NP Lemma helps us find the Most Powerful test vs Uniformly Most Powerful test $H_0: \Theta = \Theta_o$ $H_0: \Theta = \Theta_o$ V S $H_i: \Theta > \Theta_o$ LVS H_i of $\Theta \neq \Theta_o$ test function $\rho(x)$ = I XERR U XERR 1. Control prob. of Type I error: $d \geq E_{\theta_{o}} [\psi(\tilde{x})] = P_{\theta_{o}} [\tilde{x} \in RR)$ $\frac{1}{2}$ ize 2. for any other test function. $\oint_{a}^{b} (\chi) = \begin{cases} 1 & \text{if } b \in \mathbb{R} \\ 0 & \text{if } c \in \mathbb{R} \end{cases}$ E ERR' with $E_{\theta_o}[\phi^*(x)] \leq \alpha$. If type II error of $\phi(x)$ is smaller than the one of $\phi^*(x)$ for any $\theta = \theta_1 > \theta_0$ $\gamma_{\theta_1}(x \& K) = 1 - \gamma_{\theta_1}(x \& K) = 1 - \mathcal{L}_{\theta_1}(y \& K)$ $=$ $P_{\theta_i}(xqkk) =$ $I - E_{\theta_i}(p_k)$ E_{θ} , $(\phi(\kappa)) \geq E_{\theta}$, $(\phi^{*}(\kappa))$ • For simple vs one-sided alternative. to find UMP can be started from finding the MP fert for simple is simple.

Twosided case H_{α} $\theta = \theta_{\alpha}$ vs H_{1} : θ θ θ Start with Simple vs $(Simple)$ pick a value θ_1 in $\{\theta_1 \theta_2 \theta_3\}$ $H_0: \theta = \theta_0$ $H_0: \theta = \theta_0$ $USH_i : \theta = \theta_i > \theta_i$ ω_i $H_i : \theta = \theta_i < \theta_0$ $\overline{\smash{\bigtriangledown}}$ UMP OMP $f^{\circ\nu}$ $H_0: \theta : \theta_0$ for $H_s: \theta * \theta_0$ vs $H_i: \Theta \gg \Theta$ UMP for $H_o: \Theta \leq \Theta_o$ vs $H_1:$ O_2O_0 If you want to use MP Lemma. pick $\theta_o^* \leq \theta_o$ pick $\theta_i^* > \theta_o$ fails $H_{0}: \theta \in \mathcal{B}_{D}^{\ast}$ v_5 H_c: $\theta = \theta'_x$ MIR $g_7(t\theta)$ $\frac{d}{dx}$ any $\frac{\theta_{22}\theta_{1}}{\theta_{11}\epsilon(\theta_{1})}$ f

8.3.3 Uniformly most powerful tests

Remark: So far, we have discussed "test related optimality" in the context of simple-versussimple hypotheses. We now extend the idea of "most powerful" to more realistic situations involving composite hypotheses; e.g., $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.

Definition: A family of pdfs (pmfs) $\{g_T(t|\theta); \theta \in \Theta\}$ for a univariate random variable *T* has **monotone likelihood ratio** (**MLR**) if for all $\theta_2 > \theta_1$, the ratio

$$
\frac{g_T(t|\theta_2)}{g_T(t|\theta_1)}
$$

is a nondecreasing function of *t* over the set $\{t : g_T(t|\theta_1) > 0 \text{ or } g_T(t|\theta_2) > 0\}.$

Example 8.15. Suppose $T \sim b(n, \theta)$, where $0 < \theta < 1$. The pmf of *T* is

$$
g_T(t|\theta) = \binom{n}{t} \theta^t (1-\theta)^{n-t},
$$

for $t = 0, 1, 2, ..., n$. Suppose $\theta_2 > \theta_1$. Consider

$$
\frac{g_T(t|\theta_2)}{g_T(t|\theta_1)} = \frac{{n \choose t} \theta_2^t (1-\theta_2)^{n-t}}{{n \choose t} \theta_1^t (1-\theta_1)^{n-t}} = \left(\frac{1-\theta_2}{1-\theta_1}\right)^n \left[\frac{\theta_2(1-\theta_1)}{\theta_1(1-\theta_2)}\right]^t.
$$

Note that $\left(\frac{1-\theta_2}{1-\theta_1}\right)^n > 0$ and is free of *t*. Also, because $\theta_2 > \theta_1$, both

$$
\frac{\theta_2}{\theta_1} > 1 \quad \text{and} \quad \frac{1 - \theta_1}{1 - \theta_2} > 1.
$$

Therefore,

$$
\frac{g_T(t|\theta_2)}{g_T(t|\theta_1)} = \underbrace{c(\theta_1, \theta_2)}_{>0} a^t,
$$

where $a > 1$. This is an increasing function of *t* over $\{t : t = 0, 1, 2, ..., n\}$. Therefore, the family ${q_T(t|\theta): 0 < \theta < 1}$ has MLR.

Remark: Many common families of pdfs (pmfs) have MLR. For example, if

$$
T \sim g_T(t|\theta) = h(t)c(\theta)e^{w(\theta)t},
$$

i.e., *T* has pdf (pmf) in the one-parameter exponential family, then $\{g_T(t|\theta); \theta \in \Theta\}$ has MLR if $w(\theta)$ is a nondecreasing function of θ . *Proof.* Exercise.

Q: Why is MLR useful? A: It makes getting UMP tests easy. Theorem 8.3.17 (Karlin-Rubin). Consider testing

$$
H_0: \theta \le \theta_0
$$

versus

$$
H_1: \theta > \theta_0.
$$

Suppose that *T* is sufficient. Suppose that ${g_T(t|\theta);\theta \in \Theta}$ has MLR. The test that rejects H_0 iff $T > t_0$ is a UMP level α test, where

$$
\alpha = P_{\theta_0}(T > t_0).
$$

Similarly, when testing

$$
H_0: \theta \ge \theta_0
$$

versus

$$
H_1: \theta < \theta_0,
$$

the test that rejects H_0 iff $T < t_0$ is UMP level α , where $\alpha = P_{\theta_0}(T < t_0)$.

Example 8.16. Suppose $X_1, X_2, ..., X_n$ are iid Bernoulli(θ), where $0 < \theta < 1$, and consider testing

$$
H_0: \theta \le \theta_0
$$

versus

$$
H_1: \theta > \theta_0.
$$

We know that

$$
T = \sum_{i=1}^{n} X_i
$$

is a sufficient statistic and $T \sim b(n, \theta)$. In Example 8.15, we showed that the family $\{g_T(t|\theta):$ $0<\theta<1\}$ has MLR. Therefore, the Karlin-Rubin Theorem says that the UMP level α test is

$$
\phi(t)=I(t>t_0),
$$

where t_0 solves

$$
\alpha = P_{\theta_0}(T > t_0) = \sum_{t=\lfloor t_0 \rfloor + 1}^n {n \choose t} \theta_0^t (1 - \theta_0)^{n-t}.
$$

Special case: I took $n = 30$ and $\theta_0 = 0.2$. I used R to calculate the following:

Figure 8.4: Power function $\beta(\theta)$ for the UMP level $\alpha = 0.0611$ test in Example 8.16 with $n = 30$ and $\theta_0 = 0.2$. A horizontal line at $\alpha = 0.0611$ has been added.

Therefore, the UMP level $\alpha = 0.0611$ test of $H_0: \theta \leq 0.2$ versus $H_1: \theta > 0.2$ uses $I(t \geq 10)$. The UMP level $\alpha = 0.0256$ test uses $I(t \geq 11)$. Note that (without randomizing) it is not possible to write a UMP level $\alpha = 0.05$ test in this problem. For the level $\alpha = 0.0611$ test, the power function is

$$
\beta(\theta) = P_{\theta}(T \ge 10) = \sum_{t=10}^{30} {30 \choose t} \theta^t (1-\theta)^{30-t},
$$

which is depicted in Figure 8.4 (above).

Example 8.17. Suppose that $X_1, X_2, ..., X_n$ are iid with population distribution

$$
f_X(x|\theta) = \theta e^{-\theta x} I(x > 0),
$$

where $\theta > 0$. Note that this population distribution is an exponential distribution with mean $1/\theta$. Derive the UMP level α test for

$$
H_0: \theta \ge \theta_0
$$

versus

$$
H_1: \theta < \theta_0.
$$

Solution. It is easy to show that

$$
T = \sum_{i=1}^{n} X_i
$$

is a sufficient statistic and $T \sim \text{gamma}(n, 1/\theta)$. Suppose $\theta_2 > \theta_1$ and form the ratio

$$
\frac{g_T(t|\theta_2)}{g_T(t|\theta_1)} = \frac{\frac{1}{\Gamma(n) \left(\frac{1}{\theta_2}\right)^n} t^{n-1} e^{-\theta_2 t}}{\frac{1}{\Gamma(n) \left(\frac{1}{\theta_1}\right)^n} t^{n-1} e^{-\theta_1 t}} = \left(\frac{\theta_2}{\theta_1}\right)^n e^{-t(\theta_2 - \theta_1)}.
$$

Because $\theta_2 - \theta_1 > 0$, we see that the ratio

$$
\frac{g_T(t|\theta_2)}{g_T(t|\theta_1)}
$$

is a decreasing function of *t* over $\{t : t > 0\}$. However, the ratio is an increasing function of $t^* = -t$, and $T^* = T^*(\mathbf{X}) = -\sum_{i=1}^n X_i$ is still a sufficient statistic (it is a one-to-one function of *T*). Therefore, we can apply the Karlin-Rubin Theorem using $T^* = -T$ instead. Specifically, the UMP level α test is

$$
\phi(t^*)=I(t^*
$$

where t_0 satisfies

$$
\alpha = E_{\theta_0}[\phi(T^*)] = P_{\theta_0}(T^* < t_0)
$$

= $P_{\theta_0}(T > \epsilon_t)$.

Because $T \sim \text{gamma}(n, 1/\theta)$, we take $-t_0 = g_{n,1/\theta_0,\alpha}$, the (upper) α quantile of a gamma $(n,1/\theta_0)$ distribution. Therefore, the UMP level α test is $I(t > g_{n,1/\theta_0,\alpha})$; i.e., the UMP level α rejection region is Because $T \sim \text{gamma}(n, 1/\theta)$, we take $-t_0 = g_{n,1/\theta_0,\alpha}$,

$$
R = \left\{ \mathbf{x} \in \mathcal{X} : \sum_{i=1}^{n} x_i > \underbrace{(g_{n,1/\theta_0,\alpha})} \right\}.
$$

Using χ^2 critical values: We can also write this rejection region in terms of a χ^2 quantile. To see why, note that when $\theta = \theta_0$, the quantity $2\theta_0 T \sim \chi^2_{2n}$ so that

$$
\alpha = P_{\theta_0}(T > -t_0) = P_{\theta_0}(2\theta_0 T > -2\theta_0 t_0)
$$

$$
\implies -2\theta_0 t_0 \stackrel{\text{set}}{=} \chi^2_{2n,\alpha}.
$$

Therefore, the UMP level α rejection region can be written as

$$
R = \left\{ \mathbf{x} \in \mathcal{X} : 2\theta_0 \sum_{i=1}^n x_i > \chi^2_{2n,\alpha} \right\} = \left\{ \mathbf{x} \in \mathcal{X} : \sum_{i=1}^n x_i > \frac{\chi^2_{2n,\alpha}}{2\theta_0} \right\}.
$$

Figure 8.5: Power function $\beta(\theta)$ for the UMP level $\alpha = 0.10$ test in Example 8.17 with $n = 10$ and $\theta_0 = 4$. A horizontal line at $\alpha = 0.10$ has been added.

Remark: One advantage of writing the rejection region in this way is that it depends on a χ^2 quantile, which, historically, may have been available in probability tables (i.e., in times before computers and R). Another small advantage is that we can express the power function $\beta(\theta)$ in terms of a χ^2 cdf instead of a more general gamma cdf.

Power function: The power function of the UMP level α test is given by

$$
\beta(\theta) = P_{\theta}(\mathbf{X} \in R) = P_{\theta}\left(T > \frac{\chi^{2}_{2n,\alpha}}{2\theta_{0}}\right) = P_{\theta}\left(2\theta T > \frac{\theta\chi^{2}_{2n,\alpha}}{\theta_{0}}\right)
$$

$$
= 1 - F_{\chi^{2}_{2n}}\left(\frac{\theta\chi^{2}_{2n,\alpha}}{\theta_{0}}\right),
$$

where $F_{\chi^2_{2n}}(\cdot)$ is the χ^2_{2n} cdf. A graph of this power function, when $n = 10$, $\alpha = 0.10$, and $\theta_0 = 4$, is shown in Figure 8.5 (above).

Proof of Karlin-Rubin Theorem. We will prove this theorem in parts. The first part is a lemma.

Lemma 1: If $g(x) \uparrow_{\text{nd}} x$ and $h(x) \uparrow_{\text{nd}} x$, then

 $cov[g(X), h(X)] \geq 0.$