HW 3 (Due April. 15, 2015)

1. Show that if $n>p$, the likelihood of the observations $\left\{X_{1}, \ldots, X_{n}\right\}$ of the causal $\operatorname{AR}(p)$ process,

$$
X_{t}-\phi_{1} X_{t-1}-\cdots-\phi_{p} X_{t-p}=W_{t}, \quad W_{t} \sim N\left(0, \sigma^{2}\right),
$$

is

$$
\begin{aligned}
L\left(\boldsymbol{\phi}, \sigma^{2}\right)= & \left(2 \pi \sigma^{2}\right)^{-n / 2}\left(\operatorname{det} G_{p}\right)^{-1 / 2} \\
& \times \exp \left\{-\frac{1}{2} \sigma^{-2}\left[\boldsymbol{X}_{p}^{\prime} G_{p}^{-1} \boldsymbol{X}_{p}+\sum_{t=p+1}^{n}\left(X_{t}-\phi_{1} X_{t-1}-\cdots-\phi_{p} X_{t-p}\right)^{2}\right]\right\}
\end{aligned}
$$

where $\boldsymbol{X}_{p}=\left(X_{1}, \ldots, X_{p}\right)^{\prime}$ and $G_{p}=\sigma^{-2} E\left(\boldsymbol{X}_{p} \boldsymbol{X}_{p}^{\prime}\right)$. Further given two observations x_{1} and x_{2} from the causal $\operatorname{AR}(1)$ process

$$
X_{t}-\phi X_{t-1}=W_{t}, \quad W_{t} \sim N\left(0, \sigma^{2}\right)
$$

such that $\left|x_{1}\right| \neq\left|x_{2}\right|$, find the MLE of ϕ and σ^{2}.
2. For an $\operatorname{AR}(p)$ process, show that $\operatorname{det} \Gamma_{m}=\left(\operatorname{det} \Gamma_{p}\right) \sigma^{2(m-p)}$ for all $m>p$. Conclude that the (m, m) component of Γ_{m}^{-1} is $\left(\operatorname{det} \Gamma_{m-1}\right) /\left(\operatorname{det} \Gamma_{m}\right)=\sigma^{-2}$. (This proves the $\sqrt{n} \widehat{\phi}_{m m} \rightarrow^{d} N(0,1)$ in Theorem 6.2)
3. Suppose that $\left\{X_{t}\right\}$ is an $\operatorname{ARIMA}(p, d, q)$ process, satisfying the difference equations

$$
\phi(B)(1-B)^{d} X_{t}=\theta(B) W_{t}, \quad W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

show that these difference equations are also satisfied by the process

$$
Z_{t}=X_{t}+\alpha_{0}+\alpha_{1} t+\cdots+\alpha_{d-1} t^{d-1}
$$

for arbitrary random variables $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d-1}$.
4. Let $\left\{X_{t}\right\}$ be the seasonal process,

$$
\left(1-.7 B^{2}\right) X_{t}=\left(1+.3 B^{2}\right) W_{t}, \quad W_{t} \sim \mathrm{WN}\left(0, \sigma^{2}\right)
$$

Find the coefficients $\left\{\psi_{j}\right\}$ such that $X_{t}=\sum_{j=0}^{\infty} \psi_{j} W_{t-j}$. Further, find the coefficients $\left\{\pi_{j}\right\}$ such that $W_{t}=\sum_{j=0}^{\infty} \pi_{j} X_{t-j}$.

