_{\mathbf{X}}(\mathbf{x}|\theta_{1})}{f_{\mathbf{X}}(\mathbf{x}|\theta_{0})} \xrightarrow{} \frac{f_{\mathbf{X}}(\mathbf{x}|2)}{f_{\mathbf{X}}(\mathbf{x}|1)} = \frac{2^{n} \left(\prod_{i=1}^{n} x_{i}\right)^{2-1}}{1^{n} \left(\prod_{i=1}^{n} x_{i}\right)^{1-1}} = \begin{pmatrix} 2^{n} \prod_{i=1}^{n} x_{i} \end{pmatrix} \xrightarrow{(1)} \begin{pmatrix} (1) \\ (1)$$

JOSHUA M. TEBBS

The NP Lemma says that the MP level α test uses the rejection rejection

where the constant k satisfies
$$\alpha = P_{\theta=1}(\mathbf{X} \in R) = P\left(2^n \prod_{i=1}^n X_i > k \mid \theta = 1\right).$$

Instead of finding the constant k that satisfies this equation, we rewrite the rejection rule $\{2^n \prod_{i=1}^n x_i > k\}$ in a way that makes our life easier. Note that

$$2^{n} \prod_{i=1}^{n} x_{i} > k \iff \prod_{\substack{i=1\\i=1}}^{n} x_{i} > 2^{n} k \iff 5 \ \text{In X}_{i} > k$$
$$\iff \underbrace{\sum_{i=1}^{n} -\ln x_{i}}_{i} - \ln 2^{n} k = k \text{ say.}$$

We have rewritten the rejection rule $\{2^n \prod_{i=1}^n x_i > k\}$ as $\{\sum_{i=1}^n -\ln x_i < k'\}$. Therefore,

$$\alpha = P\left(2^n \prod_{i=1}^n X_i > k \mid \theta = 1\right) = P\left(\sum_{i=1}^n -\ln X_i < k' \mid \theta = 1\right).$$

We have now changed the problem to choosing k' to solve this equation above.

Q: Why did we do this?

A: Because it is easier to find the distribution of $\sum_{i=1}^{n} -\ln X_i$ when $H_0: \theta = 1$ is true.

Recall that

Therefore, to satisfy the equation above, we take $k' = g_{n,1,1-\alpha}$, the (lower) α quantile of a gamma(n, 1) distribution. This notation for quantiles is consistent with how CB have defined them on pp 386. Thus, the MP level α test of $H_0: \theta = 1$ versus $H_1: \theta = 2$ has rejection region

UMP for

Special case: If n = 10 and $\alpha = 0.05$, then $g_{10,1,0.95} \approx 5.425$.

PAGE 86

Hor D= 1 versus Hi: 0>1

VB 9=)

Q: What is $\beta(2)$, the **power** of this MP test (when n = 10 and $\alpha = 0.05$)?

A: We calculate

$$\beta(2) = P\left(\sum_{i=1}^{10} -\ln X_i < 5.425 \mid \theta = 2\right).$$

Recall that

$$\begin{split} X_i \stackrel{H_1}{\sim} & \text{beta}(2,1) \implies -\ln X_i \stackrel{H_1}{\sim} & \text{exponential}(1/2) \\ \implies & \sum_{i=1}^{10} -\ln X_i \stackrel{H_1}{\sim} & \text{gamma}(10,1/2). \end{split}$$

Therefore,

$$\beta(2) = \int_0^{5.425} \underbrace{\frac{1}{\Gamma(10) \left(\frac{1}{2}\right)^{10}} u^9 e^{-2u}}_{\text{gamma(10, 1/2) pdf}} du \approx \underbrace{0.643.}_{\text{gamma(10, 1/2) pdf}}$$

Proof of NP Lemma. We prove the sufficiency part only. Define the test function

$$\phi(\mathbf{x}) = \begin{cases} 1, & \frac{f_{\mathbf{X}}(\mathbf{x}|\theta_1)}{f_{\mathbf{X}}(\mathbf{x}|\theta_0)} > k \\ 0, & \frac{f_{\mathbf{X}}(\mathbf{x}|\theta_1)}{f_{\mathbf{X}}(\mathbf{x}|\theta_0)} < k, \end{cases}$$

where $k \ge 0$ and

$$\alpha = P_{\theta_0}(\mathbf{X} \in R) = E_{\theta_0}[\phi(\mathbf{X})];$$

i.e., $\phi(\mathbf{x})$ is a size α test. We want to show that $\phi(\mathbf{x})$ is MP level α . Therefore, let $\phi^*(\mathbf{x})$ be the test function for any other level α test of H_0 versus H_1 . Note that

$$E_{\theta_0}[\phi(\mathbf{X})] = \alpha$$
$$E_{\theta_0}[\phi^*(\mathbf{X})] \leq \alpha$$

Thus,

$$E_{\theta_0}[\phi(\mathbf{X}) - \phi^*(\mathbf{X})] = \underbrace{E_{\theta_0}[\phi(\mathbf{X})]}_{= \alpha} - \underbrace{E_{\theta_0}[\phi^*(\mathbf{X})]}_{\leq \alpha} \geq 0.$$

Define

$$b(\mathbf{x}) = [\phi(\mathbf{x}) - \phi^*(\mathbf{x})][f_{\mathbf{X}}(\mathbf{x}|\theta_1) - kf_{\mathbf{X}}(\mathbf{x}|\theta_0)].$$

We want to show that $b(\mathbf{x}) \ge 0$, for all $\mathbf{x} \in \mathcal{X}$.

• Case 1: Suppose $f_{\mathbf{X}}(\mathbf{x}|\theta_1) - kf_{\mathbf{X}}(\mathbf{x}|\theta_0) > 0$. Then, by definition, $\phi(\mathbf{x}) = 1$. Because $0 \le \phi^*(\mathbf{x}) \le 1$, we have

$$b(\mathbf{x}) = \underbrace{[\phi(\mathbf{x}) - \phi^*(\mathbf{x})]}_{\geq 0} \underbrace{[f_{\mathbf{X}}(\mathbf{x}|\theta_1) - kf_{\mathbf{X}}(\mathbf{x}|\theta_0)]}_{> 0} \geq 0.$$

• Case 2: Suppose $f_{\mathbf{X}}(\mathbf{x}|\theta_1) - kf_{\mathbf{X}}(\mathbf{x}|\theta_0) < 0$. Then, by definition, $\phi(\mathbf{x}) = 0$. Because $0 \le \phi^*(\mathbf{x}) \le 1$, we have

$$b(\mathbf{x}) = \underbrace{[\phi(\mathbf{x}) - \phi^*(\mathbf{x})]}_{\leq 0} \underbrace{[f_{\mathbf{X}}(\mathbf{x}|\theta_1) - kf_{\mathbf{X}}(\mathbf{x}|\theta_0)]}_{< 0} \geq 0.$$

• Case 3: Suppose $f_{\mathbf{X}}(\mathbf{x}|\theta_1) - kf_{\mathbf{X}}(\mathbf{x}|\theta_0) = 0$. It is then obvious that $b(\mathbf{x}) = 0$.

We have shown that $b(\mathbf{x}) = [\phi(\mathbf{x}) - \phi^*(\mathbf{x})][f_{\mathbf{X}}(\mathbf{x}|\theta_1) - kf_{\mathbf{X}}(\mathbf{x}|\theta_0)] \ge 0$. Therefore,

$$\begin{aligned} [\phi(\mathbf{x}) - \phi^*(\mathbf{x})] f_{\mathbf{X}}(\mathbf{x}|\theta_1) - k[\phi(\mathbf{x}) - \phi^*(\mathbf{x})] f_{\mathbf{X}}(\mathbf{x}|\theta_0) &\ge 0 \\ \iff [\phi(\mathbf{x}) - \phi^*(\mathbf{x})] f_{\mathbf{X}}(\mathbf{x}|\theta_1) &\ge k[\phi(\mathbf{x}) - \phi^*(\mathbf{x})] f_{\mathbf{X}}(\mathbf{x}|\theta_0). \end{aligned}$$

Integrating both sides, we get

$$\int_{\mathbb{R}^n} [\phi(\mathbf{x}) - \phi^*(\mathbf{x})] f_{\mathbf{X}}(\mathbf{x}|\theta_1) d\mathbf{x} \ge k \int_{\mathbb{R}^n} [\phi(\mathbf{x}) - \phi^*(\mathbf{x})] f_{\mathbf{X}}(\mathbf{x}|\theta_0) d\mathbf{x},$$

that is,

$$E_{\theta_1}[\phi(\mathbf{X}) - \phi^*(\mathbf{X})] \ge k \underbrace{E_{\theta_0}[\phi(\mathbf{X}) - \phi^*(\mathbf{X})]}_{\ge 0, \text{ shown above}} \ge 0.$$

Therefore, $E_{\theta_1}[\phi(\mathbf{X}) - \phi^*(\mathbf{X})] \ge 0$ and hence $E_{\theta_1}[\phi(\mathbf{X})] \ge E_{\theta_1}[\phi^*(\mathbf{X})]$. This shows that $\phi(\mathbf{x})$ is more powerful than $\phi^*(\mathbf{x})$. Because $\phi^*(\mathbf{x})$ is an arbitrary level α test, we are done. \Box

Corollary 8.3.13 (NP Lemma with a sufficient statistic T). Consider testing

and suppose that $T = T(\mathbf{X})$ is a sufficient statistic. Denote by $g_T(t|\theta_0)$ and $g_T(t|\theta_1)$ the pdfs (pmfs) of T corresponding to θ_0 and θ_1 , respectively. Consider the test function

$$\phi(t) = \begin{cases} 1, & \frac{g_T(t|\theta_1)}{g_T(t|\theta_0)} > k \\ 0, & \frac{g_T(t|\theta_1)}{g_T(t|\theta_0)} < k, \end{cases}$$

for $k \geq 0$, where, with rejection region $S \subset \mathcal{T}$,

$$\alpha = P_{\theta_0}(T \in S) = E_{\theta_0}[\phi(T)].$$

The test that satisfies these specifications is a MP level α test. *Proof.* See CB (pp 390).

Implication: In search of a MP test, we can immediately restrict attention to those tests based on a sufficient statistic.

Example 8.14. Suppose $X_1, X_2, ..., X_n$ are iid $\mathcal{N}(\mu, \sigma_0^2)$, where $-\infty < \mu < \infty$ and σ_0^2 is known. Find the MP level α test for

$$H_0: \mu = \mu_0$$
versus
$$H_1: \mu = \mu_1,$$

where $\mu_1 < \mu_0$.

Solution. The sample mean $T = T(\mathbf{X}) = \overline{X}$ is a sufficient statistic for the $\mathcal{N}(\mu, \sigma_0^2)$ family. Furthermore,

$$T \sim \mathcal{N}\left(\mu, \frac{\sigma_0^2}{n}\right) \quad \Longrightarrow \quad g_T(t|\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2/n}} \ e^{-\frac{n}{2\sigma_0^2}(t-\mu)^2},$$

for $t \in \mathbb{R}$. Form the ratio

$$\frac{g_T(t|\mu_1)}{g_T(t|\mu_0)} = \frac{\frac{1}{\sqrt{2\pi\sigma_0^2/n}} e^{-\frac{n}{2\sigma_0^2}(t-\mu_1)^2}}{\frac{1}{\sqrt{2\pi\sigma_0^2/n}} e^{-\frac{n}{2\sigma_0^2}(t-\mu_0)^2}} = e^{-\frac{n}{2\sigma_0^2}[(t-\mu_1)^2 - (t-\mu_0)^2]}.$$

Corollary 8.3.13 says that the MP level α test rejects H_0 when

$$e^{-\frac{n}{2\sigma_0^2}[(t-\mu_1)^2-(t-\mu_0)^2]} > k \iff t < \frac{2\sigma_0^2 n^{-1}\ln k - (\mu_1^2 - \mu_0^2)}{2(\mu_0 - \mu_1)} = k', \text{ say.}$$

Therefore, the MP level α test uses the rejection region

$$S = \left\{ t \in \mathcal{T} : \frac{g_T(t|\theta_1)}{g_T(t|\theta_0)} > k \right\} = \{ t \in \mathcal{T} : t < k' \},$$

where k' satisfies

$$\alpha = P_{\mu_0}(T < k') = P\left(Z < \frac{k' - \mu_0}{\sigma_0/\sqrt{n}}\right)$$
$$\implies \frac{k' - \mu_0}{\sigma_0/\sqrt{n}} = -z_\alpha$$
$$\implies k' = \mu_0 - z_\alpha \sigma_0/\sqrt{n}.$$

Therefore, the MP level α test rejects H_0 when $\overline{X} < \mu_0 - z_\alpha \sigma_0 / \sqrt{n}$. This is the same test we would have gotten using $f_{\mathbf{X}}(\mathbf{x}|\mu_0)$ and $f_{\mathbf{X}}(\mathbf{x}|\mu_1)$ with the original version of the NP Lemma (Theorem 8.3.12).

PAGE 89

what if Mistro?

for Irlo: M=Mo H1: MCMo