HW 2 (Due Mar. 18, 2015)

1. Let $\left\{Y_{t}\right\}$ be a stationary zero-mean time series. Define

$$
X_{t}=Y_{t}-0.4 Y_{t-1}
$$

and

$$
W_{t}=Y_{t}-2.5 Y_{t-1}
$$

Express the ACVF of $\left\{X_{t}\right\}$ and $\left\{W_{t}\right\}$ in terms of the ACVF of $\left\{Y_{t}\right\}$. Further show that the autocorrelation functions of X_{t} and W_{t} are the same.
2. Find the coefficients $\psi_{j}, j=0,1,2, \ldots$ in the representation

$$
X_{t}=\sum_{j=0}^{\infty} \psi_{j} W_{t-j}
$$

of the $\operatorname{ARMA}(2,1)$ process,

$$
\left(1-0.5 B+0.04 B^{2}\right) X_{t}=(1+0.25 B) W_{t}, W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

3. For an MA(2) process, find the largest possible values of $|\rho(1)|$ and $|\rho(2)|$.
4. Find the autocovariances $\gamma_{X}(h), h=0,1,2, \ldots$ of the $\operatorname{AR}(3)$ process,

$$
(1-0.5 B)(1-0.4 B)^{2} X_{t}=W_{t}, W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right) .
$$

5. Suppose $\left\{X_{t}\right\}$ is the two sided moving average

$$
X_{t}=\sum_{j=-\infty}^{\infty} \psi_{j} W_{t-j}, W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

where $\sum_{j}\left|\psi_{j}\right|<\infty$. Show that

$$
\sum_{h=-\infty}^{\infty}\left|\gamma_{X}(h)\right|<\infty
$$

6. Find the spectral density of an MA(1) process, $X_{t}=W_{t}+\theta W_{t-1}, W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$ and of an $\mathrm{AR}(1)$ process, $X_{t}-\phi X_{t-1}=W_{t}, W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$
7. If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are stationary processes satisfying

$$
X_{t}-\alpha X_{t-1}=W_{t}, W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

and

$$
Y_{t}-\alpha Y_{t-1}=X_{t}+Z_{t}, Z_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

where $|\alpha|<1$ and $\left\{W_{t}\right\}$ and $\left\{Z_{t}\right\}$ are uncorrelated, find the spectral density of $\left\{Y_{t}\right\}$.
8. For the MA(1) process $X_{t}=W_{t}+\theta W_{t-1},|\theta|<1, W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)$. Find its PACF and

$$
\nu_{n}=E\left\{X_{n+1}-\overline{\mathbb{P}}\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right)\right\}^{2} .
$$

Further find the limit of ν_{n} when n goes to infinity.
9. If $\left\{X_{1}, \ldots, X_{n}\right\}$ are observations of the $\operatorname{AR}(p)$ process,

$$
X_{t}-\phi_{1} X_{t-1}-\cdots-\phi_{p} X_{t-p}=W_{t}, W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

show that

$$
E\left\{\overline{\mathbb{P}}\left(X_{n+h} \mid X_{1}, \ldots, X_{n}\right)-X_{n+h}\right\}^{2}=\sigma^{2} \sum_{j=0}^{h-1} \psi_{j}^{2}, \quad \text { for } n \geq p, h \geq 1,
$$

where $\psi(z)=\sum_{j=0}^{\infty} \psi_{j} z^{j}=1 / \phi(z)$.

