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1 Introduction

1.1 Some examples

Question: What is a time series?

Answer: It is a random sequence {Xt} recorded in a time ordered fashion.

Question: What are its applications?

Answer: Everywhere when data are observed in a time ordered fashion. For example:

• Economics: daily stock market quotations or monthly unemployment rates.

• Social sciences: population series, such as birthrates or school enrollments.

• Epidemiology: the number of influenza cases observed over some time period.

• Medicine: blood pressure measurements traced over time for evaluating drugs.

• Global warming?

Example 1.1. (Johnson & Johnson Quarterly Earnings) Figure 1.1 shows quarterly earnings per

share for the U.S. company Johnson & Johnson.

• 84 quarters (21 years) measured from the 1st quarter of 1960 to the last quarter of 1980.

require(astsa)

par(mar=c(4,4,2,.5))

plot(jj, type="o", ylab="Quarterly Earnings per Share",col="blue")
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Figure 1.1: Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-I to 1980-IV
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Example 1.2. (Global Warming) Figure 1.2 shows the global mean land-ocean temperature index

from 1880 to 2009 with the base period 1951-1980.

require(astsa)

par(mar=c(4,4,2,.5))

plot(gtemp, type="o", ylab="Global Temperature Deviations",col="blue")
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Figure 1.2: Yearly average global temperature deviations (1880-2009) in degrees centigrade.
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Example 1.3. (Speech Data) Figure 1.3 shows a small .1 second (1000 point) sample of recorded

speech for the phrase aaa· · · hhh.

require(astsa)

par(mar=c(4,4,2,.5))

plot(speech,col="blue")
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Figure 1.3: Speech recording of the syllable aaa· · · hhh sampled at 10,000 points per second with
n = 1020 points

Computer recognition of speech: use spectral analysis to produce a signature of this phrase and then

compare it with signatures of various library syllables to look for a match.
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1.2 Time Series Statistical Models

A time series model specifies the joint distribution of the sequence {Xt} of random variables; e.g.,

P (X1 ≤ x1, . . . , Xt ≤ xt) for all t and x1, . . . , xt.

where {X1, X2, . . . } is a stochastic process, and {x1, x2, . . . } is a single realization. Through this

course, we will mostly restrict our attention to the first- and second-order properties only:

E(Xt),Cov(Xt1 , Xt2)

Typically, a time series model can be described as

Xt = mt + st + Yt, (1.1)

where

mt : trend component;

st : seasonal component;

Yt : Zero-mean error.

The following are some zero-mean models:

Example 1.4. (iid noise) The simplest time series model is the one with no trend or seasonal

component, and the observations Xts are simply independent and identically distribution random

variables with zero mean. Such a sequence of random variable {Xt} is referred to as iid noise.

Mathematically, for any t and x1, . . . , xt,

P (X1 ≤ x1, . . . , Xt ≤ xt) =
∏
t

P (Xt ≤ xt) =
∏
t

F (xt),

where F (·) is the cdf of each Xt. Further E(Xt) = 0 for all t. We denote such sequence as Xt ∼
IID(0, σ2). IID noise is not interesting for forecasting since Xt | X1, . . . , Xt−1 = Xt.

Example 1.5. (A binary {discrete} process, see Figure 1.4) As an example of iid noise, a binary

process {Xt}is a sequence of iid random variables Xts with

P (Xt = 1) = 0.5, P (Xt = −1) = 0.5.

Example 1.6. (A continues process: Gaussian noise, see Figure 1.4) {Xt} is a sequence of iid normal

random variables with zero mean and σ2 variance; i.e.,

Xt ∼ N(0, σ2) iid
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Example 1.7. (Random walk) The random walt {St, t = 0, 1, 2, . . . } (starting at zero, S0 = 0) is

obtained by cumulatively summing (or “integrating”) random variables; i.e., S0 = 0 and

St = X1 + · · ·+Xt, for t = 1, 2, . . . ,

where {Xt} is iid noise (see Figure 1.4) with zero mean and σ2 variance. Note that by differencing,

we can recover Xt; i.e.,

∇St = St − St−1 = Xt.

Further, we have

E(St) = E

(∑
t

Xt

)
=
∑
t

E(Xt) =
∑
t

0 = 0; Var(St) = Var

(∑
t

Xt

)
=
∑
t

Var(Xt) = tσ2.

set.seed(100); par(mfrow=c(2,2)); par(mar=c(4,4,2,.5))

t=seq(1,60,by=1); Xt1=rbinom(length(t),1,.5)*2-1

plot(t,Xt1,type="o",col="blue",xlab="t",ylab=expression(X[t]))

t=seq(1,60,by=1); Xt2=rnorm(length(t),0,1)

plot(t,Xt2,type="o",col="blue",xlab="t",ylab=expression(X[t]))

plot(c(0,t),c(0,cumsum(Xt1)),type="o",col="blue",xlab="t",ylab=expression(S[t]))

plot(c(0,t),c(0,cumsum(Xt2)),type="o",col="blue",xlab="t",ylab=expression(S[t]))
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Figure 1.4: Top: One realization of a binary process (left) and a Gaussian noise (right). Bottom:
the corresponding random walk
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Example 1.8. (white noise) We say {Xt} is a white noise; i.e., Xt ∼WN(0, σ2), if

{Xt} is uncorrelated, i.e., Cov(Xt1 , Xt2) = 0 for any t1 and t2, with EXt = 0, VarXt = σ2.

Note that every IID(0, σ2) sequence is WN(0, σ2) but not conversely.

Example 1.9. (An example of white noise but not IID noise) Define Xt = Zt when t is odd,

Xt =
√

3Z2
t−1 − 2/

√
3 when t is even, where {Zt, t = 1, 3, . . . } is an iid sequence from distribution

with pmt fZ(−1) = 1/3, fZ(0) = 1/3, fZ(1) = 1/3. It can be seen that E(Xt) = 0, Var(Xt) = 2/3

for all t, Cov(Xt1 , Xt2) = 0 for all t1 and t2, since

Cov(Zt,
√

3Z2
t−1 − 2/

√
3) =

√
3Cov(Zt, Z

2
t ) = 0.

However, {Xt} is not an iid sequence. Since when Z2k is determined fully by Z2k−1.

Z2k−1 = 0⇒Z2k = −2/
√

3,

Z2k−1 = ±1⇒Z2k =
√

3− 2/
√

3.

A realization of this white noise can be seen from Figure 1.5.

set.seed(100); par(mfrow=c(1,2)); par(mar=c(4,4,2,.5))

t=seq(1,100,by=1); res=c(-1,0,1)

Zt=sample(res,length(t)/2,replace=TRUE); Xt=c()

for(i in 1:length(Zt)){

Xt=c(Xt,c(Zt[i], sqrt(3)*Zt[i]^2-2/sqrt(3)))}

plot(t,Xt,type="o",col="blue",xlab="t",ylab=expression(X[t]))

plot(c(0,t),c(0,cumsum(Xt)),type="o",col="blue",xlab="t",ylab=expression(S[t]))
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Figure 1.5: One realization of Example 1.9

If the stochastic behavior of all time series could be explained in terms of the white noise model,

classical statistical methods would suffice. Two ways of introducing serial correlation and more

smoothness into time series models are given in Examples 1.10 and 1.11.
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Example 1.10. (Moving Averages Smoother) This is an essentially nonparametric method for trend

estimation. It takes averages of observations around t; i.e., it smooths the series. For example, let

Xt =
1

3
(Wt−1 +Wt +Wt+1), (1.2)

which is a three-point moving average of the white noise series Wt. See Figure 1.9 for a realization.

Inspecting the series shows a smoother version of the first series, reflecting the fact that the slower

oscillations are more apparent and some of the faster oscillations are taken out.

set.seed(100); w = rnorm(500,0,1) # 500 N(0,1) variates

v = filter(w, sides=2, rep(1/3,3)) # moving average

par(mfrow=c(2,1)); par(mar=c(4,4,2,.5))

plot.ts(w, main="white noise",col="blue")

plot.ts(v, main="moving average",col="blue")
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Figure 1.6: Gaussian white noise series (top) and three-point moving average of the Gaussian white
noise series (bottom).
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Example 1.11. AR(1) model (Autoregression of order 1): Let

Xt = 0.6Xt−1 +Wt (1.3)

where Wt is a white noise series. It represents a regression or prediction of the current value Xt of a

time series as a function of the past two values of the series.

set.seed(100); par(mar=c(4,4,2,.5))

w = rnorm(550,0,1) # 50 extra to avoid startup problems

x = filter(w, filter=c(.6), method="recursive")[-(1:50)]

plot.ts(x, main="autoregression",col="blue",ylab=expression(X[t]))
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Figure 1.7: A realization of autoregression model (1.3)
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Example 1.12. (Random Walk with Drift) Let

Xt = δ +Xt−1 +Wt (1.4)

for t = 1, 2, . . . with X0 = 0, where Wt is WN(0, σ2). The constant δ is called the drift, and when

δ = 0, we have Xt being simply a random walk (see Example 1.7, and see Figure 1.8 for a realization).

Xt can also be rewritten as

Xt = δt+
t∑

j=1

Wj .

set.seed(150); w = rnorm(200,0,1); x = cumsum(w);

wd = w +.2; xd = cumsum(wd); par(mar=c(4,4,2,.5))

plot.ts(xd, ylim=c(-5,45), main="random walk",col="blue")

lines(x); lines(.2*(1:200), lty="dashed",col="blue")

random walk
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Figure 1.8: Random walk, σ = 1, with drift δ = 0.2 (upper jagged line), without drift, δ = 0 (lower
jagged line), and a straight line with slope .2 (dashed line).
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Example 1.13. (Signal in Noise) Consider the model

Xt = 2 cos(2πt/50 + 0.6π) +Wt (1.5)

for t = 1, 2, . . . , where the first term is regarded as the signal, and Wt ∼WN(0, σ2). Many realistic

models for generating time series assume an underlying signal with some consistent periodic variation,

contaminated by adding a random noise. Note that, for any sinusoidal waveform,

A cos(2πωt+ φ) (1.6)

where A is the amplitude, ω is the frequency of oscillation, and φ is a phase shift.

set.seed(100); cs = 2*cos(2*pi*1:500/50 + .6*pi); w = rnorm(500,0,1)

par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)

plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6*pi)),col="blue")

plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,1)),col="blue")

plot.ts(cs+5*w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,25)),col="blue")
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Figure 1.9: Cosine wave with period 50 points (top panel) compared with the cosine wave contami-
nated with additive white Gaussian noise, σ = 1 (middle panel) and σ = 5 (bottom panel).
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2 Stationary Processes

2.1 Measure of Dependence

Denote the mean function of {Xt} as

µX(t) = E(Xt),

provided it exists. And the autocovariance function of {Xt} is

γX(s, t) = Cov(Xs, Xt) = E[{Xs − µX(s)}{Xt − µX(t)}]

Preliminary results of covariance and correlation: for any random variables X,Y and Z,

Cov(X,Y ) = E(XY )− E(X)E(Y ) and Corr(X,Y ) = ρXY =
Cov(X,Y )√

Var(X)Var(Y )
.

1. −1 ≤ ρXY ≤ 1 for any X and Y

2. Cov(X,X) = Var(X)

3. Cov(X,Y ) = Cov(Y,X)

4. Cov(aX, Y ) = aCov(X,Y )

5. Cov(a+X,Y ) = Cov(X,Y )

6. If X and Y are independent, Cov(X,Y ) = 0

7. Cov(X,Y ) = 0 does not imply X and Y are independent

8. Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

9. Cov(
∑n

i=1 aiXi,
∑m

j=1 bjYj) =
∑n

i=1

∑m
j=1 aibjCov(Xi, Yj)

Verify 1–9 as a HW problem.

The time series {Xt} is (weakly) stationary if

1. µX(t) is independent of t;

2. γX(t+ h, h) is independent of t for each h.

We say {Xt} is strictly (or strongly) stationary if

(Xt1 , . . . , Xtk) and (Xt1+h, . . . , Xtk+h) have the same joint distributions

for all k = 1, 2, . . . , h = 0,±1,±2, . . . , and time points t1, . . . , tk. This is a very strong condition.
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Theorem 2.1. Basic properties of a strictly stationary time series {Xt}:

1. Xts are from the same distribution.

2. (Xt, Xt+h) =d (X1, X1+h) for all integers t and h.

3. {Xt} is weakly stationary if E(X2
t ) <∞ for all t.

4. Weak stationary does not imply strict stationary.

5. An iid sequence is strictly stationary.

Proof. The proof is quite straightforward and thus left as a HW problem.

Example 2.1. (q−dependent strictly stationary time series:) One of the simplest ways to construct

a time series {Xt} that is strictly stationary is to “filter” an iid sequence. Let {Zt} ∼ IID(0, σ2),

define

Xt = g(Zt, Zt−1, . . . , Zt−q)

for some real-valued function g. Then {Xt} is strictly stationary and also q−dependent; i.e., Xs and

Xt are independent whenever |t− s| > q.

A process, {Xt} is said to be a Gaussian process if the n dimensional vector X = (Xt1 , . . . , Xtn),

for every collection of time points t1, . . . , tn, and every positive integer n, have a multivariate normal

distribution.

Lemma 2.1. For Gaussian processes, weakly stationary is equivalent to strictly stationary.

Proof. It suffices to show that every weakly stationary Gaussian process {Xt} is strictly stationary.

Suppose it is not, then there must exists (t1, t2)
T and (t1 + h, t2 + h)T such that (Xt1 , Xt2)T and

(Xt1+h, Xt2+h)T have different distributions, which contradicts the assumption of weakly stationary.

In this following, unless indicated specifically, stationary always refers to weakly stationary .

Note, when {Xt} is stationary, rX(t+ h, h) can be written as γX(h) for simplicity since γX(t+ h, h)

does not depend on t for any given h.

Let {Xt} be a stationary time series. Its mean is µX = µX(t). Its autocovariance function

(ACVF) of {Xt} at lag h is

γX(h) = Cov(Xt+h, Xt).

Its autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) =
γX(h)

γX(0)
= Corr(Xt+h, Xt)

12



Theorem 2.2. Basic properties of γX(·):

1. γX(0) ≥ 0;

2. |γX(h)| ≤ γ(0) for all h;

3. γX(h) = γX(−h) for all h;

4. γX is nonnegative definite; i.e., a real valued function K defined on the integers is nonnegative

definite if and only if
n∑

i,j=1

aiK(i− j)aj ≥ 0

for all positive integers n and real vectors a = (a1, . . . , an)T ∈ Rn.

Proof. The first one is trivial since γX(0) = Cov(Xt, Xt) = Var(Xt) ≥ 0 for all t. The second is

based on the Cauchy-Schwarz inequality:

|γX(h)| = |Cov(Xt+h, Xt)| ≤
√

Var(Xt+h)
√

Var(Xt) = γX(0).

The third one is established by observing that

γX(h) = Cov(Xt+h, Xt) = Cov(Xt, Xt+h) = γX(−h).

The last statement can be verified by

0 ≤ Var(aTXn) = aTΓna =
n∑

i,j=1

aiγX(i− j)aj

where Xn = (Xn, . . . , X1)
T and

Γn = Var(Xn) =



Cov(Xn, Xn) Cov(Xn, Xn−1) · · · Cov(Xn, X2) Cov(Xn, X1)

Cov(Xn−1, Xn) Cov(Xn−1, Xn−1) · · · Cov(Xn−1, X2) Cov(Xn−1, X1)
...

Cov(X2, Xn) Cov(X2, Xn−1) · · · Cov(X2, X2) Cov(X2, X1)

Cov(X1, Xn) Cov(X1, Xn−1) · · · Cov(X1, X2) Cov(X1, X1)



=



γX(0) γX(1) · · · γX(n− 2) γX(n− 1)

γX(1) γX(0) · · · γX(n− 3) γX(n− 2)
...

γX(n− 2) γX(n− 3) · · · γX(0) γX(1)

γX(n− 1) γX(n− 2) · · · γX(1) γX(0)



Remark 2.1. An autocorrelation function ρ(·) has all the properties of an autocovariance function

and satisfies the additional condition ρ(0) = 1.
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Theorem 2.3. A real-valued function defined on the integers is the autocovariance function of a

stationary time series if and only if it is even and non-negative definite.

Proof. We only need prove that for any even and non-negative definite K(·), we can find a stationary

process {Xt} such that γX(h) = K(h) for any integer h. It is quite trivial to choose {Xt} to be a

Gaussian process such that Cov(Xi, Xj) = K(i− j) for any i and j.

2.1.1 Examples

Example 2.2. Consider

{Xt = A cos(θt) +B sin(θt)}

where A and B are two uncorrelated random variables with zero means and unit variances with

θ ∈ [−π, π]. Then

µX(t) = 0

γX(t+ h, t) = E(Xt+hXt)

= E[{A cos(θt+ θh) +B sin(θt+ θh)}{A cos(θt) +B sin(θt)}]

= cos(θt+ θh) cos(θt) + sin(θt+ θh) sin(θt)

= cos(θt+ θh− θt) = cos(θh)

which is free of h. Thus {Xt} is a stationary process. Further

ρX(h) = cos(θh)

14



Example 2.3. For white noise {Wt} ∼WN(0, σ2), we have

µW = 0, γW (h) =

{
σ2 if h = 0;

0 otherwise,
, ρW (h) =

{
1 if h = 0;

0 otherwise,

rho=function(h,theta){I(h==0)*1}

h=seq(-5,5,1); s=1:length(h); y=rho(h,.6)

plot(h,y,xlab="h",ylab=expression(rho[X](h)))

segments(h[s],y[s],h[s],0,col="blue")
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Example 2.4. (Mean Function of a three-point Moving Average Smoother). See Example 1.10, we

have Xt = 3−1(Wt−1 +Wt +Wt+1), where {Wt} ∼WN(0, σ2). Then

µX(t) =E(Xt) =
1

3
[E(Wt−1) + E(Wt) + E(Wt+1)] = 0,

γX(t+ h, t) =
3

9
σ2I(h = 0) +

2

9
σ2I(|h| = 1) +

1

9
σ2I(|h| = 2)

does not depend on t for any h. Thus, {Xt} is stationary. Further

ρX(h) = I(h = 0) +
2

3
I(|h| = 1) +

1

3
I(|h| = 2).

rho=function(h,theta){I(h==0)+2/3*I(abs(h)==1)+1/3*I(abs(h)==2)};

h=seq(-5,5,1); s=1:length(h); y=rho(h,.6);

plot(h,y,xlab="h",ylab=expression(rho[X](h))); segments(h[s],y[s],h[s],0,col="blue")
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Example 2.5. MA(1) process (First-order moving average):

Xt = Wt + θWt−1, t = 0,±1,±2, . . . ,

where {Wt} ∼WN(0, σ2) and θ is a constant. Then

µX(t) =0

γX(h) =σ2(1 + θ2)I(h = 0) + θσ2I(|h| = 1)

ρX(h) =I(h = 0) +
θ

1 + θ2
I(|h| = 1).

rho=function(h,theta){I(h==0)+theta/(1+theta^2)*I(abs(h)==1)}

h=seq(-5,5,1); s=1:length(h); y=rho(h,.6)

plot(h,y,xlab="h",ylab=expression(rho[X](h))); segments(h[s],y[s],h[s],0,col="blue")
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Example 2.6. AR(1) model (Autoregression of order 1). Consider the following model:

Xt = φXt−1 +Wt, t = 0,±1,±2, . . . ,

where {Wt} ∼WN(0, σ2) and Wt is uncorrelated with Xs for s < t. Assume that {Xt} is stationary

and 0 < |φ| < 1, we have

µX = φµX ⇒ µX = 0

Further for h > 0

γX(h) =E(XtXt−h) = E(φXt−1Xt−h +WtXt−h)

=φE(Xt−1Xt−h) + 0 = φCov(Xt−1Xt−h)

=φγX(h− 1) = · · · = φhγX(0).

And

γX(0) = Cov(φXt−1 +Wt, φXt−1 +Wt) = φ2γX(0) + σ2 ⇒ γX(0) =
σ2

1− φ2
.

Further, we have γX(h) = γX(−h), and

ρX(h) = φ|h|.

rho=function(h,phi){phi^(abs(h))}

h=seq(-5,5,1); s=1:length(h); y=rho(h,.6)

plot(h,y,xlab="h",ylab=expression(rho[X](h))); segments(h[s],y[s],h[s],0,col="blue")
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Example 2.7. (Mean Function of a Random Walk with Drift). See Example 1.12, we have

Xt = δt+

t∑
j=1

Wj , t = 1, 2, . . . ,

where {Wt} ∼WN(0, σ2)Then

µX(t) = E(Xt) = δt.

Obviously, when δ is not zero, {Xt} is not stationary, since its mean is not a constant. Further, if

δ = 0,

γX(t+ h, t) =Cov


t+h∑
j=1

Wj ,
t∑

j=1

Wj


= min{t+ h, t}σ2

is, again, not free of t. Thus {Xt} is not stationary for any δ.

Example 2.8. The MA(q) Process: {Xt} is a moving-average process of order q if

Xt = Wt + θ1Wt−1 + · · ·+ θqWt−q,

where {Wt} ∼WN(0, σ2) and θ1, . . . , θq are constants. We have

µX(t) =0

γX(h) =σ2
q−|h|∑
j=0

θjθj+|h|I(|h| ≤ q).

Proposition 2.1. If {Xt} is a stationary q−correlated time series (i.e., Cov(Xs, Xt) = 0 whenever

|s− t| > q) with mean 0, then it can be represented as an MA(q) process.

Proof. See Proposition 3.2.1 on page 89 of Brockwell and Davis (2009, Time Series Theory and

Methods).
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2.1.2 Identify Non-Stationary Time Series

After learning all the above stationary time series, one question would naturally arise is that, what

kind of time series is not stationary? Plotting the data would always be helpful to identify the

stationarity of your time series data.

• Any time series with non-constant trend is not stationary. For example, if Xt = mt + Yt with

trend mt and zero-mean error Yt. Then µX(t) = mt is not a constant. For example, the

following figure plots a realization of Xt = 1 + 0.5t+ Yt, where {Yt} ∼ N(0, 1) iid.

set.seed(100); par(mar=c(4,4,2,.5))

t=seq(1,100,1); Tt=1+.05*t; Xt=Tt+rnorm(length(t),0,2)

plot(t,Xt,xlab="t",ylab=expression(X[t])); lines(t,Tt,col="blue")
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• Any time series with seasonal trend is not stationary. For example, if Xt = st+Yt with seasonal

trend st and zero-mean error Yt. Then µX(t) = st is not a constant. For example, the following

figure plots a realization of Xt = 1 + 0.5t+ 2 cos(πt/5) + 3 sin(πt/3) +Wt, where {Yt} ∼ N(0, 1)

iid.

set.seed(100); par(mar=c(4,4,2,.5)); t=seq(1,100,1); Tt=1+.05*t;

St=2*cos(pi*t/5)+3*sin(pi*t/3); Xt=Tt+St+rnorm(length(t),0,2)

plot(t,Xt,xlab="t",ylab=expression(X[t])); lines(t,Tt+St,col="blue")
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• Any time series with non-constant variance is not stationary. For example, random walk

{St =
∑t

j=1Xt} with Xt being iid N(0, 1).

set.seed(150); par(mar=c(4,4,2,.5)); t=seq(1,200,by=1); Xt1=rnorm(length(t),0,1)

plot(c(0,t),c(0,cumsum(Xt1)),type="o",col="blue",xlab="t",ylab=expression(S[t]))
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Another way you may have already figured out by yourself of identifying stationarity is based on

the shape of the autocorrelation function (ACF). However, in applications, you can never know the

true ACF. Thus, a sample version of it could be useful. In the following, we produce the estimators

of µX , ACVF, and ACF. Later, we will introduce the asymptotic properties of these estimators.

For observations x1, . . . , xn of a time series, the sample mean is

x =
1

n

n∑
t=1

xt.

The sample auto covariance function is

γ̂X(h) =
1

n

n−|h|∑
t=1

(xt+|h| − x)(xt − x), for − n < h < n.

This is like the sample covariance of (x1, xh+1), . . . , (xn−h, xn), except that

• we normalize it by n instead of n− h,

• we subtract the full sample mean.

This setting ensures that the sample covariance matrix Γ̂n = [γ̂X(i− j)]ni,j=1 is nonnegative definite.

The sample autocorrelation function (sample ACF) is

ρ̂X(h) =
γ̂X(h)

γ̂X(0)
, for − n < h < n.

The sample ACF can help us recognize many non-white (even non-stationary) time series.
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Some guidelines:

Time series: Sample ACF

White noise Zero for |h| > 0

Trend Slow decay

Periodic Periodic

MA(q) Zero for |h| > q

AR(1) Decays to zero exponentially

set.seed(100);

par(mfrow=c(5,2))

par(mar=c(4,4,2,.5))

#White Noise

WN=rnorm(100,0,1);

plot(1:n,WN,type="o",col="blue",main="White Noise",ylab=expression(X[t]),xlab="t");

acf(WN)

#Trend

t=seq(1,100,1);

Tt=1+.1*t;

Xt=Tt+rnorm(length(t),0,4)

plot(t,Xt,xlab="t",ylab=expression(X[t]),main="Trend")

lines(t,Tt,col="blue")

acf(Xt)

#Periodic

t=seq(1,150,1)

St=2*cos(pi*t/5)+3*sin(pi*t/3)

Xt=St+rnorm(length(t),0,2)

plot(t,Xt,xlab="t",ylab=expression(X[t]), main="Periodic")

lines(t,St,col="blue")

acf(Xt)

#MA(1)

w = rnorm(550,0,1)

v = filter(w, sides=1, c(1,.6))[-(1:50)]

plot.ts(v, main="MA(1)",col="blue",ylab=expression(X[t]),xlab="t")

acf(v)

#AR(1)

w = rnorm(550,0,1)

x = filter(w, filter=c(.6), method="recursive")[-(1:50)]

plot.ts(x, main="AR(1)",col="blue",ylab=expression(X[t]),xlab="t")

acf(x)
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The typical procedure of time series modeling can be described as

1. Plot the time series (look for trends, seasonal components, step changes, outliers).

2. Transform data so that residuals are stationary.

(a) Estimate and subtract mt, st.

(b) Differencing

(c) Nonlinear transformations (log,
√
· )

3. Fit model to residuals.

Now, we introduce the difference operator ∇ and the backshift operator B.

• Define the lag-1 difference operator: (think ’first derivative’)

∇Xt =
Xt −Xt−1
t− (t− 1)

= Xt −Xt−1 = (1−B)Xt

where B is the backshift operator, BXt = Xt−1.

• Define the lag-s difference operator,

∇sXt = Xt −Xt−s = (1−Bs)Xt,

where Bs is the backshift operator applied s times, BsXt = B(Bs−1Xt) and B1Xt = BXt.

Note that

• If Xt = β0 + β1t+ Yt, then

∇Xt = β1 +∇Yt.

• if Xt =
∑k

i=0 βit
i + Yt, then

∇kXt = k!βk +∇kYt,

where ∇kXt = ∇(∇k−1Xt) and ∇1Xt = ∇Xt.

• if Xt = mt + st + Yt and st has period s (i.e., st = st−s for all t), then

∇sXt = mt −mt−s +∇sYt.
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2.2 Linear Processes

Every second-order stationary process is either a linear process or can be transformed to a linear

process by subtracting a deterministic component, which will be discussed later.

The time series {Xt} is a linear process if it has the representation

Xt = µ+
∞∑

j=−∞
ψjWt−j ,

for all t, where {Wt} ∼ WN(0, σ2), µ is a constant, and {ψj} is a sequence of constants with∑∞
j=−∞ |ψj | <∞. if we define ψ(B) =

∑∞
j=−∞ ψjB

j , then the linear process Xt = µ+ ψ(B)Wt.

Note that the condition
∑∞

j=−∞ |ψj | < ∞ ensures that Xt is meaningful; i.e., |Xt| < ∞ almost

surely. Since E|Wt| ≤ σ for all t and

P (|Xt| ≥ α) ≤ 1

α
E|Xt| ≤

1

α

|µ|+ ∞∑
j=−∞

|ψj |E|Wt−j |


≤ 1

α

|µ|+ σ

∞∑
j=−∞

|ψj |

→ 0 as α→ 0.

Before proceeding, we provide a brief introduction of several types of convergence in statistics.

We say a sequence of random variables Xn converges in mean square to a random variable X (denoted

by Xn
L2

→ X) if

E(Xn −X)2 → 0 as n→∞.

More generally, we have convergence in r-th mean, denoted by Xn
Lr

→ X, if

E(|Xn −X|r)→ 0 as n→∞.

Also, we say that Xn converges in probability to X, denoted by Xn
p→ X, if

P{|Xn −X| > a} → 0, for all a > 0, as n→∞.

Xn converges in distribution to X, denoted by Xn
p→ X, if

Fn(X)→ F (X) as n→∞,

at the continuity points of F (·). The last one is convergence almost surely denoted by Xn
a.s.→ X

(which will not be used in this course). The relationship between these convergences is, for r > 2,

Lr

→ ⇒ L2

→ ⇒ p→ ⇒ d→ .
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This course mainly focuses on convergence in mean square. One easy way to prove this convergence

is through the use of the following theorem:

Theorem 2.4. (Riesz-Fisher Theorem, Cauchy criterion.) Xn converges in mean square if and

only if

lim
m,n→∞

E(Xm −Xn)2 = 0.

Example 2.9. Linear processXt =
∑∞

j=−∞ ψjWt−j , then if
∑∞

j=−∞ |ψj | <∞, we have
∑∞

j=−∞ ψjWt−j

converges in mean square.

Proof. Defining Sn =
∑n

j=−n ψjWt−j , we have

E(Sm − Sn)2 =E

 ∑
m≤j≤n

ψjWt−j

2

=
∑

m≤j≤n
ψ2
jσ

2 ≤ σ2
 ∑
m≤j≤n

|ψj |

2

→ 0 as m,n→∞.

Lemma 2.2. Linear process {Xt} defined above is stationary with

µX =µ (2.1)

γX(h) =σ2
∞∑

j=−∞
ψj+hψj . (2.2)

Proof. Equation (2.1) is trivial. For (2.2), we have

γX(h) =E

 ∞∑
j=−∞

ψjWt+h−j

 ∞∑
j=−∞

ψjWt−j


=

∞∑
j=−∞

∞∑
k=−∞

ψjψkE(Wt+h−jWt−k) =
∞∑

j=−∞

∞∑
k=−∞

ψjψkγW (h− j + k)

=

∞∑
j=−∞

∞∑
k=−∞

ψjψkI(k = j − h)σ2 = σ2
∞∑

j=−∞
ψjψj−h = σ2

∞∑
j=−∞

ψj+hψj .

Proposition 2.2. Let {Yt} be a stationary time series with mean 0 and covariance function γY . If∑∞
j=−∞ |ψj | <∞, then the time series

Xt =

∞∑
j=−∞

ψjYt−j = ψ(B)Yt
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is stationary with mean 0 and autocovariance function

γX(h) =

∞∑
j=−∞

∞∑
k=−∞

ψjψkγY (h− j + k)

It can be easily seen that white noise, MA(1), AR(1), MA(q) and MA(∞) are all special examples

of linear processes.

• White noise: choose µ, and ψj = I(j = 0), we have Xt = µ +
∑∞

j=−∞ ψjWt−j = µ + Wt ∼
WN(µ, σ2).

• MA(1): choose µ = 0, ψj = I(j = 0) + θI(j = 1), we have Xt = µ +
∑∞

j=−∞ ψjWt−j =

Wt + θWt−1.

• AR(1): choose µ = 0, ψj = φjI(j ≥ 0), we have Xt = µ +
∑∞

j=−∞ ψjWt−j =
∑∞

j=0 φ
jWt−j =

Wt + φ
∑∞

j=0 φ
jWt−1−j = Wt + φXt−1

• MA(q): choose µ = 0, ψj = I(j = 0) +
∑q

k=1 θkI(j = k), we have Xt = µ+
∑∞

j=−∞ ψjWt−j =

Wt + θ1Wt−1 + · · ·+ θqWt−q.

• MA(∞): choose µ = 0, ψj =
∑∞

k=0 θkI(j = k), we have Xt = µ +
∑∞

j=−∞ ψjWt−j =∑∞
j=0 ψjWt−j .

2.3 AR(1) and AR(p) Processes

2.3.1 AR(1) process

In this section, we provide closer investigation on the AR(1) process which has been briefly introduced

in Example 2.6. An AR(1) process was defined in Example 2.6 as a stationary solution {Xt} of the

equations

Xt − φXt−1 = Wt, for all t, (2.3)

where {Wt} ∼WN(0, σ2), and Zt is uncorrelated with Xs for s < t.

• When φ = 0, it is so trivial that Xt = Wt.

• When 0 < |φ| < 1, we now show that such a solution exists and is the unique stationary

solution of (2.3). In the above, we have already shown that

Xt =
∞∑
j=0

φjWt−j , (2.4)
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This can be found easily through the aid of φ(B) = 1− φB and π(B) =
∑∞

j=0 φ
jBj . We have

Xt − φXt−1 = Wt

⇒ π(B)(Xt − φXt−1) = π(B)Wt

⇒ π(B)φ(B)Xt = π(B)Wt

⇒ Xt = π(B)Wt =

∞∑
j=0

φjWt−j .

The last step is due to

π(B)φ(B) = (1− φB)
∞∑
j=0

φjBj =
∞∑
j=0

φjBj −
∞∑
j=1

φjBj = 1

which is similarly to the summation of geometric series:

∞∑
j=0

φjBj =

∞∑
j=0

(φB)j =
1

1− φB
.

It can be easily seen that it is stationary with mean 0 and ACVF γX(h) = σ2φh/(1 − φ2),
which are the same as in Example 2.6. Further, we show this solution is unique. Suppose {Yt}
is another stationary solution, then by iterating, we have

Yt =φYt−1 +Wt

=Wt + φWt−1 + φ2Yt−2

= · · ·

=Wt + φWt−1 + · · ·+ φkWt−k + φk+1Yt−k−1

Then

E

Yt − k∑
j=0

φjWt−j

2

= φ2k+2E(Y 2
t−k−1)→ 0 as k →∞.

This implies that Yt is equal to the mean square limit
∑∞

j=0 φ
jWt−j and hence the uniqueness

is proved.

• When |φ| > 1, the series defined in (2.4) does not converge. However, we can rewrite (2.3) in

the form

Xt = −φ−1Wt+1 + φ−1Xt+1.

By iterating, we have

Xt = −φ−1Wt+1 − · · · − φ−k−1Wt+k+1 + φ−k−1Xt+k+1,
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which shows that

Xt = −
∞∑
j=1

φ−jWt+j

is the unique stationary solution of (2.3). However, this is very hard to interpret, since Xt is

defined to be correlated with future values of Zs. Another way to look at this case is to define

a new sequence

W ∗t =Xt −
1

φ
Xt−1 = (φ− φ−1)Xt−1 +Wt = −(φ− φ−1)

∞∑
j=1

φ−jWt−1+j +Wt

=
1

φ2
Wt − (1− φ−2)

∞∑
j=1

φ−jWt+j

Standard arguments yields that (left as a HW problem)

E(W ∗t ) =0

γW ∗(h) =
σ2

φ2
I(h = 0);

i.e., {W ∗t } is a new white noise sequence with mean 0 and variance σ2/φ2, then we have a new

AR(1) model

Xt = φ∗Xt−1 +W ∗t

with |φ∗| = 1/|φ| < 1. Thus, we can rewrite the unique stationary solution as

Xt =
∞∑
j=0

φ∗jW ∗t−j

which now does not depend on future values. Thus, for an AR(1) model, people typically

assumes that |φ| < 1.

• When |φ| = 1. If there is a stationary solution to (2.3), check

Cov(Xt−1,Wt) = Cov(Xt−1, Xt − φXt−1) = γX(1)− φγX(0) = 0

This holds if and only if Xt = φXt−1 + b for some constant b. Then {Wt = b} is a constant

process. Since {Wt} is a white noise, then b has to be zero. Now we have

Xt = φXt−1.

When φ = −1, Xt has to be all zeros. When φ = 1, then Xt are all constants. So if we quire

σ > 0, then there is no stationary solution; if more broadly, we allow σ = 0, i.e., {Wt = 0},
then when φ = −1, there is a stationary solution which is Xt = 0; when φ = 1, there is also a

stationary solution that Xt = µX . In the following, we require σ > 0.
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Remark 2.2. This example introduced a very important terminology: causality. We say that {Xt}
is a causal function of {Wt}, or more concisely that {Xt} is a causal autoregressive process,

if Xt has a representation in terms of {Ws, s ≤ t}; i.e., the current status only relates to the past

events, not the future.

A linear process {Xt} is causal (strictly, a causal function of {Wt}), if there is a

ψ(B) = ψ0 + ψ1B + ψ2B
2 + · · ·

with
∑∞

j=0 |ψj | <∞ such that

Xt = ψ(B)Wt =
∞∑
j=0

ψjWt−j .

• When |φ| < 1, AR(1) process {Xt} is a causal function of {Wt}.

• When |φ| > 1, AR (1) process is not causal.

Proposition 2.3. AR(1) process φ(B)Xt = Wt with φ(B) = 1− φB is causal if and only if |φ| < 1

or the root z1 of the polynomial φ(z) = 1− φz satisfies |z1| > 1.

2.3.2 AR(p) process

An AR(p) process {Xt} is a stationary process that satisfies

Xt − φ1Xt−1 − · · · − φpXt−p = Wt

where {Wt} ∼WN(0, σ2). Equivalently, φ(B)Xt = Wt where φ(B) = 1− φ1B − · · · − φpBp.

Recall that, for p = 1, φ(B) = 1 − φ1B, and for this AR(1) model, Xt is stationary only if

|φ1| 6= 1. This is equivalent to that for any z ∈ R such that φ(z) = 1− φz satisfis |z| 6= 1, or

for any z ∈ C such that φ(z) = 1− φz satisfis |z| 6= 1.

Now for the AR(p) model, similarly, we should have

for any z ∈ C such that φ(z) = 1− φ1z − · · · − φpzp satisfis |z| 6= 1.

Theorem 2.5. A (unique) stationary solution to φ(B)Xt = Wt exists if and only if

φ(z) = 1− φ1z − · · · − φpzp = 0 ⇒ |z| 6= 1

Further, this AR(p) process is causal if and only if

φ(z) = 1− φ1z − · · · − φpzp = 0 ⇒ |z| > 1 (2.5)
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When (2.5) is satisfied, based on causality, we can write

Xt = ψ(B)Wt

where ψ(B) = ψ0 +ψ1B +ψ2B
2 + · · · for some ψjs satisfying

∑∞
j=0 |ψj | <∞. The question is then,

how to calculate ψjs? One way is to matching the coefficients.

φ(B)Xt = Wt and Xt = ψ(B)Wt

⇒ 1 = ψ(B)φ(B)

⇔ 1 = (ψ0 + ψ1B + ψ2B
2 + · · · )(1− φ1B − · · · − φpBp)

⇔ 1 = ψ0,

0 = ψ1 − φ1ψ0,

0 = ψ2 − φ1ψ1 − φ2ψ0

...

⇔ 1 = ψ0, 0 = ψj (j < 0), 0 = φ(B)ψj (j > 0).

2.4 MA(1) and MA(q) Processes

Now, we look at the MA(1) process defined in Example 2.5. An MA(1) process {Xt} is defined as

Xt = Wt + θWt−1

where {Wt} ∼ WN(0, σ2). Obviously, {Xt} is a causal function of {Wt}. But more importantly is

about another terminology: invertibility. Just as causality means that Xt is expressible in terms

of {Ws, s ≤ t}, invertibility means that Wt is expressible in terms of {Xs, s ≤ t}.

A linear process {Xt} is invertible (strictly, a invertible function of {Wt}), if there is a

π(B) = π0 + π1B + π2B
2 + · · ·

with
∑∞

j=0 |πj | <∞ such that

Wt = π(B)Xt =

∞∑
j=0

πjXt−j .

Obviously, AR(1) process is invertible. Back to the MA(1) process:

• When |θ| < 1, we have

(1 + θB)−1 =

∞∑
j=0

(−θ)jBj
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Thus

Xt = Wt + θWt−1 = (1 + θB)Wt

⇒ (1 + θB)−1Xt = Wt

⇔ Wt =

∞∑
j=0

(−θ)jXt−j .

We have {Xt} as a invertible function of {Wt}.

• when |θ| > 1, the sum
∑∞

j=0(−θ)jXt−j diverges, but we can write

Wt = − θ−1Wt+1 + θ−1Xt+1

= θ−1Xt+1 − θ−2Xt+2 + θ−2Wt+2

= · · · = −
∞∑
j=1

(−θ)−jXt+j .

Now, MA(1) is not invertible.

• When θ = 1, we have Xt = Wt +Wt−1. If we have Wt =
∑∞

j=0 πjXt−j , then

Xt =
∞∑
j=0

πjXt−j +
∞∑
j=0

πjXt−1−j =
∞∑
j=0

πjXt−j +
∞∑
j=1

πj−1Xt−j = π0Xt +
∞∑
j=1

(πj + πj−1)Xt−j .

Thus, we have have πj + πj−1 = 0 and π0 = 1, which means πj = (−1)j . Then

∞∑
j=0

|πj | <∞

is not possible. So MA(1) is not invertible when θ = 1; similarly when θ = −1. One may

notice that, similarly as the case of |φ| = 1 in the AR(1) model, if we allow σ = 0, then we

have Xt = 0 and Wt = 0 = Xt so invertible. But this is a nonsense case. So in the following,

we require σ > 0.

Sec 4.4 in Brockwell and Davis (2009, Time Series Theory and Methods) defines invertibility in

a more general way that is if we can express Wt as Wt =
∑∞

j=0 πjXt−j . It does not require that∑∞
j=0 |πj | < ∞. With this more general meaning invertibility, we have Xt is invertible when

|θ| = 1. In the remaining context, we will keep our more realistic restriction of
∑∞

j=0 |πj | <∞.

Proposition 2.4. MA(1) process Xt = θ(B)Wt where θ(B) = 1 + θB is not invertible if and only

if |θ| ≥ 1 or the root z1 of the polynomial θ(z) = 1 + θz satisfies |z1| ≤ 1.
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Theorem 2.6. The MA(q) process Xt = π(B)Wt where

π(B) = 1 + θ1B + · · ·+ θqB
q

is not invertible if and only if

π(z) = 1 + θ1z + · · ·+ θqz
q = 0 ⇒ |z| ≤ 1.

Based on invertibility, we can write

Wt = π(B)Xt

where π(B) = π0 + π1B + π2B
2 + · · · for some πjs satisfying

∑∞
j=0 |πj | <∞. The question is then,

how to calculate πjs? One way is to matching the coefficients.

Xt = θ(B)Wt and Wt = π(B)Xt

⇒ 1 = π(B)θ(B)

⇔ 1 = (π0 + π1B + π2B
2 + · · · )(1 + θ1B + · · ·+ θpB

p)

⇔ 1 = π0,

0 = π1 + θ1π0,

0 = π2 + θ1π1 + θ2π0

...

⇔ 1 = π0, 0 = πj (j < 0), 0 = θ(B)πj (j > 0).
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2.5 ARMA(1,1) Processes

In this subsection we introduce, through an example, some of the key properties of an important

class of linear processes known as ARMA (autoregressive moving average) processes. This example

is the ARMA(1,1) processes. Higher-order ARMA processes will be discussed later.

The time series {Xt} is an ARMA(1,1) process if it is stationary and satisfies (for every t)

Xt − φXt−1 = Wt + θWt−1, (2.6)

where {Wt} ∼WN(0, σ2), σ > 0, and φ+ θ 6= 0.

Let us find the expression of {Xt} in terms of {Wt}:

• When |φ| = 0, we have the trivial solution Xt = Wt + θWt−1.

• When 0 < |φ| < 1, we have meaning full definition of
∑∞

j=0 φ
jBj . Then applying it to both

sides of (2.6) provides that

∞∑
j=0

φjBj(1− φB)Xt = Xt =

 ∞∑
j=0

φjBj

 (1 + θB)Wt

=

 ∞∑
j=0

φjBj + θ
∞∑
j=0

φjBj+1

Wt

=Wt + (φ+ θ)
∞∑
j=1

φj−1Wt−j . (2.7)

This is one MA(∞) process, and of course stationary. For the uniqueness, suppose we have

another stationary solution Yt, then we have

Yt = Wt + θWt−1 + φYt−1

= Wt + (θ + φ)Wt−1 + θφWt−2 + φ2Yt−2

= · · · = Wt + (θ + φ)Wt−1 + (θ + φ)φWt−2 + · · ·+ (θ + φ)φk−1Wt−k + φk+1Yt−k−1

Then

E

Yt −Wt − (φ+ θ)

k∑
j=1

φj−1Wt−j

2

= φ2k+2E(Y 2
t−k−1)→ 0 as k →∞.

Hence, solution (2.7) is the unique stationary solution of (2.6) providing that |φ| < 1.
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• When |φ| > 1, we have

Xt =− θφ−1Wt − φ−1Wt+1 + φ−1Xt+1

=− θφ−1Wt − (θ + φ)φ−2Wt+1 − φ−2Wt+2 + φ−2Xt+2

= · · · = −θφ−1Wt − (θ + φ)
k∑
j=1

φ−j−1Wt+j − φ−k−1Wt+k+1 + φ−k−1Xt+k+1

Then

E

Xt −

−θφ−1Wt − (θ + φ)

k∑
j=1

φ−j−1Wt+j


2

=φ−2k−2E(Wt+k+1 +Xt+k+1)
2 → 0 as k →∞.

Thus, we have a unique stationary solution of (2.6) when |φ| > 1 as

Xt = −θφ−1Wt − (θ + φ)
∞∑
j=1

φ−j−1Wt+j . (2.8)

Again, this solution depends on future values of Wt.

• When |φ| = 1, there is no stationary solution of (2.6) (left as a HW problem). Thus, no

stationary ARMA(1,1) process when |φ| = 1.

Summary:

• A stationary solution of the ARMA(1,1) equations exists if and only if |φ| 6= 1.

• If |φ| < 1, then the unique stationary solution is given by (2.7). In this case, we say that {Xt}
is causal or a causal function of {Wt}, since Xt can be expressed in terms of the current and

past values {Ws, s ≤ t}.

• If |φ| > 1, then the unique stationary solution is given by (2.8). In this case, we say that {Xt}
is noncausal since Xt is then a function of current and future values {Ws, s ≥ t}.

For invertibility, we have, by switching the roles of Xt and Wt, and the roles of φ and θ,

• If |θ| < 1, then ARMA(1,1) process is invertible as

Wt = Xt − (φ+ θ)
∞∑
j=1

(−θ)j−1Xt−j .

• If |θ| > 1, then ARMA(1,1) process is noninvertible as

Wt = −φθ−1Xt + (θ + φ)
∞∑
j=1

(−θ)−j−1Wt+j .
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• If |θ| = 1, the ARMA(1,1) process is invertible under the more general definition of invertibility

same as in the MA(1) process. Without this more general setting, we say the ARMA(1,1)

process is noninvertible when |θ| = 1.

Like the argument in last subsection of AR(1) model, if the ARMA(1,1) process {Xt} is noncausal

and noninvertible; i.e., |φ| > 1 and |θ| > 1, then we define

φ̃(B) = 1− φ−1B and θ̃(B) = 1 + θ−1B

and let

W ∗t = θ̃−1(B)φ̃(B)Xt

Once verifying that

{W ∗t } ∼WN(0, σ2∗) and φ̃(B)Xt = θ̃(B)W ∗t , (2.9)

we have {Xt} being a causal and invertible ARMA(1,1) process relative to the white noise sequence

{W ∗t }. Threre, from a second-order point of view, nothing is lost by restricting attention to causal

and invertible ARMA(1,1) models. This statement is also true for higher-ordered ARMA models.

Now, we show (2.9). It is easy to see that θ̃(B)W ∗t = θ̃(B)θ̃−1(B)φ̃(B)Xt = φ̃(B)Xt. It suffices

to show {W ∗t } is a white noise. This is left as a HW problem.
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2.6 Properties of Xn, γ̂X(h) and ρ̂X(h)

2.6.1 For Xn

Recall that, for observations x1, . . . , xn of a time series, the sample mean is

x =
1

n

n∑
t=1

xt.

The sample auto covariance function is

γ̂X(h) =
1

n

n−|h|∑
t=1

(xt+|h| − x)(xt − x), for − n < h < n.

The sample autocorrelation function (sample ACF) is

ρ̂X(h) =
γ̂X(h)

γ̂X(0)
.

Estimation of µX : The moment estimator of the mean µX of a stationary process {Xt} is the

sample mean

Xn = n−1
n∑
t=1

Xt. (2.10)

Obviously, it is unbiased; i.e., E(Xn) = µX . Its mean squared error is

Var(Xn) =E(Xn − µX)2

=n−2
n∑
i=1

n∑
j=1

Cov(Xi, Xj) = n−2
n∑
i=1

n∑
j=1

γX(i− j)

=n−2
n∑

i−j=−n
(n− |i− j|)γX(i− j) = n−1

n∑
h=−n

(
1− |h|

n

)
γX(h)

=
γX(0)

n︸ ︷︷ ︸
is Var(Xn) when {Xt} are iid

+
2

n

n−1∑
h=1

(
1− |h|

n

)
γX(h).

• Depending on the nature of the correlation structure, the standard error of Xn may be smaller

or larger than the white noise case.

– Consider Xt = µ+Wt − 0.8Wt−1, where {Wt} ∼WN(0, σ2), then

Var(Xn) =
γX(0)

n
+

2

n

n−1∑
h=1

(
1− |h|

n

)
γX(h) =

1.64σ2

n
− 1.6(n− 1)σ2

n2
<

1.64σ2

n
.
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– And if Xt = µ+Wt + 0.8Wt−1, where {Wt} ∼WN(0, σ2), then

Var(Xn) =
γX(0)

n
+

2

n

n−1∑
h=1

(
1− |h|

n

)
γX(h) =

1.64σ2

n
+

1.6(n− 1)σ2

n2
>

1.64σ2

n
.

• If γX(h)→ 0 as h→∞, we have

|Var(Xn)| ≤ γX(0)

n
+ 2

∑n
h=1 |γX(h)|

n
→ 0 as n→∞.

Thus, Xn converges in mean square to µ.

• If
∑∞

h=−∞ |γX(h)| <∞, then

nVar(Xn) =

n∑
h=−n

(
1− |h|

n

)
γX(h) = γX(0) + 2

∑n
h=1(n− h)γX(h)

n
= γX(0) + 2

∑n−1
h=1

∑h
i=1 γX(i)

n

→γX(0) + 2

∞∑
i=1

γX(i) =

∞∑
h=−∞

γX(h) = γX(0)

∞∑
h=−∞

ρX(h).

One interpretation could be that, instead of Var(Xn) ≈ γX(0)/n, we have Var(Xn) ≈ γX(0)/(n/τ)

with τ =
∑∞

h=−∞ ρX(h).

The effect of the correlation is a reduction of sample size from n to n/τ .

Example 2.10. For linear processes, i.e., if Xt = µ+
∑∞

j=−∞ ψjWt−j with
∑∞

j=−∞ |ψj | <∞,

then

∞∑
h=−∞

|γX(h)| =
∞∑

h=−∞
|σ2

∞∑
j=−∞

ψjψj+h|

≤
∞∑

h=−∞
σ2

∞∑
j=−∞

|ψj | · |ψj+h|

= σ2
∞∑

j=−∞
|ψj |

∞∑
h=−∞

|ψj+h|

= σ2

 ∞∑
j=−∞

|ψj |

2

<∞

To make inference about µX (e.g., is µX = 0?), using the sample mean Xn, it is necessary to know

the asymptotic distribution of Xn:

If {Xt} is Gaussian stationary time series, then, for any n,

√
n(Xn − µX) ∼ N

(
0,

n∑
h=−n

(
1− |h|

n

)
γX(h)

)
.
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Then one can obtain exact confidence intervals of estimating µX , or approximated confidence intervals

if it is necessary to estimate γX(·).

For the linear process, Xt = µ +
∑∞

j=−∞ ψjWt−j with {Wt} ∼ IID(0, σ2),
∑∞

j=−∞ |ψj | < ∞ and∑∞
j=−∞ ψj 6= 0, then

√
n(Xn − µX) ∼ AN(0, ν), (2.11)

where ν =
∑∞

h=−∞ γX(h) = σ2(
∑∞

j=−∞ ψj)
2.

The proof of (2.11) can be found in Page 238 of Brockwell and Davis (2009, Time Series Theory and

Methods). Very roughly, recall

γX(h) = σ2
∞∑

j=−∞
ψjψj+h,

then

lim
n→∞

nVar(Xn) = lim
n→∞

n∑
h=−n

(
1− |h|

n

)
γX(h)

= lim
n→∞

σ2
∞∑

j=−∞
ψj

n∑
h=−n

(
1− |h|

n

)
ψj+h

= σ2

 ∞∑
j=−∞

ψj

2

The above results for the linear process, also hold for ARMA models. Naturally,

(Xn − 1.96
√
ν/n,Xn + 1.96

√
ν/n).

is an approximated 95% confidence interval for µX .

Since ν is typically unknown, naturally, we have an approximated 95% confidence interval of µX

as

(Xn − 1.96
√
ν̂/n,Xn + 1.96

√
ν̂/n),

once we can obtain an estimator ν̂ of ν =
∑∞

h=−∞ γX(h).

• One intuitive way is to use ν̂ =
∑∞

h=−∞ γ̂X(h). However, based on finite sample {X1, . . . , Xn},
it is impossible to obtain a reasonable estimator of γX(h) for h ≥ n. Then, why not use

ν̂ =
∑n−1

h=−(n−1) γ̂X(h). Vary sadly and interestingly, this ν̂ is always zero. A compromising

estimator ν̂ is then

ν̂ =

[
√
n]∑

h=−[
√
n]

(
1− |h|

[
√
n]

)
γ̂X(h)

• If we known the model of the time series, i.e., we have explicit formula of γX(h). For example,
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say we have an AR(1) {Xt} with mean µX satisfies

Xt − µX = φ(Xt−1 − µX) +Wt,

we have γX(h) = φ|h|σ2/(1− φ2) and consequently, ν = σ2/(1− φ)2. Then we have

ν̂ =
σ̂2

(1− φ̂)2
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2.6.2 For γX(h) and ρX(h)

Estimators of γX(h) and ρX(h) is defined by

γ̂X(h) =n−1
n−|h|∑
t=1

(Xt+|h| −Xn)(Xt −Xn), (2.12)

ρ̂X(h) =
γ̂X(h)

γ̂X(0)
. (2.13)

First let us check that ν̂ =
∑n−1

h=−(n−1) γ̂X(h) is always zero.

ν̂ =
n−1∑

h=−(n−1)

n−1
n−|h|∑
t=1

(Xt+|h| −Xn)(Xt −Xn)

=n−1
n∑
t=1

(Xt −Xn)2 + 2n−1
n−1∑
h=1

n−h∑
t=1

(Xt+h −Xn)(Xt −Xn)

=n−1
n∑
t=1

(X2
t − 2XtXn +X

2
n) + 2n−1

n−1∑
h=1

n−h∑
t=1

(Xt+hXt −XtXn −Xt+hXn +X
2
n)

=n−1
n∑
t=1

X2
t −X

2
n + 2n−1

n−1∑
h=1

n−h∑
t=1

(Xt+hXt −XtXn −Xt+hXn +X
2
n)

=n−1
n∑
t=1

X2
t − nX

2
n + 2n−1

n−1∑
h=1

n−h∑
t=1

Xt+hXt = 0.

To check the bias of γ̂X(h), let us look at the case when h = 0. We have

γ̂X(0) = n−1
n∑
t=1

(Xt −Xn)2.

Even in iid case, this is an biased estimator (sample variance is biased which has (n− 1)−1 instead

of n−1). Expression for E{γ̂X(h)} is messy (try your best to derive it as a HW problem). Let’s

consider instead

γX(h) =
1

n

n−|h|∑
t=1

(Xt+|h| − µX)(Xt − µX).

It can be seen that

E{γX(h)} =
n− |h|
n

γX(h) 6= γX(h);

i.e., biased. Rather than using γX(h), you might seem more natural to consider

γ̃X(h) =
1

n− |h|

n−|h|∑
t=1

(Xt+|h| − µX)(Xt − µX),
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since now we have E{γ̃X(h)} = γX(h); an unbiased estimator. Now replacing µX with Xn, we have

two estimators:

γ̂X(h) and
n

n− |h|
γ̂X(h)

respectively, called biased and unbiased ACVF estimators (even though latter one is actually biased

in general!). Generally speaking, both γ̂X(h) and ρ̂X(h) are biased even if the factor n−1 is replaced

by (n−h)−1. Nevertheless, under general assumptions they are nearly unbiased for large sample size

(conduct a simulation study to see the bias of both estimators as a HW problem). Now, let us talk

about the reason of why we like γ̂X(h), and why I think this is very brilliant.

Lemma 2.3. For any sequence x1, . . . , xn, the sample ACVF γ̂X satisfies:

1. γ̂X(h) = γ̂X(−h)

2. γ̂X is nonnegaitve definite, and hence

3. γ̂X(0) ≥ 0 and |γ̂X(h)| ≤ γ̂X(0)

Proof. The first one is trivial. It suffices to prove the second property which is equivalent to show

that for each k ≥ 1 the k-dimensional sample covariance matrix

Γ̂k =


γ̂X(0) γ̂X(1) · · · γ̂X(k − 1)

γ̂X(1) γ̂X(0) · · · γ̂X(k − 2)
...

...
...

...

γ̂X(k − 1) γ̂X(k − 2) · · · γ̂X(0)


is nonnegative definite. To see that, we have, for k ≥ n,

Γ̂k = n−1MMT,

where

M =


0 · · · 0 0 Y1 Y2 · · · Yk

0 · · · 0 Y1 Y2 · · · Yk 0
...

...

0 Y1 Y2 · · · Yk 0 · · · 0


is a k × 2k matrix with Yi = Xi −Xn for i=1, . . . , n and Yi = 0 for i = n + 1, . . . , k. Note that, if

Γ̂m is nonnegative definite, then all Γ̂ks are nonnegative definite for all k < m.

The nonnegative definite property is not always true if n−1 is replaced by (n − h)−1. Further,

when h ≥ n or for h slightly smaller thann, there is no way to reliably estimate γX(h) and ρX(h) since

the information around there are too little. Box and Jenkins (1976) suggest that useful estimates of

correlation ρX(h) can only be made if n is roughly 50 or more and h ≤ n/4.
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It will be important to be able to recognize when sample autocorrelations are significantly different

from zero so that we can select the correct model to fit our data. In order to draw such statistical

inference, we need the following asymptotic joint distribution.

Theorem 2.7. For an IID process {Wt}, if E(W 4
t ) <∞, we have

ρ̂W (h) =


ρ̂W (1)

...

ρ̂W (h)

 ∼ AN(0, n−1Ih). (2.14)

where Ih is a h× h identity matrix.

Remark 2.3. For {Wt} ∼ IID(0, σ2), then ρW (l) = 0 for l 6= 0. From Theorem 2.7, we have, for

large n, ρ̂W (1), . . . , ρ̂W (h) is approximately independent and identically distributed normal random

variables form N(0, n−1). If we plot the sample autocorrelation function ρ̂W (k) as a function of k,

approximately 0.95 of the sample autocorrelations should lie between the bounds ±1.96
√
n. This

can be used as a check that the observations truly are from an IID process. In Figure 2.3, we have

plotted the sample autocorrelation ρ̂W (k) for k = 1, . . . , 40 for a sample of 200 iid N(0, 1).

set.seed(150); Wt=rnorm(200);par(mar=c(4,4,1.5,.5));acf(Wt,lag.max=40)
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It can be seen that all but one of the autocorrelations lie between the bounds ±1.96
√
n, and

Remark 2.4. This theorem yields several procedures of testing

H0 : iid vs Ha : not iid.

Method 1: Based on the values of sample ACF: If for one h, ρ̂X(h) ± zα/2/
√
n does not contain

zero, reject H0.
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Method 2: The portmanteau test I: Instead of checking ρ̂X(h) for each h, it is also possible to

consider the single statistics

Q = n
h∑
j=1

ρ̂2X(j).

Under H0, Q ∼ χ2
h. Thus, rejection region is Q > χ2

h(1− α).

Method 3: The portmanteau test II (Ljung and Box, 1978).

QLB = n(n+ 2)
h∑
j=1

ρ̂2X(j)/(n− j)

which is better approximated by χ2
h, thus the same rejection region.

Method 4: The portmanteau test III: if wanted to test residuals {Rt} rather than a time series

{Xt}, then

QLB = n(n+ 2)
h∑
j=1

ρ̂2R(j)/(n− j)

which is better approximated by χ2
h−p instead, where p is the number of parameters estimated

in forming {Rt}.

Method 5: Turning point test

Method 6: Difference-Sign test

Method 7: Rank test

Design a simulation study to compare these testing procedures (as a HW problem).

1. Learn them by yourself. At least you should know when is okay to use which test, how to

calculate the test statistic and when to reject the null.

2. Set a reasonable sample size and generate an iid sequence. Apply each of these method to test

for IID. If rejected, count by 1, if not, count it by zero.

3. Repeat step 2 for 1000 times. Record how many of them lead to the conclusion of rejection (it

should be around the value of α)

4. Then, start making your model be more and more Non-IID, for example, you can general

Xt − φXt = Wt, in the beginning set φ = 0 then you have IID. Then set φ = seq(0.02, 1, by =

0.02). Each time, you do 1000 replications to obtain a rejection rate (as the power).

5. Plot the power curve to see which methods is the most powerful.

6. Summarize your simulation result and turn in with your homework.
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Theorem 2.8. If {Xt} is the stationary process,

Xt = µ+

∞∑
j=−∞

ψjWt−j

where {Wt} ∼ IID(0, σ2),
∑∞

j=−∞ |ψj | <∞ and EW 4
t <∞ (or

∑∞
j=−∞ ψ

2
j |j| <∞), then for each h,

we have

ρ̂X(h) =


ρ̂X(1)

...

ρ̂X(h)

 ∼ AN

ρX(h) =


ρX(1)

...

ρX(h)

 , n−1Ω

 . (2.15)

where Ω = [ωij ]
h
i,j=1 is the covariance matrix whose (i, j)-element is given by Bartlett’s formula,

ωij =
∞∑

k=−∞

{
ρX(k + i)ρX(k + j) + ρX(k − i)ρX(k + j) + 2ρX(i)ρX(j)ρ2X(k)

− 2ρX(i)ρX(k)ρX(k + j)− 2ρX(j)ρX(k)ρX(k + i)
}
.

Remark 2.5. Simple algebra shows that

ωij =

∞∑
k=1

{
ρX(k + i) + ρX(k − i)− 2ρX(i)ρX(k)

}
× {ρX(k + j) + ρX(k − j)− 2ρX(j)ρX(k)

}
,

which is a more convenient form of ωij for computational purposes. This formula also shows that

the asymptotic distribution of
√
n{ρ̂X(h) − ρX(h)} is the same as the random vector (Y1, . . . , Yh)T

where

Yi =
∞∑
k=1

{
ρX(k + i) + ρX(k − i)− 2ρX(i)ρX(k)

}
Zk

with Z1, Z2, . . . being iid N(0, 1).

Example 2.11. MA(q): if

Xt = Wt + θ1Wt−1 + · · ·+ θqWt−q,

where {Wt} ∼ IID(0, σ2), then from Bartlett’s formula, we have

ωii = 1 + 2ρ2X(1) + 2ρ2X(2) + · · ·+ 2ρ2X(q), i > q,

as the variance of the asymptotic distribution of
√
nρ̂X(i) as n→∞. For MA(1), we have ρX(1) =

θ/(1 + θ2), ρX(h) = 0, |h| > 1. Then

ω11 = 1− 3ρ2X(1) + 4ρ4X(1)

ωii = 1 + 2ρ2X(1), i > q,
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Let θ = 0.8. In Figure 2.11 we have plotted the ρ̂X(k) for k = 0, . . . , 40, for 200 observations, where

{Wt} are iid N(0, 1). It is found that ρ̂X(1) = −0.465 and ρX(1) = −0.4878. Obviously ρ̂X(1) is less

than −1.96/
√
n = −0.1379. Thus, we would reject the hypothesis that the data are iid. Further, for

h = 2, . . . , 40, we have |ρ̂X(h)| ≤ 1.96/
√
n which strongly suggests that the data are from a model

in which observations are uncorrelated past lag 1. In addition, we have ρX(1) = −0.4878 is inside

the 95% confidence interval ρ̂X(1)± 1.96n−1/2{1− 3ρ̂2X(1) + 4ρ̂4X(1)}1/2 = (−0.3633,−0.5667); i.e.,

it further supports the compatibility of the data with the model Xt = Wt − 0.8Wt−1.

set.seed(150); Wt=rnorm(250);Xt=filter(Wt,sides=1,c(1,-.8))[-(1:50)]

par(mar=c(4,4,1.5,.5));acf(Xt,lag.max=40)
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3 Autoregressive Moving Average (ARMA) Processes

3.1 Definition

An ARMA(p, q) process {Xt} is a stationary process that satisfies

Xt − φ1Xt−1 − · · · − φpXt−p = Wt + θ1Wt−1 + · · ·+ θqWt−q

which also can be written as

φ(B)Xt = θ(B)Wt

where

φ(B) =1− φ1B − · · · − φpBp,

θ(B) =1 + θ1B + · · ·+ θqB
q,

and {Wt} ∼ WN(0, σ2). We say {Xt} is an ARMA(p, q) process with mean µX if {Xt − µX} is an

ARMA(p, q) process.

Remark 3.1. For an ARMA(p, q) process {Xt}, we always insist that φp, θq 6= 0 and that the

polynomials

φ(z) = 1− φ1z − · · · − φpzp and θ(z) = 1 + θ1z + · · ·+ θqz
q

have no common factors. This implies it is not a lower order ARMA model. For example, consider

a white noise process Wt, we can write Xt = Wt or

(1− 2B +B2)Xt = (1− 2B +B2)Wt.

It is presented as an ARMA(2,2) model, but essentially it is white noise.

Remark 3.2. ARMA processes can accurately approximate many stationary processes:

• AR(p)=ARMA(p, 0): θ(B) = 1.

• MA(q)=ARMA(0, q): φ(B) = 1.

Further, for any stationary process with ACVF γ, and any k > 0, there exists an ARMA process

{Xt} for which

γX(h) = γ(h), h = 0, 1, . . . , k.

3.2 Causality and Invertibility

Recall the definition of causal and invertible. Let {Xt} be an ARMA(p, q) process defined by equa-

tions φ(B)Xt = θ(B)Wt
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• {Xt} is said to be causal (or more specifically to be a causal function of {Wt}) if there exits a

sequence of constants {ψj} such that
∑∞

j=0 |ψj | <∞ and

Xt =

∞∑
j=0

ψjWt−j , t = 0,±1, . . . . (3.1)

• {Xt} is said to be invertible (or more specifically to be an invertible function of {Wt}) if there

exits a sequence of constants {πj} such that
∑∞

j=0 |πj | <∞ and

Wt =

∞∑
j=0

πjXt−j , t = 0,±1, . . . . (3.2)

• Neither causality nor invertibility is a property of {Xt} alone, but of the relationship between

{Xt} and {Wt}.

Theorem 3.1. Let {Xt} be an ARMA(p, q) process. Then {Xt} is causal if and only if

φ(z) 6= 0 for all |z| ≤ 1.

The coefficients {ψj} in (3.1) are determined by the relation

ψ(z) =
∞∑
j=0

ψjz
j = θ(z)/φ(z), |z| ≤ 1.

Proof. First, we assume that φ(z) 6= 0 if |z| ≤ 1. Since we have

φ(z) = 1− φ1z − · · · − φpzp = φp(z − z1) · · · (z − zp),

then |zi| > 1 for i = 1, . . . , p. For each i,

1

z − zi
= − 1

1− z/zi
= −

∞∑
k=1

(z/zi)
k, for |z| < |zi|.

This implies that there exists ε > 0 such that 1/φ(z) has a power series expansion,

1/φ(z) =
∞∑
j=0

ζjz
j .= ζ(z), |z| < 1 + ε ≤ min

i
|zi|.

Consequently, ζj(1 + ε/2)j → 0 as j →∞ so that there exists K > 0 such that

|ζj | < K(1 + ε/2)−j , ∀j = 0, 1, 2, . . . .

In particular we have
∑∞

j=0 |ζj | <∞ and ζ(z)φ(z) = 1 for |z| ≤ 1. There, we can apply the operator
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ζ(B) to both sides of the equation φ(B)Xt = θ(B)Wt to obtain

Xt = ζ(B)θ(B)Wt.

Thus we have the desired representation

Xt =
∞∑
j=0

ψjWt−j

where the sequencd {ψj} is determined by θ(z)/φ(z).

Now, assume that {Xt} is causal; i.e., Xt = ψ(B)Wt with
∑∞

j=0 |ψj | <∞. Then

θ(B)Wt = φ(B)Xt = φ(B)ψ(B)Wt.

If we let η(z) = φ(z)ψ(z) =
∑∞

j=0 ηjz
j , |z| ≤ 1, we can rewrite this equation as

q∑
j=0

θjWt−j =
∞∑
j=0

ηjWt−j ,

and taking inner products of each side with Wt−k, we obtain ηk = θk, k = 0, . . . , q and ηk = 0, k > q.

Hence

θ(z) = η(z) = φ(z)ψ(z), |z| ≤ 1.

Since θ(z) and φ(z) have no common zeros and since |ψ(z)| <∞ for |z| ≤ 1, we conclude that φ(z)

cannot be zero for |z| ≤ 1.

Remark 3.3. If φ(z) = 0 for some |z| = 1, then there is no stationary solution of the ARMA

equations φ(B)Xt = θ(B)Wt.
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Theorem 3.2. Let {Xt} be an ARMA(p, q) process. Then {Xt} is invertible if and only if

θ(z) 6= 0 for all |z| ≤ 1.

The coefficients {πj} in (3.2) are determined by the relation

π(z) =
∞∑
j=0

πjz
j = φ(z)/θ(z), |z| ≤ 1.

Proof. First assume that θ(z) 6= 0 if |z| ≤ 1. By the same argument as in the proof of the previous

theorem, 1/θ(z) has a power series expansion

1/θ(z) =
∞∑
j=0

ηjz
j .= η(z), |z| < 1 + ε.

for some ε > 0 and
∑∞

j=0 |ηj | < ∞. Then applying η(B) to both sides of the ARMA equations, we

have

η(B)φ(B)Xt = η(B)θ(B)Wt = Wt.

Thus, we have the desired representation

Wt =
∞∑
j=0

πjXt−j ,

where the sequence {πj} is determined by φ(z)/θ(z).

Conversely, if {Xt} is invertible then Wt =
∑∞

j=0 πjXt−j = π(B)Xt for some
∑∞

j=0 |πj | < ∞,

then

φ(B)Wt = φ(B)π(B)Xt = π(B)φ(B)Xt = π(B)θ(B)Wt

which leads to
q∑
j=0

φjWt−j =
∞∑
j=0

ζjWt−j ,

where ζ(z) = π(z)θ(z) =
∑∞

j=0 ζjz
j , |z| ≤ 1. Taking inner products of each side with Wt−k, we

obtain ζk = φk, k = 0, . . . , q and ζk = 0, k > q. Hence

φ(z) = ζ(z) = π(z)θ(z), |z| ≤ 1.

Since θ(z) and φ(z) have no common zeros and since |π(z)| < ∞ for |z| ≤ 1, we conclude that θ(z)

cannot be zero for |z| ≤ 1.

Remark 3.4. If {Xt} is a stationary solution of the ARMA equations and if φ(z)θ(z) 6= 0 for |z| ≤ 1,

then

Xt =

∞∑
j=0

ψjWt−j
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and

Wt =
∞∑
j=0

πjXt−j

where
∑∞

j=0 ψjz
j = θ(z)/φ(z) and

∑∞
j=0 πjz

j = φ(z)/θ(z), |z| ≤ 1.

Remark 3.5. Let {Xt} be the ARMA process solving the equations φ(B)Xt = θ(B)Wt, where

φ(z) 6= 0 and θ(z) 6= 0 for all |z| = 1.

Then there exists polynomials φ̃(z) and θ̃(z), nonzero for |z| ≤ 1, of degree p and q respectively, and

a new white noise sequence {W ∗t } such that {Xt} satisfies the causal invertible equations

φ̃(B)Xt = θ̃(B)W ∗t .

Remark 3.6. Uniqueness: If φ(z) 6= 0 for all |z| = 1, then the ARMA equations φ(B)Xt = θ(B)Wt

have the unique stationary solution

Xt =
∞∑

j=−∞
ψjWt−j

where ψj comes from θ(z)/φ(z).
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3.3 Computing the ACVF of an ARMA(p, q) Process

We now provide three methods for computing the ACVF of an ARMA process. The second one is

the most convenient for obtaining a solution in closed form, and the third one is the most convenient

for obtaining numerical values.

3.3.1 First Method

Since the causal ARMA(p, q) process φ(B)Xt = θ(B)Wt has representation

Xt = ψ(B)Wt =
∞∑
j=0

ψjWt−j

where

ψ(z) =

∞∑
j=0

ψjz
j = θ(z)/φ(z), |z| ≤ 1.

The ACVF of {Xt} is then

γX(h) = σ2
∞∑
j=0

ψjψj+|h|.

To determine the coefficients ψj , herein we use the method of matching coefficients:

(1 + ψ1z + ψ2z
2 + ψ3z

3 + ψ4z
4 + · · · )(1− φ1z − φ2z2 − · · · − φpzp) = (1 + θ1z + θ2z

2 + · · ·+ θqz
q)

which yields the following difference equations for ψk:

ψ1 − φ1 = θ1

ψ2 − φ2 − ψ1φ1 = θ2

ψ3 − φ3 − ψ2φ1 − ψ1φ2 = θ3 (3.3)

· · ·

By defining θ0 = 1, θj = 0 for j > q and φj = 0 for j > p, we have the results summarized as

ψj −
∑

0<k≤j
φkψj−k = θj , 0 ≤ j < max{p, q + 1} (3.4)

ψj −
∑

0<k≤p
φkψj−k = 0, j ≥ max{p, q + 1} (3.5)

The general solution of (3.5) can be written down as

ψn =

k∑
i=1

ri−1∑
j=0

αijn
jζ−ni , n ≥ max(p, q + 1)− p,
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where ζi, i = 1, . . . , k are the distinct zeros of φ(z) and ri is the multiplicity of ζi. The p constants αijs

and the coefficients ψj , 0 ≤ j < max(p, q+ 1)− p, are then determined uniquely by the max(p, q+ 1)

boundary conditions (3.4).

Example 3.1. Consider the ARMA process Xt −Xt−1 + 0.25Xt−2 = Wt +Wt−1. We have φ(z) =

1− z− (−0.25)z2 and θ(z) = 1 + z. The root of φ(z) is 2 (|2| > 1) with multiplicity 2 and the root of

θ(z) = −1 (| − 1| = 1) with multiplicity 1. So {Xt} is causal but not invertible. To find the ACVF

of {Xt}, we have

ψ0 = 1,

ψ1 = φ1 + θ1 = 1 + 1 = 2,

ψj − ψj−1 + 0.25ψj−2 = 0, j ≥ 2.

Transforming the last equation to ψj−0.5ψj−1 = 0.5(ψj−1−0.5ψj−2), we see a geometric series with

ψ1 − 0.5ψ0 = 1.5. Thus,

ψj − 0.5ψj−1 = 3× 2−j .

Then

ψj = (1 + 3j)2−j , j = 0, 1, 2, . . . .

Now, we use the general solution; i.e., ri − 1 = 2− 1 = 1, ζi = 2,

ψn =
1∑
j=0

αijn
j2−n, n ≥ max(p = 2, q + 1 = 1 + 1)− p = 0.

The constants α10 and α11 are found from the boundary conditions ψ0 = 1 and ψ1 = 2 to be

α10 = 1 and α11 = 3.

Then

ψj = (1 + 3j)2−j , j = 0, 1, 2, . . . .

Thus

γX(h) =σ2
∞∑
j=0

ψjψj+|h|

=σ2
∞∑
j=0

(1 + 3j)(1 + 3j + 3h)2−2j−h

=σ22−h(32/3 + 8h).
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3.3.2 Second Method

The second method is based on the difference equations for γX(k), k = 0, 1, 2, . . . , which are obtained

by multiplying each side of

φ(B)Xt = θ(B)Wt

by Xt−k and taking expectations, namely,

γX(k)− φ1γX(k − 1)− · · · − φpγX(k − p) = σ2
∑
k≤j≤q

θjψj−k, 0 ≤ k < max(p, q + 1), (3.6)

γX(k)− φ1γX(k − 1)− · · · − φpγX(k − p) = 0, k ≥ max(p, q + 1). (3.7)

The right-hand sides of these equations come from the representation Xt =
∑∞

j=0 ψjWt−j .

The general solution of (3.6) has the form

γX(h) =

k∑
i=1

ri−1∑
j=0

βijh
jζ−hi , h ≥ max(p, q + 1)− p, (3.8)

where the p constants βij and the covariances γX(j), 0 ≤ j < max(p, q + 1) − p, are uniquely

determined from the boundary conditions (3.6) after computing ψ0, ψ1, . . . , ψq from (3.3).

Example 3.2. Consider Example 3.1. We have (3.7) as

γ(k)− γ(k − 1) + 0.25γ(k − 2) =0, k ≥ 2,

with general solution

γX(n) =
1∑
j=0

βijh
j2−h, h ≥ 0.

The boundary conditions (3.6) are

γ(0)− γ(1) + 0.25γ(2) =σ2(ψ0 + ψ1),

γ(1)− γ(0) + 0.25γ(1) =σ2ψ0,

where ψ0 = 1 and ψ1 = 2. Using the general solution, we have

3β10 − 2β11 = 16σ2,−3β10 + 5β11 = 8σ2,

which results in β11 = 8σ2 and β10 = 32σ2/3. Finally, we have Then

γX(h) = σ22−h(32/3 + 8h).
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3.3.3 Third Method

The numerical determination of the autocovariance function γX(h) from equations (3.6) and (3.7)

can be carried out readily by first finding γX(0), . . . , γX(p) from the equations with k = 0, 1, . . . , p,

and then using the subsequent equations to determine γX(p+ 1), γX(p+ 2), . . . recursively.

Example 3.3. Consider Example 3.1. We have

γ(2)− γ(1) + 0.25γ(2) =0,

γ(0)− γ(1) + 0.25γ(2) =σ2(ψ0 + ψ1),

γ(1)− γ(0) + 0.25γ(1) =σ2ψ0,

providing γX(0) = 32σ2/3, γX(1) = 28σ2/3 and γX(0) = 20σ2/3. Then the higher lag autocovari-

ances can now easily be found recursively from the equations

γX(k) = γX(k − 1)− 0.25γX(k − 2), k = 3, 4, . . .

Example 3.4. Now, we consider the causal AR(2) process,

(1− ζ−11 B)(1− ζ−12 B)Xt = Wt, |ζ1|, |ζ2| > 1, ζ1 6= ζ2.

Then,

φ1 =ζ−11 + ζ−12 ,

φ2 =− ζ−11 ζ−12 .

Based on (3.8), we have

γX(h) =

2∑
i=1

βi1ζ
−h
i , h ≥ 0.

Boundary conditions provide

γX(0)− φ1γX(1)− φ2γX(2) = σ2

γX(1)− φ1γX(0)− φ2γX(1) = 0

Tedious calculation yields that

γX(h) =
σ2ζ21ζ

2
2

(ζ1ζ2 − 1)(ζ2 − ζ1)

{
ζ1−h1

(ζ21 − 1)
− ζ1−h2

(ζ22 − 1)

}
, h ≥ 0.

rho=function(h,z1,z2){rho0=z1/(z1^2-1)-z2/(z2^2-1)

res=(z1^(1-h)/(z1^2-1)-z2^(1-h)/(z2^2-1))/rho0

return(res)}
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par(mfrow=c(3,1));par(mar=c(4,4,2,.5));h=seq(0,20,1)

plot(h,rho(h,2,5),type="o",xlab="Lag",

ylab=expression(rho[X](h)), ylim=c(-1,1),col="blue")

segments(-1,0,21,0,lty=2)

plot(h,rho(h,-10/9,2),type="o",xlab="Lag",

ylab=expression(rho[X](h)), ylim=c(-1,1),col="blue")

segments(-1,0,21,0,lty=2)

plot(h,rho(h,10/9,2),type="o",xlab="Lag",

ylab=expression(rho[X](h)), ylim=c(-1,1),col="blue")

segments(-1,0,21,0,lty=2)
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Figure 3.1: ρX(h) for AR(2) with from top to bottom: (ζ1, ζ2) = (2, 5),(ζ1, ζ2) = (−10/9, 2), and
(ζ1, ζ2) = (10/9, 2)
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4 The Spectral Representation of a Stationary Process

In class, we did a brief introduction on complex valued numbers and complex valued random variables.

4.1 Complex-Valued Stationary Time Series

The process {Xt} is a complex-valued stationary process if E|Xt|2 <∞, EXt is independent of t and

E(Xt+hX̄t) is independent of t.The autocovariance function γX(·) is

γX(h) = E(Xt+hX̄t)− E(Xt+j)E(X̄t).

Similarly as the real-values stationary process, we have the properties of γX(h):

Theorem 4.1. Basic properties of γX(·):

1. γX(0) ≥ 0;

2. |γX(h)| ≤ γ(0) for all h;

3. γX(h) = γX(−h) for all h;

4. γX is Hermitian and nonnegative definite; i.e., a (possible complex) valued function κ defined

on the integers is Hermitian and nonnegative definite if and only if K(n) = K(−n) and

n∑
i,j=1

aiK(i− j)āj ≥ 0

for all positive integers n and real vectors a = (a1, . . . , an)T ∈ Cn.
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4.2 The Spectral Distribution of a Linear Combination of Sinusoids

Consider the following simple complex-valued process,

Xt =

n∑
j=1

A(λj)e
itλj =

n∑
j=1

A(λj){cos(λjt) + i sin(λjt)},

noting that eix = cos(x) + i sin(x), in which −π < λ1 < λ2 < · · · < λn = π and A(λ1), . . . , A(λn) are

uncorrelated complex-valued random coefficients (possible zero) such that

E{A(λj)} = 0, j = 1, . . . , n,

and

E{A(λj)A(λj)} = σ2j , j = 1, . . . , n.

To check its stationarity, we have

E(Xt) = 0

and

E(Xt+hX̄t) = E


n∑
j=1

A(λj)e
i(t+h)λj ×

n∑
j=1

A(λj)e
−itλj


=

n∑
j=1

n∑
i=1

E
{
A(λj)A(λi)

}
ei(t+h)λje−itλi

=

n∑
j=1

σ2j e
ihλj .

Thus, we have a complex-valued stationary process {Xt} with autocovariance function

γX(h) =

n∑
j=1

σ2j e
ihλj

=

∫
(−π,π]

eihνdF (ν),

where

F (λ) =
∑
j:λj≤λ

σ2j .

The function F is known as the spectral distribution function of {Xt}.
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Theorem 4.2. (Herglotz). A complex-valued function γX(·) defined on the integers is non-negative

definite if and only if

γX(h) =

∫
(−π,π]

eihνdF (ν), ∀h = 0,±1,±2, . . . ,

where F (·) is a right-continuous, non-decreasing, bounded function on [−π, π] and F (−π) = 0.

• The function F is called the spectral distribution function of γX and

• if F (λ) =
∫ λ
−π f(ν)dν, −π ≤ λ ≤ π, then f is called a spectral density of γX(·).

Corollary 4.1. A complex-valued function γX(·) defined on the integers is the ACVF of a stationary

process {Xt, t = 0,±1,±2, . . . } if and only if either

(i) γX(h) =
∫
(−π,π] e

ihνdF (ν) for all h = 0,±1,±2, . . . , where F is a right-continuous, non-

decreasing, bounded function on [−π, π] and F (−π) = 0, or

(ii)
∑n

i,j=1 aiγX(i− j)āj ≥ 0 for all positive integers n and for all a = (a1, . . . , an)T ∈ Cn.

Corollary 4.2. An absolutely summable complex-valued function γ(·) defined on the integers is the

autocovariance function of a stationary process if and only if

f(λ) =
1

2π

∞∑
n=−∞

e−inλγ(n) ≥ 0, ∀λ ∈ [−π, π],

in which case f(·) is the spectral density of γ(·).

Corollary (4.2) provides a way to calculate the spectral density of γX(·) of a stationary process

{Xt}.

Example 4.1. For white noise {Wt} ∼ WN(0, σ2), we have γW (h) = σ2I(h = 0). Its spectral

density is then

fW (λ) =
1

2π

∞∑
n=−∞

e−inλγX(n) =
1

2π
e−i0λσ2 =

σ2

2π
.
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Example 4.2. Now let us calculate the spectral density of

• MA(1): Xt = Wt + θWt−1

• AR(1): Xt − φXt−1 = Wt

• Is fX(t) always real-valued?

4.3 Spectral Densities and ARMA Processes

Theorem 4.3. If {Yt} is any zero-mean, possibly complex-valued stationary process with spectral

distribution function FY (·), and {Xt} is the process

Xt =

∞∑
j=−∞

ψjYt−j where

∞∑
j=−∞

|ψj | <∞, (4.1)

then {Xt} is stationary with spectral distribution function

FX(λ) =

∫
(−π,λ]

∣∣∣∣∣∣
∞∑

j=−∞
ψje
−ijν

∣∣∣∣∣∣
2

dFy(ν), −π ≤ λ ≤ π.

Proof. Similar argument of the proof of Proposition 2.2 provides that {X} is stationary with mean

zero and ACVF

γX(h) =
∞∑

j,k=−∞
ψjψ̄kγY (h− j + k), h = 0,±1,±2, . . . .

Using the spectral representation of γY (·) we can write

γX(h) =

∞∑
j,k=−∞

ψjψ̄k

∫
(−π,π]

ei(h−j+k)νdFY (ν)

=

∫
(−π,π]

 ∞∑
j=−∞

ψje
−ijν

( ∞∑
k=−∞

ψ̄ke
ikν

)
eihνdFY (ν)

=

∫
(−π,π]

eihν

∣∣∣∣∣∣
∞∑

j=−∞
ψje
−ijν

∣∣∣∣∣∣
2

dFY (ν),

which completes the proof.

Remark 4.1. If {Yt} has a spectral density fY (·) and if {Xt} is defined by (4.1), then {Xt} also

has a spectral density fX(·) given by

fX(λ) = |ψ(e−iλ)|2fY (λ)

where ψ(e−iλ) =
∑∞

j=−∞ ψje
−ijλ.
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Theorem 4.4. (Spectral Density of an ARMA(p, q) Process). Let {Xt} be an ARMA(p, q) process

(not necessarily causal or invertible) satisfying

φ(B)Xt = θ(B)Wt, {Wt} ∼WN(0, σ2),

where φ(z) = 1 − φ1z − · · ·φpzp and θ(z) = 1 + θ1z + · · · + θqz
q have no common zeroes and φ(z)

has no zeroes on the unit circle. Then {Xt} has spectral density

fX(λ) =
σ2

2π

|θ(e−iλ)|2

|φ(e−iλ)|2
, −π ≤ λ ≤ π.

Proof. The assumption that φ(z) has no zeroes on the unit circle guarantees that Xt can be written

as

Xt =

∞∑
j=−∞

ψjWt−j

where
∑∞

j=−∞ |ψj | <∞. Based on Example 4.1, {Wt} has spectral density σ2/(2π), then Theorem

4.3 implies that {Xt} has a spectral density. Setting Ut = φ(B)Xt = θ(B)Wt and applying Theorem

4.3, we obtain

fU (λ) = |φ(e−iν)|2fX(λ) = |θ(e−iλ)|2fW (t)

Since φ(e−iν) 6= 0 for all λ ∈ [−π, π] we can divide the above equation by |φ(e−iν)|2 to finish the

proof.

4.4 Causality, Invertibility and the Spectral Density of ARMA(p, q)

Consider the ARMA(p, q) process {Xt} satisfying φ(B)Xt = θ(B)Wt, where φ(z)θ(z) 6= 0 for |z| = 1.

Factorizing the polynomials φ(·) and θ(·) we can rewrite the defining equations in the form,

p∏
j=1

(1− a−1j B)Xt =

q∏
j=1

(1− b−1j B)Wt,

where

|aj | > 1, 1 ≤ j ≤ r, |aj | < 1, r < j ≤ p,

and

|bj | > 1, 1 ≤ j ≤ s, |bj | < 1, s < j ≤ q.

By Theorem 4.4, {Xt} has spectral density

fX(λ) =
σ2

2π

∏q
j=1 |1− b

−1
j e−iλ|2∏p

j=1 |1− a
−1
j e−iλ|2

.
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Now define

φ̃(B) =
∏

1≤j≤r
(1− a−1j B)

∏
r<j≤p

(1− ājB) (4.2)

and

θ̃(B) =
∏

1≤j≤s
(1− b−1j B)

∏
s<j≤q

(1− b̄jB).

Then we have {Xt} is also the ARMA process defined by

φ̃(B)Xt = θ̃(B)W̃t.

where

W̃t =

∏
r<j≤p(1− ajB)

∏
s<j≤q(1− b

−1
j B)∏

r<j≤p(1− a
−1
j B)

∏
s<j≤q(1− bjB)

Wt

Based on Theorem 4.4 again, {W ∗t } has spectral density

f
W̃

(λ) =
|
∏
r<j≤p(1− aje−iλ)

∏
s<j≤q(1− b

−1
j e−iλ)|2

|
∏
r<j≤p(1− a

−1
j e−iλ)

∏
s<j≤q(1− bje−iλ)|2

· σ
2

2π
.

Since

|1− b̄je−iλ| = |1− bjeiλ| = |eiλ| · |bj − e−iλ| = |bj | · |1− b−1j e−iλ|,

we can rewrite f
W̃

(λ) as

f
W̃

(λ) =

∏
r<j≤p |aj |2∏
s<j≤q |bj |2

· σ
2

2π
.

Thus

{W̃t} ∼WN

0, σ2

 ∏
r<j≤p

|aj |


2 ∏

s<j≤q
|bj |


−2 .

Noting that both φ̃(z) and θ̃(z) has no root in |z| ≤ 1. Thus, {Xt} has the causal invertible

representation

φ̃(B)Xt = θ̃(B)W̃t.

Example 4.3. The ARMA process

Xt − 2Xt−1 = Wt + 4Wt−1, {Wt} ∼WN(0, σ2),

is neither casual nor invertible. Introducing φ̃(z) = 1− 0.5z and θ̃(z) = 1 + 0.25z, we see that {Xt}
has the causal invertible representation

Xt − 0.5Xt−1 = W̃t + 0.25W̃t−1, {W̃t} ∼WN(0, 4σ2).
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5 Prediction of Stationary Processes

In this section, we consider to predict the value Xn+h for h > 0 of a stationary time series with

known mean µX and ACVF γX in terms of the values {Xn, . . . , X1}. The prediction is constructed

as a linear combination of 1, Xn, . . . , X1 by minimizing the mean squared error (called the optimal

linear predictor); i.e., we have the predictor as

P(Xn+h | Xn, . . . , X1, 1) = a0 + a1Xn + · · ·+ a1X1,

where a = (a0, . . . , an)T minimizes

S(a) = E(Xn+h − a0 − a1Xn − · · · − a1X1)
2. (5.1)

5.1 Predict Xn+h by Xn

We start with predicting Xn+h by Xn as P(Xn+h | Xn, 1) = a0 + a1Xn. In this case, we have

S(a) = E(Xn+h − a0 − a1Xn)2

= E(X2
n+h + a20 + a21X

2
n − 2a0Xn+h − 2a1XnXn+h + 2a0a1Xn)

= a20 + (a21 + 1){γX(0) + µ2X}+ (2a0a1 − 2a0)µX − 2a1{γX(h) + µ2X}.

Taking partial derivative of S(a) and setting to zero yields

∂S(a)

∂a0
= 2a0 + 2a1µX − 2µX = 0

∂S(a)

∂a1
= 2a0µX + 2a1{γX(0) + µ2X} − 2{γX(h) + µ2X} = 0.

Solving this provides

a1 = ρX(h) and a0 = µX{1− ρX(h)}.

Finally, P(Xn+h | Xn, 1) = µX+ρX(h){Xn−µ} and E[{P(Xn+h | Xn, 1)−Xn}2] = γX(0){1−ρ2X(h)}.

• If |ρX(h)| → 1, E[{P(Xn+h | Xn, 1)−Xn}2]→ 0 (accuracy improves)

• If ρX(h) = ±1, E[{P(Xn+h | Xn, 1)−Xn}2] = 0 (linearity)

• If ρX(h) = 0, P(Xn+h | Xn, 1) = µX , and E[{P(Xn+h | Xn, 1)−Xn}2] = γX(0) (uncorrelated)

If {Xt} is Gaussian stationary, the joint distribution of (Xn, Xn+h) is then

N

{(
µX

µX

)
,

(
γX(0) ρX(h)γX(0)

ρX(h)γX(0) γX(0)

)}
,
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and the conditional distribution of Xn+h given Xn is

N
[
µX + ρX(h)(Xn − µX), γX(0){1− ρ2X(h)}

]
.

Thus

E(Xn+h | Xn) = µX + ρX(h)(Xn − µX).

Generally speaking, suppose we have a target Y and a set of predictor variables s X. The optimal

(least square) predictor of Y given X is E(Y |X):

min
f

E{Y − f(X)2} = min
f

E[{Y − f(X)2} |X]

=E [E{Y − E(Y |X)}2 |X].

Thus the optimal predictor of Y given X is E(Y |X).

• If {Xt} is stationary, P(Xn+h | Xn, 1) = µX+ρX(h){Xn−µ} is the optimal linear predictor.

• If {Xt} is also Gaussian, P(Xn+h | Xn, 1) = µX + ρX(h){Xn − µ} is the optimal predictor.

• This holds for longer histories, {Xn, Xn−1, . . . , X1}.

5.2 Predict Xn+h by {Xn, . . . , X1, 1}

To find P(Xn+h | Xn, . . . , X1), we minimize function (5.1) to find the values of a = (a0, a1, . . . , an)T.

Taking partial derivative and setting to zero, we have a system of equations

∂S(a)

∂aj
= 0, j = 0, . . . , n,

which is

E

(
Xn+h − a0 −

n∑
i=1

aiXn+1−i

)
= 0

E

{(
Xn+h − a0 −

n∑
i=1

aiXn+1−i

)
Xn+1−j

}
= 0.

It can be seen that we have an = (a1, . . . , an)T is a solution of

Γnan = γn(h) (5.2)

and

a0 = µX

(
1−

n∑
i=1

ai

)
.

where

Γn = [γX(i− j)]ni,j=1, and γn(h) = (γX(h), . . . , γX(h+ n− 1))T.
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Hence, we have

P(Xn+h | Xn, . . . , X1, 1) = µX +

n∑
i=1

ai(Xn+1−i − µX) (5.3)

and

E{P(Xn+h | Xn, . . . , X1, 1)−Xn+h}2 = γX(0)− aT
nγn(h).

Now, we show the uniqueness of P(Xn+h | Xn, . . . , X1) (left as a HW problem). Hint: suppose there

are two different set of as: {aj1, j = 0, . . . , n} and {aj2, j = 0, . . . , n} such that

P(Xn+h | Xn, . . . , X1, 1) = a01 + a11Xn + · · ·+ an1X1 = a02 + a12Xn + · · ·+ an2X1.

Denote

Z = a01 − a02 +

n∑
j=1

(aj1 − aj2)Xn+1−j .

Show E(Z2) = 0 which implies Z = 0.

Proposition 5.1. For a stationary process, if γX(0) > 0 and γX(h) → 0 as h → ∞, then the

covariance matrix Γn = [γX(i− j)]ni,j=1 is positive definite for every n.

Remark 5.1. When γX(0) > 0 and γX(h)→ 0 as h→∞, the uniqueness can be seen directly from

Proposition ??; i.e., in this case, Γn = [γX(i − j)]ni,j=1 is non-singular for every n, thus (5.2) has a

unique solution an = Γ−1n γn(h). Further if µX = 0, we have

P(Xn+h | Xn, . . . , X1, 1) =
n∑
i=1

φniXn+1−i

and

E{P(Xn+h | Xn, . . . , X1, 1)−Xn+h}2 = γX(0)− γn(h)TΓ−1n γn(h).

Properties of P(Xn+h | Xn, . . . , X1, 1)

1. P(Xn+h | Xn, . . . , X1, 1) = µX +
∑n

i=1 ai(Xn+1−i − µX), where an = (a1, . . . , an)T satisfies

Γnan = γn(h).

2. E{P(Xn+h | Xn, . . . , X1, 1)−Xn+h}2 = γX(0)− aT
nγn(h).

3. E{Xn+h − P(Xn+h | Xn, . . . , X1, 1)} = 0.

4. E[{Xn+h − P(Xn+h | Xn, . . . , X1, 1)}Xj ] = 0, for j = 1, . . . , n.

Remark 5.2. Notice that properties 3 and 4 can be interpreted easily by viewing P(Xn+h | Xn, . . . , X1)

as the projection of Xn+h on the linear subspace formed by {Xn, . . . , X1, 1}. This comes from the

projection mapping theory of Hilbert spaces.
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Hilbert space is a complete inner product space. An inner produce space is a vector space with

inner product < a, b >:

• < a, b >=< b, a >

• < α1a1 + α2a2, b >= α1 < a1, b > +α2 < a2, b >

• < a, a >= 0⇔ a = 0

• Norm of a is ‖a‖ =< a, a >.

Note that complete means that every Cauchy sequence in the space has its limit in the space.

Examples of Hilbert spaces include

1. Rn with < x,y >=
∑
xiyi

2. H = {X : EX2 <∞} with < X,Y >= E(XY )

Hilbert space H is the one of interest in this course

Theorem 5.1. (The Projection Theorem). If M is a closed subspace of the Hilbert space H and

x ∈ H, then

(i) there is a unique element x̂ ∈M such that

‖x− x̂‖ = inf
y∈M

‖x− y‖,

and

(ii) x̂ ∈M and ‖x− x̂‖ = infy∈M ‖x− y‖ if and only if x̂ ∈M and (x− x̂) is orthogonal to M.

And we write P(x | M) as the projection of x onto M.

Proposition 5.2. (Properties of Projection Mappings). Let H be a Hilbert space and let P(· | M)

denote the projection mapping onto a closed subspace M. Then

(i) P(αx+ βy | M) = αP(x | M) + βP(x | M),

(ii) ‖x‖2 = ‖P(x | M) + {x− P(x | M)}‖2 = ‖P(x | M)‖2 + ‖x− P(x | M)‖2,

(iii) each x ∈ H as a unique representation as a sum of an element of M and an element that is

orthogonal to M, i.e.,

x = P(x | M) + {x− P(x | M)},

(iv) P(xn | M)→ P(x | M) if ‖xn − x‖ → 0,

(v) x ∈M if and only if P(x | M) = x,

(vi) x is orthogonal to M if and only if P(x | M) = 0,

(vii) M1 ⊂M2 if and only if P{P(x | M2) | M1} = P(x | M1) for all x ∈ H.
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5.3 General Case

Suppose now that Y and Zn, . . . , Z1 are any random variables with finite second moments and that

the means µ = EY , µi = EZi and covariance Cov(Y, Y ), Cov(Y, Zi), and Cov(Zi, Zj) are all known.

Note that , this does not have to be related to a stationary process. Denote

Z =(Zn, . . . , Z1)
T,

µZ =(µn, . . . , µ1)
T,

γ =(Cov(Y,Zn), . . . ,Cov(Y, Z1))
T,

Γ =Cov(Z,Z) = [Cov(Zn+1−i, Zn+1−j)]
n
i,j=1.

Then with the same argument,

P(Y | Z, 1) = µY + aT(Z − µZ)

where a = (a1, . . . , an)T is any solution of

Γa = γ.

And the mean squared error of this predictor is

E[{Y − P(Y | Z, 1)}2] = Var(Y )− aTγ.

Properties of the Prediction Operator of P(· | Z):

Suppose that EU2 <∞, EV 2 <∞, Γ = Cov(Z,Z), and β, α1, . . . , αn are constants.

• P(U | Z) = EU + aT(Z − EZ), where Γa = Cov(U,Z).

• E[{U − P(U | Z)}Z] = 0 and E{U − P(U | Z)} = 0

• E[{U − P(U | Z)}2] = Var(U)− aTCov(U,Z)

• P(α1U + α2V + β | Z) = α1P(U | Z) + α2P(V | Z) + β

• P (
∑n

i=1 αiZi + β | Z) =
∑n

i=1 αiZi + β

• P(U | Z) = EU if Cov(U,Z) = 0.

• P(U | Z) = P{P(U | Z,V ) | Z} if E(V V T) is finite.

These results comes directly from the standard projection mapping theory of a Hilbert space, in

this case, this Hilber space is H = {X : EX2 <∞} with < X,Y >= E(XY ).
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If µ = EY = 0, µi = EZi = 0 (for example, we consider the zero-mean stationary process) We have

Z =(Zn, . . . , Z1)
T,

µZ =0,

γ =(Cov(Y, Zn), . . . ,Cov(Y, Z1))
T,

Γ =Cov(Z,Z) = [Cov(Zn+1−i, Zn+1−j)]
n
i,j=1.

It can be easily seen that

P(Y | Z, 1) = P(Y | Z) = aTZ

where a = (a1, . . . , an)T is any solution of

Γa = γ.

And the mean squared error of this predictor is Var(Y )− aTγ.

Example 5.1. For an AR(1) series: Xt = φXt−1 +Wt where |φ| < 1 and {Wt} ∼WN(0, σ2). Find

(1) P(Xn+1 | Xn, . . . , X1, 1)

(2) P(Xn+1 | Xn, . . . , X2, 1)

(3) P(X1 | Xn, . . . , X2, 1)

Solution: For Part (1) and (2), it suffices to find P(Xn+1 | Xn, . . . , Xi). We have

Z =(Xn, . . . , Xi)
T,

γ =
σ2

1− φ2
(φ, φ2, . . . , φn−i)T,

Γ =
σ2

1− φ2


1 φ φ2 · · · φn−i

φ 1 φ · · · φn−i−1

...
...

φn−i φn−i−1 φ2 · · · 1

 .

Equation Γa = γ yields that a = (φ, 0, . . . , 0)T. Thus

P(Xn+1 | Xn, . . . , Xi, 1) = P(Xn+1 | Xn, . . . , Xi) = φXn.
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For Part (3), we have

Z =(Xn, . . . , X2)
T,

γ =
σ2

1− φ2
(φn−1, φn−2, . . . , φ)T,

Γ =
σ2

1− φ2


1 φ φ2 · · · φn−2

φ 1 φ · · · φn−3

...
...

φn−2 φn−3 φ2 · · · 1

 .

Equation Γa = γ yields that a = (0, . . . , 0, φ)T. Thus

P(Xn+1 | Xn, . . . , X2, 1) = P(Xn+1 | Xn, . . . , X2) = φX2.

Example 5.2. For the causal AR(p) process defined by

Xt − φ1Xt−1 − · · · − φpXt−p = Wt, {Wt} ∼WN(0, σ2),

where Wt is uncorrelated with Xs for s < t. Then we have

P(Xn+1 | Xn, . . . , X1, 1) = P(φ1Xn + · · ·+ φpXn+1−p +Wn+k | Xn, . . . , X1, 1)

= φ1Xn + · · ·+ φpXn+1−p + P(Wn+1 | Xn, . . . , X1, 1)

= φ1Xn + · · ·+ φpXn+1−p.

Example 5.3. For any zero-mean stationary process {Xt}, suppose we have

P(Xn+1 | Xn, . . . , X2) =

n−1∑
j=1

ajXn+1−j ,

then

P(X1 | Xn, . . . , X2) =
n−1∑
j=1

an−jXn+1−j ,

and

E{Xn+1−P(Xn+1 | Xn, . . . , X2)}2 = E{X1−P(X1 | Xn, . . . , X2)}2 = E{Xn−P(Xn | Xn−1, . . . , X1)}2.
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5.4 The Partial Autocorrelation Fucntion (PACF)

Like the autocorrelation function, the PACF is another tool that conveys vital information regarding

the dependence structure of a stationary process and depends only on the second order properties

of the process.

The partial autocorrelation function (PACF) αX(·) of a stationary time series is defined by

αX(1) = Corr(X2, X1) = ρX(1),

and

αX(k) = Corr{Xk+1 − P(Xk+1 | Xk, . . . , X2, 1), X1 − P(X1 | Xk, . . . , X2, 1)}.

The value of αX(k) is known as the partial autocorrelation of {Xt} at lag k.

The PCVF αX(k) may be regarded as the correlation between X1 and Xk+1, adjusted for the

intervening observations X2, . . . , Xk.

Remark 5.3. The definition in the above box define αX(k) based on {X1, X2, . . . , Xk, Xk+1}. But,

it is also equivalent as the one based on {Xt+1, Xt+2, . . . , Xt+k, Xt+k+1} for any t > 0; i.e.,

αX(k) = Corr{Xt+k+1 − P(Xt+k+1 | Xt+k, . . . , Xt+2, 1), Xt+1 − P(Xt+1 | Xt+k, . . . , Xt+2, 1)}.

Example 5.4. Let {Xt} be the zero mean AR(1) process

Xt = φXt−1 +Wt.

Then

αX(1) = Corr(X2, X1) = Corr(φX1 +W2, X1) = φ.

Based on Example 5.1, we have P(Xk+1 | Xk, . . . , X2, 1) = φXk and P(X1 | Xk, . . . , X2, 1) = φX2.

Then for k ≥ 2

αX(k) =Corr(Xk+1 − φXk, X1 − φX2)

=Corr(Wk, X1 − φX2)

=0.

This says that the correlation between Xk+1 and X1

A HW: For the MA(1) process: Xt = Wt + θWt−1, |θ| < 1, {Wt} ∼WN(0, σ2), find its PACF.

71



Corollary 5.1. Let {Xt} be a zero-mean stationary process with γX(h) such that γX(h) → 0 as

h→ 0. Then

P(Xk+1 | Xk, . . . , X1, 1) =
k∑
j=1

φkjXk+1−j .

Then from the equations

E[{Xk+1 − P(Xk+1 | Xk, . . . , X1, 1)}Xj ] = 0, j = k, . . . , 1.

We have
ρX(0) ρX(1) ρX(2) · · · ρX(k − 1)

ρX(1) ρX(0) ρX(1) · · · ρX(k − 2)
...

...

ρX(k − 1) ρX(k − 2) ρX(k − 3) · · · ρX(0)




φk1

φk2
...

φkk

 =


ρX(1)

ρX(2)
...

ρX(k)

 . (5.4)

The partial autocorrelation αX(k) of {Xt} at lag k is

αX(k) = φkk, k ≥ 1,

Proof. We will prove this corollary later.

The sample partial partial autocorrelation α̂X(k) at lag k of {x1, . . . , xn} is defined, provided

xi 6= xj for some i and j, by

α̂X(k) = φ̂kk, 1 ≤ k ≤ n,

where φ̂kk is uniquely determined by (5.4) with each ρX(j) replaced by the corresponding sample

autocorrelation ρ̂X(j).

5.5 Recursive Methods for Computing Best Linear Predictors

In this section, we focus on zero-mean stationary processes. We establish two recursive algorithms

for determining the one-step predictors,

X̂n+1 = P(Xn+1 | Xn, . . . , X1)

and show how they can be used to compute the h-step predictors

P(Xn+h | Xn, . . . , X1)
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5.5.1 Recursive Prediction Using the Durbin-Levinson Algorithm

We can express X̂n+1 in the form

X̂n+1 = φn1Xn + · · ·+ φnnX1, n ≥ 1.

And its mean squared error of prediction will be denoted by νn as

νn = E(Xn+1 − X̂n+1)
2, n ≥ 1.

Clearly, ν0 = γX(0). The following proposition specified an algorithm, known as the Durbin-Levinson

algorithm, which is a recursive shceme for computing φn = (φn1, . . . , φnn)T and νn for n = 1, 2, . . . .

Proposition 5.3. (The Durbin-Levinson Algorithm). If {Xt} is a zero-mean stationary process

with ACVF γX(·) such that γX(0) > 0 and γX(h)→ 0 as h→∞, then the coefficients φnj and mean

squared errors νn as defined above satisfy φ11 = γX(1)/γX(0), ν0 = γX(0),

φnn =

γX(n)−
n−1∑
j=1

φn−1,jγX(n− j)

 ν−1n−1,


φn1

...

φn,n−1

 =


φn−1,1

...

φn−1,n−1

− φnn


φn−1,n−1
...

φn−1,1


and

νn = νn−1(1− φ2nn).

Proof. We consider the Hilbert space H = {X : EX2 < ∞} with inner produce < X,Y >=

E(XY ) with norm ‖X‖2 =< X,X >. By the definition of X̂n+1, we can view X̂n+1 is in the

linear space of H spanned by {Xn, . . . , X1}, denoted by sp{Xn, . . . , X1}
.
= {Y : Y = a1Xn + · · · +

anX1 where a1, . . . , an ∈ R}. Since X1 − P(X1 | Xn, . . . , X2) is orthogonal to Xn, . . . , X2; i.e.,

< X1 − P(X1 | Xn, . . . , X2), Xk >= 0, k = 2, . . . , n.

We have

sp{Xn, . . . , X2, X1} = sp{Xn, . . . , X2, X1 − P(X1 | Xn, . . . , X2)}

= sp{Xn, . . . , X2}+ sp{X1 − P(X1 | Xn, . . . , X2)}.
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Thus

X̂n+1 = P(Xn+1 | Xn, . . . , X2) + a{X1 − P(X1 | Xn, . . . , X2)}, (5.5)

where

a =
< Xn+1, X1 − P(X1 | Xn, . . . , X2) >

‖X1 − P(X1 | Xn, . . . , X2)‖2
. (5.6)

By stationary, we have

P(X1 | Xn, . . . , X2) =
n−1∑
j=1

φn−1,jXj+1 (5.7)

P(Xn+1 | Xn, . . . , X2) =
n−1∑
j=1

φn−1,jXn+1−j (5.8)

and

‖X1 − P(X1 | Xn, . . . , X2)‖2 = ‖Xn+1 − P(Xn+1 | Xn, . . . , X2)‖2

= ‖Xn − P(Xn | Xn−1, . . . , X1)‖2 = νn−1. (5.9)

Then Equations (5.5), (5.7) and (5.8) provide

X̂n+1 = aX1 +
n−1∑
j=1

(φn−1,j − aφn−1,n−j)Xn+1−j , (5.10)

where from Equation (5.6) and (5.7),

a =

< Xn+1, X1 > −
n−1∑
j=1

φn−1,j < Xn+1, Xj+1 >

 ν−1n−1

=

γX(n)−
n−1∑
j=1

φn−1,jγX(n− j)

 ν−1n−1.

Remark 5.1 told us that when γX(h)→ 0 as h→∞ guarantees that the representation

X̂n+1 =
n∑
j=1

φnjXn+1−j (5.11)

is unique. And comparing coefficients in (5.10) and (5.11), we therefore deduce that

φnn = a

74



and

φnj = φn−1,j − aφn−1,n−j , j = 1, . . . , n− 1.

Lastly,

νn = ‖Xn+1 − X̂n+1‖2

= ‖Xn+1 − P(Xn+1 | Xn, . . . , X2)− a{X1 − P(X1 | Xn, . . . , X2)}‖2

= ‖Xn+1 − P(Xn+1 | Xn, . . . , X2)‖2 + a2‖{X1 − P(X1 | Xn, . . . , X2)}‖2

− 2a < Xn+1 − P(Xn+1 | Xn, . . . , X2), X1 − P(X1 | Xn, . . . , X2) >

= νn−1 + a2νn−1 − 2a < Xn+1, X1 − P(X1 | Xn, . . . , X2) >

Based on (5.6) and (5.9), we have

νn = νn−1 + a2νn−1 − 2a2νn−1 = νn−1(1− a2).
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Now we prove Corollary 5.1: The partial autocorrelation αX(k) of {Xt} at lag k is

αX(k) = φkk, k ≥ 1.

Proof. We have

φnn = a =
< Xn+1, X1 − P(X1 | Xn, . . . , X2) >

‖X1 − P(X1 | Xn, . . . , X2)‖2

=
< Xn+1 − P(Xn+1 | Xn, . . . , X2), X1 − P(X1 | Xn, . . . , X2) >

‖X1 − P(X1 | Xn, . . . , X2)‖2

=
< Xn+1 − P(Xn+1 | Xn, . . . , X2), X1 − P(X1 | Xn, . . . , X2) >

‖Xn+1 − P(Xn+1 | Xn, . . . , X2)‖ · ‖X1 − P(X1 | Xn, . . . , X2)‖
= Corr{Xn+1 − P(Xn+1 | Xn, . . . , X2), X1 − P(X1 | Xn, . . . , X2)}

= αX(n).

5.5.2 Recursive Prediction Using the Innovations Algorithm

The Durbin-Levinson Algorithm is based on the decomposition of sp{Xn, . . . , X2, X1} into two or-

thogonal subspaces:

sp{Xn, . . . , X2, X1} = sp{Xn, . . . , X2, X1 − P(X1 | Xn, . . . , X2)}

= sp{Xn, . . . , X2}+ sp{X1 − P(X1 | Xn, . . . , X2)}.

The Innovation Algorithm is based on the decomposition of sp{Xn, . . . , X2, X1} to n orthogonal

subspaces; i.e.,

sp{Xn, . . . , X1} = sp{X1 − X̂1, X2 − X̂2, . . . , Xn − X̂n}

= sp{X1 − X̂1}+ sp{X2 − X̂2}+ · · ·+ sp{Xn − X̂n}

where noting that

X̂i = P(Xi | Xi−1, . . . , X1) and X̂1 = 0.

Thus, we have

X̂n+1 =

n∑
j=1

θnj(Xn+1−j − X̂n+1−j).

We now establish the recursive scheme for computing {θnj , j = 1, . . . , n; νn} for n = 1, 2, . . . through

the following proposition. Note that, this proposition is more generally applicable than the previous

one since we allow {Xt} to be a possible non-stationary with mean zero and autocovariance function

κX(i, j) =< Xi, Xj >= E(XiXj).
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Proposition 5.4. (The Innovations Algorithm). If {Xt} is a process with mean zero and

E(XiXj) = κX(i, j), where the matrix [κX(i, j)]ni,j=1 is non-singular for each n = 1, 2, . . . , then the

one-step predictors X̂n+1, n ≥ 0, and their mean squared errors νn, n ≥ 1, are given by

X̂n+1 =

{
0, n = 0,∑n

j=1 θnj(Xn+1−j − X̂n+1−j), n ≥ 1,

and 

ν0 = κX(1, 1),

θ11 = ν−10 κX(2, 1)

ν1 = κX(2, 2)− θ211ν0

θnn = ν−10 κX(n+ 1, 1), n ≥ 2

θn,n−k = ν−1k

{
κX(n+ 1, k + 1)−

∑k−1
j=0 θk,k−jθn,n−jνj

}
, k = 1, . . . , n− 1, n ≥ 2

νn = κX(n+ 1, n+ 1)−
∑n−1

j=0 θ
2
n,n−jνj , n ≥ 2.

Proof. By the orthogonality, we have

< X̂n+1, Xk+1 − X̂k+1 >= <
n∑
j=1

θnj(Xn+1−j − X̂n+1−j), Xk+1 − X̂k+1 >

= θn,n−k < Xk+1 − X̂k+1, Xk+1 − X̂k+1 >= θn,n−kνk.

Thus

θn,n−k = ν−1k < X̂n+1, Xk+1 − X̂k+1 >

= ν−1k < Xn+1, Xk+1 − X̂k+1 >

= ν−1k

κX(n+ 1, k + 1)−
k∑
j=1

θk,j < Xn+1, Xk+1−j − X̂k+1−j >


= ν−1k

κX(n+ 1, k + 1)−
k−1∑
j=0

θk,k−j < Xn+1, Xj+1 − X̂j+1 >


= ν−1k

κX(n+ 1, k + 1)−
k−1∑
j=0

θk,k−jθn,n−jνj

 .
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Then

νn = ‖Xn+1 − X̂n+1‖2 = ‖Xn+1‖2 − ‖X̂n+1‖2

= κX(n+ 1, n+ 1)−

∥∥∥∥∥∥
n∑
j=1

θnj(Xn+1−j − X̂n+1−j)

∥∥∥∥∥∥
2

= κX(n+ 1, n+ 1)−
n∑
j=1

θ2nj

∥∥∥Xn+1−j − X̂n+1−j

∥∥∥2
= κX(n+ 1, n+ 1)−

n∑
j=1

θ2njνn−j

= κX(n+ 1, n+ 1)−
n−1∑
k=0

θ2n,n−kνk.

Example 5.5. (Prediction of an MA(1) Process Using the Innovations Algorithm). If {Xt} is the

process,

Xt = Wt + θWt−1, {Wt} ∼WN(0, σ2),

Then

ν0 = (1 + θ2)σ2, θ11 = ν−10 κX(2, 1) = ν−10 θσ2,

ν1 = (1 + θ2)σ2 − θ211ν0 = (1 + θ2 − ν−10 θ2σ2)σ2,

θ22 = 0, θ21 = ν−11 θσ2, · · ·

νn = (1 + θ2 − ν−1n θ2σ2)σ2.

If we define rn = νn/σ
2, then we can write

X̂n+1 = θ(Xn − X̂n)/rn−1,

where r0 = 1 + θ2 and rn+1 = 1 + θ2 − θ2/rn.
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5.5.3 Recursive Calculation of the h-Step Predictors, h ≥ 1

Since sp{Xn, . . . , X1} is a linear subspace of sp{Xn+h−1, . . . , X1}, and when j < h, Xn+h−j−X̂n+h−j

is orthogonal to sp{Xn, . . . , X1}, we have

P(Xn+h | Xn, . . . , X1) = P{P(Xn+h | Xn+h−1, . . . , X1) | Xn, . . . , X1}

= P(X̂n+h | Xn, . . . , X1)

= P


n+h−1∑
j=1

θn+h−1,j(Xn+h−j − X̂n+h−j) | Xn, . . . , X1


=

n+h−1∑
j=h

θn+h−1,j(Xn+h−j − X̂n+h−j), (5.12)

(5.13)

Further the mean squared error can be expressed as

E{Xn+h − P(Xn+h | Xn, . . . , X1)}2 = ‖Xn+h‖2 − ‖P(Xn+h | Xn, . . . , X1)‖2

= κX(n+ h, n+ h)−
n+h−1∑
j=h

θ2n+h−1,jνn+h−j−1.

Remark 5.4. Note that, while the Durbin-Levison algorithm gives the coefficients X1, . . . , Xn in

the representation of X̂n+1 =
∑n

j=1 φnjXn+1−j , the Innovations algorithm gives the coefficients of

the “innovations”, (Xj − X̂j), j = 1, . . . , n, in the orthogonal expansion X̂n+1 =
∑n

j=1 θnj(Xn+1−j −
X̂n+1−j). The latter expansion is extremely simple to use, especially, in the case of ARMA(p, q)

processes.

5.6 Recursive Prediction of an ARMA(p, q) Process

For an causal ARMA(p, q) process {Xt} defined by

φ(B)Xt = θ(B)Wt, {Wt} ∼WN(0, σ2).

Instead of applying the Innovations algorithm to {Xt}, we apply it to the transformed process{
Zt = σ−1Xt, t = 1, . . . ,m

Zt = σ−1φ(B)Xt = σ−1(Xt − φ1Xt−1 − · · · − φpXt−p) = σ−1θ(B)Wt, t > m,

where m = max(p, q). For notational convenience, we define θ0 = 1 and assume that p ≥ 1 and

q ≥ 1.

It can be seen that

sp{X1, . . . , Xn} = sp{Z1, . . . , Zn}, n ≥ 1.
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For n ≥ 1, we also use the notation X̂n+1 and Ẑn+1 to denote the predictor

X̂n+1 = P(Xn+1 | X1, . . . , Xn) and Ẑn+1 = P(Zn+1 | Z1, . . . , Zn),

respectively. Of course, we have X̂1 = Ẑ1 = 0.

Now we apply the Innovations algorithm to {Zt}. For {Zt}, we have

κZ(i, j) =


σ−2γX(i− j), 1 ≤ i, j ≤ m,
σ−2 {γX(i− j)−

∑p
r=1 φrγX(r − |i− j|)} , min(i, j) ≤ m < max(i, j) ≤ 2m,∑q

r=0 θrθr+|i−j| min(i, j) > m,

0, otherwise,

(5.14)

where we set θj = 0 for j > q.

Then based on the Innovations algorithm, we can obtained θnjs such that{
Ẑn+1 =

∑n
j=1 θnj(Zn+1−j − Ẑn+1−j), 1 ≤ n < m,

Ẑn+1 =
∑q

j=1 θnj(Zn+1−j − Ẑn+1−j), n ≥ m,

and

rn = E(Zn+1 − Ẑn+1)
2.

It is worthwhile to point out that θnj = 0 when both n ≥ m and j > q. Why?

Now, we show the relationship between X̂t and Ẑt. When t = 1, . . . ,m

Ẑt = P(Zt | Zt−1, . . . , Z1) = P(σ−1Xt | Xt−1, . . . , X1) = σ−1X̂t.

For t > m, we have

Ẑt = P(Zt | Zt−1, . . . , Z1) = P(σ−1φ(B)Xt | Xt−1, . . . , X1)

= σ−1P(Xt − φXt−1 − · · · − φpXt−p | Xt−1, . . . , X1) = σ−1(X̂t − φXt−1 − · · · − φpXt−p)

= σ−1{X̂t + φ(B)Xt −Xt}.

Thus

Xt − X̂t = σ(Zt − Ẑt), ∀t ≥ 1.

Thus, when 1 ≤ n < m

X̂n+1 = Xn+1 − σ(Zn+1 − Ẑn+1) = (Xn+1 − σZn+1) + σẐn+1 =

n∑
j=1

θnj(Xn+1−j − X̂n+1−j).
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when n ≥ m,

X̂n+1 = Xn+1 − σ(Zn+1 − Ẑn+1)

= Xn+1 − (Xn+1 − φ1Xn − · · · − φpXn+1−p) + σẐn+1

=φXn + · · ·+ φpXn+1−p +

q∑
j=1

θnj(Xn+1−j − X̂n+1−j).

Thus, we have{
X̂n+1 =

∑n
j=1 θnj(Xn+1−j − X̂n+1−j), 1 ≤ n < m,

X̂n+1 = φ1Xn + · · ·+ φpXn+1−p +
∑q

j=1 θnj(Xn+1−j − X̂n+1−j), n ≥ m,
(5.15)

and further

E(Xn+1 − X̂n+1)
2 = σ2E(Zn+1 − Ẑn+1)

2 = σ2rn. (5.16)

Equations (5.14), (5.15) and (5.16) provides a recursive calculation of one-step predictor P(Xn+1 |
Xn, . . . , X1) for a general ARMA(p, q) process.

Remark 5.5. Note that, the covariance κZ(i, j) depend only on φ1, . . . , φp, θ1, . . . , θq and not on σ2.

The same is therefore true of θnj and rn.

Remark 5.6. The representation (5.15) is particularly convenient from a practical point of view,

not only because of the simple recusion relations for the coefficients, but also because for n ≥ m it

requires the storage of at most p past observations Xn, . . . , Xn+1−p and at most q past innovations

(Xn+1−j − X̂n+1−j), j = 1, . . . , q, in order to predict Xn+1. Direct application of the Innovations

algorithm to {Xt} on the other hand leads to a representation of X̂n+1 in terms of all the n preceding

innovations (Xj − X̂j), j = 1, . . . , n.
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Example 5.6. (Prediction of an MA(q) Process). For an MA(q) process; i.e., {Xt} is defined as

Xt = Wt + θ1Wt−1 + · · ·+ θqWt−q.

which can be viewed as ARMA(1, q) process. Thus, we can apply (5.15) and obtain{
X̂n+1 =

∑n
j=1 θnj(Xn+1−j − X̂n+1−j), 1 ≤ n < q,

X̂n+1 =
∑q

j=1 θnj(Xn+1−j − X̂n+1−j), n ≥ q,

where the coefficients θnj are found by the Innovations algorithm using the covariance κZ(i, j), where{
Zt = σ−1Xt, t = 1, . . . , q

Zt = σ−1φ(B)Xt = σ−1Xt, t > q,
.

Thus the process {Zt} and {σ−1Xt} are identical, and the covariances are simply and

κZ(i, j) = σ−2γX(i− j) =

q−|i−j|∑
r=0

θrθr+|i−j|.

5.6.1 h-step prediction of an ARMA(p, q) process

When h ≥ 1, similarly as in Section 5.5.3; based on (5.12), we have,

P(Ẑn+h | Zn, . . . , Z1) = P(Ẑn+h | Xn, . . . , X1)

=

n+h−1∑
j=h

θn+h−1,j(Zn+h−j − Ẑn+h−j)

= σ−1
n+h−1∑
j=h

θn+h−1,j(Xn+h−j − X̂n+h−j).

Then when 1 ≤ h ≤ m− n,

P(Xn+h | Xn, . . . , X1) = P{Xn+h − σ(Zn+h − Ẑn+h) | Xn, . . . , X1}

= σP{Ẑn+h | Xn, . . . , X1}

=

n+h−1∑
j=h

θn+h−1,j(Xn+h−j − X̂n+h−j).
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When h > m− n

P(Xn+h | Xn, . . . , X1) = P{Xn+h − σ(Zn+h − Ẑn+h) | Xn, . . . , X1}

= P

(
p∑
i=1

φiXn+h−i | Xn, . . . , X1

)
+ σP{Ẑn+h | Xn, . . . , X1}

=

p∑
i=1

φiP(Xn+h−i | Xn, . . . , X1) +

n+h−1∑
j=h

θn+h−1,j(Xn+h−j − X̂n+h−j).

Since θnj = 0 when both n ≥ m and j > q, we have obtained the h-step predictor

P(Xn+h | Xn, . . . , X1) =



∑n+h−1
j=h θn+h−1,j(Xn+h−j − X̂n+h−j), 1 ≤ h ≤ m− n,

∑p
i=1 φiP(Xn+h−i | Xn, . . . , X1)

+
∑

h≤j≤q θn+h−1,j(Xn+h−j − X̂n+h−j), h > m− n.

One last thing I would to say about prediction is that, under a Gassian assumption, we can

use the prediction and the prediction mean squared error to construct confidence interval. For an

unkonwn Xn+h, an 95% CI is

P(Xn+h | Xn, . . . , X1)± 1.96[E{Xn+h − P(Xn+h | Xn, . . . , X1)}2]1/2.
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5.7 Miscellanea

Example 5.7. (Prediction of an AR(p) Process). For an AR(p) process; i.e., {Xt} satisfies that

Xt − φ1Xt−1 − · · · − φpXt−p = Wt

and Cov(Wt, Xs) = 0 for s < t. With no difficulty, we can see that, when n ≥ p,

X̂n+1 =P(X̂n+1 | Xn, . . . , X1)

=P(φ1Xn + · · ·+ φpXn+1−p +Wt | Xn, . . . , X1)

=φ1Xn + · · ·+ φpXn+1−p.

The one-step prediction if fully determined by its previous p observations. Further

E{Xn+1 − X̂n+1}2 = EW 2
t = σ2.

Noting that, we can view that, conditional on {Xn, . . . , X1}, Xn+1 = φ1Xn + c · · ·+ φpXn+1−p +Wt

follows a distribution with mean φ1Xn + · · · + φpXn+1−p and variance σ2. Recall that the optimal

predictor of X given Y is E(X | Y ). Thus, in our AR(p) case, we have the optimal predictor being

the same as the optimal linear predictor.

The other interesting thing is that, in this example, neither the Durbin-Levinson algorithm nor

the Innovations algorithm is need for compute X̂n+1. Notice that, in both algorithm, we need

the autocovariance or more generally the covariance function. For example, in the Durbin-Levison

algorithm, we have

X̂n+1 = φn1Xn + · · ·+ φnnX1, n ≥ 1.

and its mean squared error of prediction will be denoted by νn as

νn = E(Xn+1 − X̂n+1)
2, n ≥ 1.

where φ11 = γX(1)/γX(0), ν0 = γX(0),

φnn =

γX(n)−
n−1∑
j=1

φn−1,jγX(n− j)

 ν−1n−1,


φn1

...

φn,n−1

 =


φn−1,1

...

φn−1,n−1

− φnn


φn−1,n−1
...

φn−1,1


and

νn = νn−1(1− φ2nn).
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Thus, with the acknowledgement of γX(h), the coefficients φn,js are fully determined. Now we know

φn,js from the model definition directly. It does not make use of γX(h) of {Xt}. Naturally, a question

rises as: can we use the φs to find all the γX(h)s?

To do so, we look as the Step-Down Durbin Levinson algorithm: given φn1, . . . , φnn and νn,

φn−1,j =
φnj + φnnφn,n−j

1− φ2nn
νn−1 =νn/(1− φ2nn)

Thus, start with φp,1 = φ1, . . . , φpp = φp and νp = σ2, we can step-down recursively to get

φp−1,js & νp−1, φp−2,js & νp−2, . . . , φ11 & ν1.

Then we can find all the γX(h) via

γX(0) =ν0 = ν1/(1− φ211)

γX(1) =γX(0)φ11

and

γX(n) = νn−1φnn +
n−1∑
j=1

φn−1,jγX(n− j)

Thus

γX(2) =φ22ν1 + φ11γX(1)

γX(3) =φ33ν2 + φ32γX(2) + φ2,2γX(1)

...

γX(p) =φppνp−1 + φp−1,1γX(p− 1) + · · ·+ φp−1,p−1γX(1)

Noting that, Once we have γX(0), . . . , γX(p), we have for k ≥ p+ 1,

γX(k) = φ1γX(k + 1) + · · ·+ φpγX(k − p).
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Example 5.8. (Generating a realization of an ARMR(p, q) process.) How to generate exact re-

alizations of ARMA processes? Let us consider generating stationary and causal Gassian AR(p)

processes:

Yt − φ1Yt−1 − · · ·φpYt−p = Wt,Wt ∼ N(0, σ2).

Recall that, for any t ≥ p+ 1, we have

Ŷt = P(Yt | Yt+1, . . . , Y1) = φ1Yt−1 + · · ·+ φpYt−p.

The innovations are

Ut = Yt − Ŷt = Zt

with MSE being

νt−1 = VarUt = σ2.

Now, we can use step-down L-D recursions to get coefficients for

Ŷt = φt−1,1Yt−1 + · · ·+ φt−1,t−1Y1, t = 2, 3, . . . , p

also the associated MSEs νt−1.

Now we have all the innovations Ut = Yt − Ŷt, for t = 1, . . . , p, where

1. EUt = 0 and VarUt = νt−1.

2. U1, U2, . . . , Up are uncorrelated random variables, (by the Gaussian assumption, it means in-

dependent normal)

Thus, we can easily simulate Uts, t = 1, . . . , p. Then we unroll Ut to get simulations fof Yts for

t = 1, . . . , p:

U1 = Y1

U2 = Y2 − φ11Y1
U3 = Y3 − φ21Y 2− φ22Y1

...

Up = Yp − φp−1,1Yp−1 − · · · − φp−1,p−1Y1.

Now, we have {Yt, t = 1, . . . , p}, we can start generating Yts for t > p based on the definition of the

AR(p) model.

Once we know how to simulate AR process φ(B)Yt = Zt, we can easily simulate an ARMA

process φ(B)Xt = θ(B)Zt based on

Xt = θ(B)Yt.
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6 Estimation for ARMA Models

The goal of this chapter is to estimate the ARMA(p, q) model for observed time series x1, . . . , xn.

More specifically, we need determine p and q; i.e., order selection; need estimate all the unknown

parameters, including the process mean, coefficients φj and/or θj , and white noise variance σ2.

6.1 The Yule-Walker Equations and Parameter Estimation for Autoregressive

Processes

Let {Xt} be the zero-mean causal autoregressive process,

Xt − φ1Xt−1 − · · · − φpXt−p = Wt, {Wt} ∼WN(0, σ2). (6.1)

Our aim is to find estimators of the coefficient vector φ = (φ1, . . . , φp)
T and the white noise variance

σ2 based on the observations X1, . . . , Xn, where of course, n > p.

The causality assumption allows us to write Xt in the form

Xt =
∞∑
h=0

ψhWt−h,

where ψ(z) =
∑∞

h=0 ψhz
h = 1/φ(z), |z| ≤ 1. Now we multiply each side of (6.1) by Xt−j , j = 0, . . . , p

and then take exception. It leads to

E(Xt−jXt − φ1Xt−jXt−1 − · · · − φpXt−jXt−p)

= E(Xt−jWt)

= E

{ ∞∑
h=0

ψhWt−j−hWt,

}

=

∞∑
h=0

ψhE{Wt−j−hWt}

= σ2I(j = 0), since ψ0 = 1

Thus

γX(0)− φ1γX(1)− · · · − φpγX(p) = σ2,

γX(1)− φ1γX(0)− · · · − φpγX(p− 1) = 0,

...

γX(p)− φ1γX(p− 1)− · · · − φpγX(0) = 0.
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Now, we obtain the Yule-Walker equations,

Γpφ = γp, (6.2)

and

σ2 = γX(0)− φTγp. (6.3)

where Γp = [γX(i− j)]pi,j=1, φ = (φ1, . . . , φp)
T and γp = (γX(1), . . . , γX(p))T. Recall that, in Section

2.6.2, we have proposed the estimator of γX and proved that the estimator γ̂X is nonnegative definite.

Using that, we have our so-called Yule-Walker estimator φ̂ and σ̂2:

Γ̂pφ̂ =γ̂p, (6.4)

σ̂2 =γ̂X(0)− φ̂Tγ̂p, (6.5)

Noting that we have

γ̂X(h) =

{
n−1

∑n−|h|
t=1 (Xt+|h| −Xn)(Xt −Xn) if |h| < n

0 if |h| ≥ n.

Based on Lemma 2.3, we know that γ̂X is nonnegative definite. Thus, γ̂X(·) is the auto covariance

function of some stationary process base on Theorem 2.3; i.e.,

“A real-valued function defined on the integers is the autocovariance function of a stationary time

series if and only if it is even and non-negative definite.”

According to Proposition 2.1; i.e.,

“If {Xt} is a stationary q−correlated time series (i.e., Cov(Xs, Xt) = 0 whenever |s− t| > q) with

mean 0, then it can be represented as an MA(q) process.”

this stationary process must be an MA(n− 1) process. Finally, based on Proposition 5.1; i.e.,

“For a stationary process, if γX(0) > 0 and γX(h)→ 0 as h→∞, then the covariance matrix

Γn = [γX(i− j)]ni,j=1 is positive definite for every n. ”

if γ̂X(0) > 0, then it can be shown that Γ̂p is non-singular. Diving by γ̂X(0), we therefore obtain

φ̂ =R̂−1p ρ̂p (6.6)

σ̂2 =γ̂X(0)(1− ρ̂T
p R̂
−1
p ρ̂p), (6.7)

where φ̂p = (ρ̂(1), . . . , ρ̂(p))T = γ̂p/γ̂X(0).

Remark 6.1. One feature of the Yule-Walker estimator is that, the fitted model

Xt − φ̂1Xt−1 − · · · − φ̂pXt−p = Wt, {Wt} ∼WN(0, σ̂2),
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is also causal. And the fitted model’s ACVF is γ̂X(h) for h = 0, 1, . . . , p (but in general different for

higher lags).

Theorem 6.1. If {Xt} is the causal AR(p) process with {Wt} ∼ IID(0, σ2), then the Yule-Walker

estimator φ̂ enjoys that
√
n(φ̂− φ)

d→ N(0, σ2Γ−1p ),

and

σ̂2
p→ σ2.

Remark 6.2. Noting that, the Yule-Walker estimator is based on moment matching method. Gen-

erally speaking, moment based estimator can be far less efficient than the MLE. However, one good

thing of the Yule-Walker estimator is that, it is asymptotically the same as the MLE estimator.

Remark 6.3. Approximated 95% confidence interval for φj is given by[
φ̂j ± 1.96

√
v̂jj/
√
n
]

where v̂jj is the jth diagonal element of σ̂2Γ̂−1p . And a 95% confidence region for φ is then

(φ̂− φ)TΓ̂(φ̂− φ) ≤ χ2
0.95(p)

σ̂2

n
.

Example 6.1. Here is a dataset; number of sunspots observed each year between 1749 and 1963.

The plot of the data is the following
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Theorem 6.2. If {Xt} is the causal AR(p) process with {Wt} ∼ IID(0, σ2) and if

φ̂m = (φm1, . . . , φmm)T = R̂−1m ρ̂m,m > p,

then
√
n(φ̂m − φm)

d→ N(0, σ2Γ−1m )

where φm is the coefficient vector of the best linear predictor φT
mXm of Xm+1 based on Xm =

(Xm, . . . , X1)
T; i.e., φm = R−1m ρm. In particular for m > p,

√
nφ̂mm

d→ N(0, 1).

Remark 6.4. When fitting AR models, the order p will of course be unknown. If the true one

is p, but we want to fit it by order m, then we should expect the estimated coefficient vector

φ̂m = (φm1, . . . , φmm)T to have a small value of φ̂mm for each m > p.

Remark 6.5. Noting that φmm is the PACF of {Xt} at lag m, recall, PACF is a good tool to identify

AR series (while ACF is for MA processes). If m > p, we have φmm = 0.

Remark 6.6. For order selection of p, our textbook suggest setting p to be the smallest p0, such

that

|φ̂mm| < 1.96/
√
n, for p0 < m ≤ H,

where H is the maximum lag for a reasonable estimator of γX ; i.e., H ≤ n/4 and n ≥ 50.

6.2 Preliminary Estimation for Autoregressive Processes Using the Durbin-Levinson

Algorithm

Suppose we have observations x1, . . . , xn of a zero-mean stationary time series. Provided γ̂x(0) > 0 we

can fit an autoregressive process of order m < n to the data by means of the Yule-Walker equations.

The fitted AR(m) process is

Xt − φ̂m1Xt−1 − · · · φ̂mmXt−m = Wt, Wt ∼WN(0, ν̂m) (6.8)

where

φ̂m = (φm1, . . . , φmm)T = R̂−1m ρ̂m, (6.9)

and

ν̂m = γ̂X(0){1− φ̂T
mR̂

−1φ̂m}. (6.10)

Based on Theorem 6.2, we know that φ̂m is the estimator of φm which is the coefficient vector of

the best linear predictor φT
mXm of Xm+1 based on Xm = (Xm, . . . , X1)

T, further, we can see that

ν̂m is more like an estimator of the corresponding mean squared prediction error.
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This leads us to the following proposition.

Proposition 6.1. (The Durbin-Levison Algorithm for Fitting Autogressive Models). If γ̂X(0) > 0

then the fitted autoregressive model (6.8) for m = 1, 2, . . . , n−1, can be determined recursively from

the relations, φ̂11 = γ̂X(1)/γ̂X(0), ν̂0 = γ̂X(0),

φ̂mm =

γ̂X(m)−
m−1∑
j=1

φ̂m−1,j γ̂X(m− j)

 ν̂−1m−1,


φ̂m1

...

φ̂m,m−1

 =


φ̂m−1,1

...

φ̂m−1,m−1

− φ̂mm


φ̂m−1,m−1
...

φ̂m−1,1


and

ν̂m = ν̂m−1(1− φ̂2mm).

Again, noting that, φ̂11, φ̂22, . . . , φ̂mm are the sample partial autocorrelation function at lags

1, 2, . . . ,m. Using R function acf and selecting option type=“partial” directly calculates the sample

PACFs.

Example 6.2. We generated a sequence of AR(2) series:

set.seed(720)

w=rnorm(5000,0,1.5)

x=filter(w,filter=c(0.5,0.2),method="recursive")

x=x[-(1:2000)]

pacf=acf(x,type="partial")

YW=ar(x,method="yule-walker")

YW

Call:

ar(x = x, method = "yule-walker")

Coefficients:

1 2

0.5176 0.1730

Order selected 2 sigma^2 estimated as 2.327

YW[c(2,3,14)]

$ar

[1] 0.5175761 0.1729591

$var.pred
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[1] 2.327124

$asy.var.coef

[,1] [,2]

[1,] 0.0003236854 -0.0002025678

[2,] -0.0002025678 0.0003236854

ar(x,method="yule-walker",aic=FALSE,3)[c(2,3,14)]

$ar

[1] 0.516461352 0.169623096 0.006445428

$var.pred

[1] 2.327804

$asy.var.coef

[,1] [,2] [,3]

[1,] 3.337645e-04 -0.0001727485 -5.772761e-05

[2,] -1.727485e-04 0.0004131905 -1.727485e-04

[3,] -5.772761e-05 -0.0001727485 3.337645e-04
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6.3 Preliminary Estimation for Moving Average Processes Using the Innovations

Algorithm

We know that we can fit autoregressive models of orders 1, 2, . . . , to the data x1, . . . , xn by applying

the Durbin-Lesion algorithm based on the sample autocovariances. Just like this, we can also fit

moving average models,

Xt = Wt + θ̂m1Wt−1 + · · ·+ θ̂mmWt−m, Wt ∼WN(0, ν̂m),

of orders m = 1, 2, . . . , by means of the innovations algorithm, where θ̂m = (θ̂m1, . . . , θ̂mm)T and

white noise variance ν̂m, m = 1, 2, . . . , are specified as follows.

(Innovation Estimates of Moving Average Parameters). If γ̂X(0) > 0, we define the innovation

estimates θ̂m, ν̂m appearing above for m = 1, . . . , n− 1, by the recursion relations ν̂0 = γ̂X(0),

θ̂m,m−k = ν̂−1k

γ̂X(m− k)−
k−1∑
j=0

θ̂m,m−j θ̂k,k−j ν̂j

 , k = 0, . . . ,m− 1,

and

ν̂m = γ̂X(0)−
m−1∑
j=0

θ̂2m,m−j ν̂j .

The asymptotic behavior can be proved more generally, not only for MA models (since for each

observed sequence, we can calculate γ̂X(h), and then use the above recursive means to find θ̂s).

Theorem 6.3. (The Asymptotic Behavior of θ̂m). Let {Xt} be the causal invertible ARMA process

φ(B)Xt = θ(B)Wt, {Wt} ∼ IID(0, σ2), EW 4
t < ∞, and let ψ(z) =

∑∞
j=0 ψjz

j = θ(z)/φ(z), |z| ≤ 1,

(withe ψ0 = 1, and ψj = 0 for j < 0). Then for any sequence of positive integers {m(n) : n = 1, 2, . . . }
such that m < n, m→∞ and m = o(n1/3) as n→∞, we have for each k,

√
n
(
θ̂m1 − ψ1, θ̂m2 − ψ2, . . . , θ̂mk − ψk

)T d→ N(0, A),

where A = [aij ]
k
i,j=1 and

aij =

min(i,j)∑
r=1

ψi−rψj−r.

Moreover,

ν̂m
p→ σ2.

Remark 6.7. Difference between this approach and the one based on the Durbin-Levsion algorithm.

For an AR(p) process, the Yule-Walker estimator φ̂p = (φ̂p1, . . . , φ̂pp)
T is consistent for φp as the

sample size n→∞. However for an MA(q) process the estimator θ̂q = (θ̂q1, . . . , θ̂qq)
T is not consistent

for the true parameter vector θq as n → ∞. For consistency it is necessary to use the estimator

(θ̂m1, . . . , θ̂mq)
T with {m(n)} satisfying the conditions of the above theorem.
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Example 6.3. Consider MA process Xt = Wt−1.5Wt−1 + .5Wt−2, Wt ∼ N(0, 2). Run the following

codes, we can see that

set.seed(720)

w = rnorm(2000,0,sqrt(2)) # 500 N(0,1) variates

v = filter(w, sides=1, c(1,-1.5,.5)) # moving average

v=tail(v,500)

require(itsmr)

jj=c(1:10,10,10,10)

mm=c(1:10,20,50,100)

for(i in 1:13)

{

print(ia(v,jj[i],m=mm[i]))

}

m
j

1 2 3 4 5 6 7 8 9 10 ν̂m

1 -0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.23
2 -0.88 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.75
3 -1.02 0.20 -0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.39
4 -1.10 0.27 -0.05 0.12 0.00 0.00 0.00 0.00 0.00 0.00 2.43
5 -1.14 0.28 -0.08 0.09 -0.10 0.00 0.00 0.00 0.00 0.00 2.26
6 -1.19 0.29 -0.09 0.09 -0.12 0.04 0.00 0.00 0.00 0.00 2.47
7 -1.22 0.32 -0.07 0.13 -0.10 0.10 0.03 0.00 0.00 0.00 2.22
8 -1.24 0.31 -0.10 0.11 -0.14 0.08 -0.02 -0.07 0.00 0.00 2.04
9 -1.28 0.32 -0.09 0.12 -0.14 0.10 -0.01 -0.05 0.07 0.00 2.06

10 -1.29 0.34 -0.08 0.14 -0.13 0.11 0.00 -0.04 0.10 -0.01 2.20
20 -1.32 0.36 -0.09 0.16 -0.14 0.11 0.01 -0.05 0.09 -0.06 2.05
50 -1.32 0.38 -0.10 0.16 -0.14 0.10 0.01 -0.04 0.08 -0.06 2.04

100 -1.34 0.41 -0.12 0.17 -0.15 0.11 0.02 -0.06 0.08 -0.04 2.05
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6.4 Preliminary Estimation for ARMA(p, q) Processes

Theorem 6.3 basically says that, for a causal invertible ARMA process φ(B)Xt = θ(B)Wt, we can

use the innovations algorithm to obtain θ̂m1, . . . , θ̂mk, for each k, which are consistent estimator of

ψ1, . . . , ψk, where ψ(z) =
∑∞

j=0 ψjz
j = θ(z)/φ(z). What more can we do using this results? More

specifically? ψ(z) comes form θ(z) and φ(z), can we use the estimator of ψ(z) and go back to estimate

θ(z) and φ(z)?

Let {Xt} be the zero-mean causal ARMA(p, q) process,

Xt − φ1Xt−1 − · · ·φpXt−p = Wt + θ1Wt−1 + · · ·+ θqWt−q, {Wt} ∼WN(0, σ2).

The causality assumption ensures that

Xt =
∞∑
j=0

ψjWt−j ,

Based on
∞∑
j=0

ψjz
j =

θ(z)

φ(z)
,

we can match the coefficients as

φ0 = 1

and

ψj = θj +

min(j,p)∑
i=1

φiψj−i, j = 1, 2, . . . .

and by convention, θj = 0 for j > q and φj = 0 for j > p. So when j > p, we actually have

ψj =

p∑
i=1

φiψj−i, j = q + 1, q + 2, . . . , q + p

We know how to estimate ψjs. Replacing them with their estimators, we have

θ̂mj =

p∑
i=1

φiθ̂m,j−i, j = q + 1, q + 2, . . . , q + p

Then, solving for φi, we obtain the estimator φ̂1, . . . , φ̂p (natural question: does the solution exist? If

so, unique? Further, is the fitted ARMA process causal?). Then, the estimate of θ1, . . . , θq is found

easily from

θ̂j = θ̂mj −
min(j,p)∑
i=1

φ̂iθ̂m,j−i, j = 1, 2, . . . , q.

Finally, the white noise variance σ2 is estimated by

σ̂2 = ν̂m.
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By the consistency of θ̂mj
p→ ψj , where m = m(n) satisfying the condition in Theorem 6.3, we have

φ̂
p→ φ, θ̂

p→ θ, and σ̂2
p→ σ2 as n→∞.

However, the efficiency (asymptotic variance) of this moment-matching type estimator is somewhat

poor. In the next section, we discuss a more efficient estimation procedure (strictly more efficient

if q ≥ 1) of (φ,θ) based on maximization of the Gaussian likelihood. Noting that, when q = 0, we

have AR process. And in the first section of this Chapter, we discussed that the Yule-Walker (based

on moment-matching) estimator is the same efficient as the MLE.

6.5 Recursive Calculation of the Likelihood of an Arbitrary Zero-Mean Gaussian

Process

All the previous discussed method are based on matching moments. This is very natural thoughts,

since for a general stationary time series, it is basically determined by its first moment (mean) and

its second moments (ACVF). Can we gain more if we assume more assumptions about the sequence?

In this section, we assume {Xt} to be a Gaussian process, more specifically, an arbitrary zero-mean

Gaussian Process. In the next section, we focus on Gaussian ARMA processes.

Let {Xt} be a Gaussian process with mean zero and covariance function κ(i, j) = E(XiXj).

Denoting Xn = (X1, . . . , Xn)T and Γn as the covariance matrix of Xn; i.e., Γn = E(Xn,X
T
n ) which

is assumed to be non-singular. Then, we have

Xn ∼ N(0,Γn).

Then the likelihood of XXXn is

L(Γn) = (2π)−n/2(det Γn)−1/2 exp(−XXXT
nΓ−1n XXXn/2)

Evaluating det Γn and Γ−1n can be avoided by using the one-step predictors and their mean squared

errors.

Denoting the one-step predictors of XXX as X̂XXn = (X̂1, . . . , X̂n)T where X̂1 = 0 and X̂j = E(Xj |
X1, . . . , Xj−1), j ≥ 2, and νj−1 = E(Xj − X̂j)

2 for j = 1, . . . , n.

We know that, from the innovations algorithm,

X̂n+1 =

{
0, n = 0,∑n

j=1 θnj(Xn+1−j − X̂n+1−j), n ≥ 1,
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Now define

C =



1

θ11 1

θ22 θ21 1
...

... · · · . . .

θn−1,n−1 θn−1,n−2 · · · θn−1,1 1


Then, we can write

X̂XXn = (C − I)(XXXn − X̂XXn),

where I is the n dimensional identity matrix. Hence

XXXn = XXXn − X̂XXn + X̂XXn = C(XXXn − X̂XXn).

Noting that

XXXn − X̂XXn ∼ N(0, D),

where D = diag{ν0, . . . , νn−1}. Thus,

Γn = CDCT.

Further, we have

XXXT
nΓ−1n XXXn = (XXXn − X̂XXn)TD−1(XXXn − X̂XXn) =

n∑
j=1

(Xj − X̂j)
2/νj .

and

det Γn = detC × detD × detC = ν0ν1 · · · νn−1.

Finally, we can rewrite the likelihood as

L(Γn) = (2π)−n/2(ν0 · · · νn−1)−1/2 exp

−1

2

n∑
j=1

(Xj − X̂j)
2

νj−1

 .
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6.6 Maximum Likelihood Estimation for ARMA Processes

Using the MLE developed from last section, suppose, now we have a causal Gaussian ARMA(p, q)

process,

φ(B)Xt = θ(B)Wt

The one step predictor is obtained through the Innovations algorithm; i.e.,

X̂i+1 =

i∑
j=1

θij(Xi+1−j − X̂i+1−j), 1 ≤ i < m = max(p, q),

and

X̂i+1 = φ1X1 + · · ·+ φpXi+1−p +

q∑
j=1

θij(Xi+1−j − X̂i+1−j), i ≥ m,

and

E(Xi+1 − X̂i+1)
2 = σ2ri.

Thus, the MLE can be derived as

L(φ,θ, σ2) = (2πσ2)−n/2(r0 · · · rn−1)−1/2 exp

−1

2
σ−2

n∑
j=1

(Xj − X̂j)
2

ri−1


Setting first derivative of logL w.r.t. σ2 to be zero, we have

σ̂2 = n−1S(φ̂, θ̂)

where

S(φ̂, θ̂) =

n∑
j=1

(Xj − X̂j)
2

rj−1

and φ̂, θ̂ are the values of φ and θ which minimizes

l(φ,θ) = log{n−1S(φ,θ)}+ n−1
n∑
j=1

log rj−1.

This l function is referred to as the reduced likelihood, which is a function of φ and θ only. Note

that, we start with the causal condition, so it is better to search for φ that makes the sequence

casual. However, invertible is not required, but you can also do that.

An intuitively appealing alternative estimation procedure is to minimize the weighted sum of

squares

S(φ,θ) =
n∑
j=1

(Xj − X̂j)
2

rj−1
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We refer the resulting estimator to as the least squares estimator φ̃ and θ̃. Further the least square

estimate of σ2 is

σ̃2 =
S(φ̃, θ̃)

n− p− q
.

6.7 Asymptotic properties of the MLE

Denoting β̂ = (φ̂T, θ̂T)T, if {Wt} ∼ IIDN(0, σ2) and {Xt} is causal and invertible, then

√
n(β̂ − β)

d→ N(0,V (β))

where for p ≥ 1 and q ≥ 1,

V (β) = σ2

[
EUtU

T
t EUtV

T
t

EVtU
T
t EVtV

T
t

]−1
where Ut = (Ut, . . . , Ut+1−p)

T and Vt = (Vt, . . . , Vt+1−q)
T and

φ(B)Ut = Wt

and

θ(B)Vt = Wt.

AICC Criterion: Choose p, q, φp and θq to minimize

AICC = −2 logL

{
φp,θq,

S(φp,θq)

n

}
+ 2

(p+ q + 1)n

(n− p− q − 2)
.

6.8 Diagnostic checking

Based on data {X1, . . . , Xn}, we can fit an ARMA(p, q) model and obtain the MLE φ̂, θ̂ and σ2.

We denote the fitted process as

φ̂(B)Xt = θ̂(B)Wt.

Based on the fitted process, we can calculate the one-step predictor of Xt based on X1, . . . , Xt−1,

given the values of φ̂, θ̂ and σ2. We denote this predictor as

X̂t(φ̂, θ̂), t = 1, . . . , n.

The residuals are defined by

Ŵt(φ̂, θ̂) =
Xt − X̂t(φ̂, θ̂)√

rt−1(φ̂, θ̂)
, t = 1, . . . , n.

If the fitted model is exactly true, then we could say that {Ŵt} ∼WN(0, σ̂2). However, we are not

that lucky, even we were, we do not believe we were. Nonetheless, Ŵt should have properties that
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are similar to those of the white noise sequence

Wt(φ,θ) =
Xt − X̂t(φ,θ)√

rt−1(φ,θ)
, t = 1, . . . , n.

which approximates the white noise term in the sense that

E{Wt(φ,θ)−Wt}2 → 0, t→∞.

Consequently, the properties of the residuals {Ŵt} should reflect those of the white noise sequence

{Wt} generating the underlying true process. In particular, the sequence {Ŵt} should be approxi-

mated (i) uncorrelated if Wt ∼WN(0, σ2), (ii) independent if {Wt} ∼ IID(0, σ2), and (iii) normally

distributed if Wt ∼ N(0, σ2).
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7 Nonstationary process

7.1 Introduction of ARIMA process

If the data exhibits no apparent deviations from stationarity and has a rapidly decreasing autocor-

relation function, we shall seek a suitable ARMA process to represent the mean-correlated data. If

not, then we shall first look for a transformation of the data which generates a new series with the

above properties. This can frequently be achieved by differencing, leading us to consider the class of

ARIMA (autoregressive-integrated moving average) processes.

Definition of intrinsically stationary process: Stochastic process {Xt} is said to be intrinsically

stationary of integer order d > 0 if {Xt}, {∇Xt}, . . . , {∇d−1Xt} are non-stationary, but {∇dXt} is

a stationary process.

Note that

∇Xt = (1−B)Xt = Xt −Xt−1

∇2Xt = ∇(∇Xt) = (1−B)2Xt = (Xt −Xt−1)− (Xt−1 −Xt−2) = Xt − 2Xt−1 +Xt−2

...

∇dXt = (1−B)dXt =

d∑
k=0

(
d

k

)
(−1)kBkXt =

d∑
k=0

(
d

k

)
(−1)kXt−k

And any stationary process are intrinsically stationary of order d = 0.

Definition of the ARIMA(p, d, q) process: If d is a non-negative integer, then {Xt} is said to be

an ARIMA(p, d, q) process if

1. {Xt} is intrinsically stationary of order d and

2. {∇dXt} is a causal ARMA(p, q) process.

With {Wt} ∼WN(0, σ2), we can express the model as

φ(B)(1−B)dXt = θ(B)Wt

or equivalently, as

φ∗(B)Xt = θ(B)Wt

where φ∗(B) = φ(B)(1 − B)d, φ(z) and θ(z) are polynomials of degrees p and q, respectively and

φ(z) 6= 0 for |z| ≤ 1. Noting that if d > 0, then φ∗(z) has a zero of order d at z = 1 (on the unit

circle).

Example 7.1. A simplest example of ARIMA process is ARIMA(0, 1, 0):

(1−B)Xt = Xt −Xt−1 = Wt,

105



for which, assuming existence of X0 and t ≥ 1,

X1 = X0 +W1

X2 = X1 +W2 = X0 +W1 +W2

X3 = X2 +W3 = X0 +W1 +W2 +W3

...

Xt = X0 +
t∑

k=1

Wk.

Above is a random walk starting from X0. Assuming X0 is uncorrelated with Wts, we have

VarXt = Var

(
X0 +

t∑
k=1

Wk

)

= VarX0 +
t∑

k=1

VarWk

= VarX0 + tσ2

which is either time-dependent or infinite if VarX0 =∞. Further

Cov(Xt+h, Xt) = Cov

(
X0 +

t+h∑
k=1

Wk, X0 +
t∑

k=1

Wk

)
= VarX0 + min(t, t+ h)σ2.

Thus, ARIMA(0, 1, 0) is a non-stationary process. This same true for all ARIMA(p, d, q) process

when d is a positive integer.
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A realization of white noise.

N=1000; Wt=rnorm(N,0,1); par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1))

plot.ts(Wt,col="blue",ylab=expression(X[t]));acf(Wt,type="correlation");

acf(Wt, type="partial")
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A realizaiton of random walk.

N=1000; Wt=rnorm(N,0,1); Xt=cumsum(Wt);

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1));

plot.ts(Xt,col="blue",ylab=expression(X[t]));

acf(Xt,type="correlation");acf(Xt, type="partial")
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Another realization of random walk.

N=1000; Wt=rnorm(N,0,1); Xt=cumsum(Wt);

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1));

plot.ts(Xt,col="blue",ylab=expression(X[t]));

acf(Xt,type="correlation");acf(Xt, type="partial")
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Example 7.2. {Xt} is an ARIMA(1, 1, 0) process if for some φ ∈ (−1, 1),

(1− φB)(1−B)Xt = Wt, {Wt} ∼WN(0, σ2).

We can write Yt = (1−B)Xt which is an AR(1) and thus

Yt =
∞∑
j=0

φjWt−j .

Back to {Xt}, we have

Xt −Xt−1 = Yt

and recursively,

Xt = X0 +

t∑
j=1

Yj , t ≥ 1.

Further

VarXt = VarX0 + Var

 t∑
j=1

Yj


= VarX0 +

t∑
i=1

t∑
j=1

Cov(Yi, Yj)

= VarX0 +
t∑
i=1

t∑
j=1

γY (i− j)

= VarX0 + tγY (0) + 2

t∑
i=2

(t− i+ 1)γY (i− 1)

= VarX0 + γY (0)

{
t+ 2

t∑
i=2

(t− i+ 1)ρY (i− 1)

}

= VarX0 +
σ2

1− φ2

{
t+ 2

t∑
i=2

(t− i+ 1)φi−1

}
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An realization of AR(1).

N=1050;Wt= rnorm(N,0,1);

Yt = filter(Wt, filter=c(.6), method="recursive")[-(1:50)]

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1));

plot.ts(Yt, col="blue",ylab=expression(X[t]));

acf(Yt,type="correlation");acf(Yt, type="partial")
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An realization of ARIMA(1, 1, 0).

N=1050;Wt= rnorm(N,0,1);

Yt = filter(Wt, filter=c(.6), method="recursive")[-(1:50)];Xt=cumsum(Yt)

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1));

plot.ts(Xt, col="blue",ylab=expression(X[t]));

acf(Xt,type="correlation");acf(Xt, type="partial")
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Example 7.3. {Xt} is an ARIMA(0, 1, 1) process, then

(1−B)Xt = (1 + θB)Wt, {Wt} ∼WN(0, σ2).

We can write Yt = (1 + θB)Wt which is an MA(1), thus

Xt −Xt−1 = Yt

and recursively,

Xt = X0 +
t∑

j=1

Yj = X0 +
t∑

j=1

(Wt + θWt−1).

Then, if X0 is uncorrelated with Yts,

VarXt = VarX0 + Var

 t∑
j=1

Yj


= VarX0 +

t∑
i=1

t∑
j=1

Cov(Yi, Yj)

= VarX0 +
t∑
i=1

t∑
j=1

γY (i− j)

= VarX0 + tγY (0) + 2

t∑
i=2

(t− i+ 1)γY (i− 1)

= VarX0 + tγY (0) + 2(t− 1)γY (1)

= VarX0 + t(1 + θ2)σ2 + 2(t− 1)θσ2.

113



An realization of MA(1).

N=1050;Wt= rnorm(N,0,1);

Yt = filter(Wt, sides=1, c(1,.6))[-(1:50)];

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1));

plot.ts(Yt, col="blue",ylab=expression(X[t]));

acf(Yt,type="correlation");acf(Yt, type="partial")
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An realization of ARIMA(0, 1, 1).

N=1050;Wt= rnorm(N,0,1);

Yt = filter(Wt, sides=1, c(1,.6))[-(1:50)]; Xt=cumsum(Yt)

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1));

plot.ts(Xt, col="blue",ylab=expression(X[t]));

acf(Xt,type="correlation");acf(Xt, type="partial")
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Example 7.4. {Xt} is an ARIMA(0, 1, q) process, then

(1−B)Xt = θ(B)Wt, {Wt} ∼WN(0, σ2).

We can write Yt = θ(B)Wt which is an MA(1), thus

Xt = X0 +

t∑
j=1

θ(B)Wj = X0 +

t∑
j=1

(Wt + θWt−1).

Example 7.5. Moreover, if {Xt} is an ARIMA(p, 1, q), based on the causality assumption, we can

write Yt = (1−B)Xt as

Yt =

∞∑
j=0

ψjWt−j ,

where ψ(z) = θ(z)/φ(z). Then recursively,

Xt = X0 +
t∑

j=1

Yj .

Example 7.6. What if d = 2? For ARIMA(p, 2, q), we have

φ(B)(1−B)2Xt = θ(B)Wt,

then

(1−B)2Xt = Zt = ψ(B)Wt, where ψ(z) = θ(z)/φ(z),

is ARMA(p, q). Letting (1−B)Yt = Zt, we have

(1−B)Yt = Zt

Thus {Yt} is an ARIMA(p, 1, q) and

Yt = Y0 +
t∑

j=1

Zt.

Since (1−B)Xt = Yt, we further have

Xt = X0 +

t∑
j=1

Yt.

Notice that for any constant α0 and α1,

X∗t = Xt + α0 + α1t

is also a solution to the equation φ(B)(1−B)2Xt = θ(B)Wt,.
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An realization of ARIMA(1, 2, 0).

N=1050;Wt= rnorm(N,0,1);

Yt = filter(Wt, filter=c(.6), method="recursive")[-(1:50)];Xt=cumsum(cumsum(Yt))

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1));

plot.ts(Xt, col="blue",ylab=expression(X[t]));

acf(Xt,type="correlation");acf(Xt, type="partial")
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An realization of ARIMA(0, 2, 1).

N=1050;Wt= rnorm(N,0,1);

Yt = filter(Wt, sides=1, c(1,.6))[-(1:50)]; Xt=cumsum(cumsum(Yt))

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1));

plot.ts(Xt, col="blue",ylab=expression(X[t]));

acf(Xt,type="correlation");acf(Xt, type="partial")
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7.2 Over-differencing?

While differencing a time series often seems to yield a series visually more amenable to modeling as

a stationary process, over-differencing is a danger! If Xt is ARMA(p, q) already, and satisfies

φ(B)Xt = θ(B)Wt,

then one more differencing provides that

(1−B)φ(B)Xt = (1−B)θ(B)Wt,

φ(B)(1−B)Xt = θ(B)(1−B)Wt;

i.e., one more difference of Xt, denoted by Yt = ∇Xt satisfies

φ(B)Yt = θ∗(B)Wt

where θ(z) = θ(z)(1− z). Noting that θ∗(z) has a root on the unit circle. Thus Yt is a non-invertible

ARMA(p, q + 1) process. Summary of evils of over-differencing:

1. ARMA(p, q + 1) model usually has more complex covariance structure than ARMA(p, q).

2. ARMA(p, q + 1) model has one more parameter to estimate than ARMA(p, q) model.

3. Sample size is reduced by 1 (from n to n− 1, not a big issue you may think...)

N=5000; Wt=rnorm(N,0,1); par(mar=c(4.5,4.5,.1,.1));

design.mat=matrix(c(1:12),3,4); layout(design.mat)

plot.ts(Wt, col="blue",ylab=expression(X[t])); acf(Wt,type="correlation",ylim=c(-1,1));

acf(Wt, type="partial",ylim=c(-1,1));

Xt=Wt[-1]-Wt[-length(Wt)]; plot.ts(Xt, col="blue",ylab=expression(W[t]))

acf(Xt,type="correlation",ylim=c(-1,1)); acf(Xt, type="partial",ylim=c(-1,1))

Xt=Xt[-1]-Xt[-length(Xt)]; plot.ts(Xt, col="blue",ylab=expression(W[t]))

acf(Xt,type="correlation",ylim=c(-1,1)); acf(Xt, type="partial",ylim=c(-1,1))

Xt=Xt[-1]-Xt[-length(Xt)]; plot.ts(Xt, col="blue",ylab=expression(W[t]))

acf(Xt,type="correlation",ylim=c(-1,1)); acf(Xt, type="partial",ylim=c(-1,1))

Unit root tests help determine if differencing is needed. For example, suppose Xt obeys an

ARIMA(0, 1, 0) model:

(1−B)Xt = Wt
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This can be viewed as a special case of AR(1) process as

(1− φB)Xt = Wt, where φ = 1.

Thus, we can design a test for null hypothesis φ = 1. However, the MLE inference only hold for

|φ| < 1; i.e., when the process is causal.

Dicey and Fuller (1979) designed an alternative test statistic. They use ordinary least square to

estimate φ∗ = φ− 1, and then test hypothesis φ∗ = 0. The method is based on the equation:

∇Xt = Xt −Xt−1

= (φXt−1 +Wt)−Xt−1

= (φ− 1)Xt−1 +Wt

= φ∗Xt−1 +Wt.

Thus the Dickey-Fuller unit root test is to use ordinary least squares (OLS) to regress ∇Xt on Xt−1.

Note that, if the mean of Xt is µ but not 0, then we have

∇Xt = φ∗0 + φ∗1Xt−1 +Wt,

where φ∗0 = µ(1− φ) and φ∗1 = φ− 1. The goal is now to test

H0 : φ∗1 = 0 versus Ha : φ∗1 < 0

Since we do not need consider φ∗1 > 0 (which corresponding to non-causal AR(1) model).

In the standard regression model

Yt = a+ bZt + et, t = 1, . . . ,m.

Minimizing the least square ∑
t

(Yt − a− bZt)2

yields the OLS estimator of b as

b̂ =

∑
t(Yt − Ȳ )(Zt − Z̄)∑

t(Zt − Z̄)2
=

∑
t Yt(Zt − Z̄)∑
t(Zt − Z̄)2

,

â = Ȳ − b̂Z̄,

and the standard error of b̂ is taken to be

ŜE(̂b) =

{ ∑
t(Yt − â− b̂Zt)2

(m− 2)
∑

t(Zt − Z̄)2

}1/2

.

where Ȳ and Z̄ are sample means of Yts and Zts, respectively.
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Now, denote our model is

∇Xt = Xt −Xt−1 = φ∗0 + φ∗1Xt−1 +Wt, for t = 2, . . . n.

Define Yt = Xt −Xt−1 and Zt = Xt−1. We have a regression model

Yt = φ∗0 + φ∗1Zt +Wt, for t = 2, . . . n.

Then, we have

Z̄ = (n− 1)−1
n∑
t=2

Zt = (n− 1)−1
n∑
t=2

Xt−1 = (n− 1)−1
n−1∑
t=1

Xt

Thus, the OLS estimator of φ∗1 is

φ̂∗1 =

∑n
t=2 Yt(Zt − Z̄)∑n
t=2(Zt − Z̄)2

=

∑n
t=2(Xt −Xt−1)(Xt−1 − Z̄)∑n

t=2(Xt−1 − Z̄)2

=

∑n
t=2{(Xt − Z̄)− (Xt−1 − Z̄)}(Xt−1 − Z̄)∑n

t=2(Xt−1 − Z̄)2

=

∑n
t=2(Xt − Z̄)(Xt−1 − Z̄)−

∑n
t=2(Xt−1 − Z̄)2∑n

t=2(Xt−1 − Z̄)2

=

∑n
t=2(Xt − Z̄)(Xt−1 − Z̄)∑n

t=2(Xt−1 − Z̄)2
− 1.

And

ŜE(φ̂∗1) =

{∑n
t=2(∇Xt − φ̂∗0 − φ̂∗1Xt−1)

2

(n− 3)
∑

t(Xt−1 − Z̄)2

}1/2

.

Further

φ̂∗0 = Ȳ − φ̂∗1Z̄ =
Xn −X1

n− 1
− φ̂∗1

∑n−1
t=1 Xt

n− 1
=

1

n− 1

(
Xn −X1 − φ̂∗1

n−1∑
t=1

Xt

)
.

Then test statistic for

H0 : φ∗1 = 0 versus Ha : φ∗1 < 0

is t-like ratio

t =
φ̂∗1

ŜE(φ̂∗1)

However, this t does not obey a t-distribution. We reject null (have a unit root) in favor of alternative

(AR(1) is appropriate) at level α is t falls below 100(1−α) percentage point established for Dickey-

Fuller test statistic under assumption that n is large. The 1%, 5% and 10% critical points are −3.43,

−2.86, and −2.57, respectively.
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7.3 Seasonal ARIMA Models

The classical decomposition of the time series

Xt = mt + st + Yt.

where mt is the trend component, st is the seasonal component, and Yt is the random noise com-

ponent. We have learned to use differencing to eliminate the trend mt. (Why? One easy way to

interpret that is that, we can view mt as a smooth function of t. Then any smooth function can be

approximated by a polynomial; i.e., there exits d, α0, . . . , αd such that

mt ≈
d∑

k=0

αkt
d.

Then

Xt =
d∑

k=0

αkt
d + St + Yt.

Taking d-order differencing, we have

∇dXt = αd +∇dSt +∇dYt.

Further

∇d+1Xt = ∇d+1St +∇d+1Yt.

Thus, trend has been eliminated.) In this section, we learn how to handle seasonal components.

7.3.1 Seasonal ARMA models

Seasonal models allow for randomness in the seasonal pattern from one cycle to the next. For

example, we have r years of monthly data which we tabulate as follows:

Year Jan. Feb. · · · Dec.

1 X1 X2 · · · X12

2 X13 X14 · · · X24

3 X25 X26 · · · X36

...
...

...
. . .

...

r X1+12(r−1) X2+12(r−1) · · · X12+12(r−1)

Each column in this table may itself be viewed as a realization of a time series. Suppose that each

one of these twelve time series is generated by the same ARMA(P,Q) model, or more specifically

that the series corresponding to the jth month,

{Xj+12t, t = 0, 1, . . . , r − 1}
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satisfies

Xj+12t = Φ1Xj+12(t−1) + · · ·+ ΦpXj+12(t−P ) + Uj+12t + Θ1Uj+12(t−1) + · · ·+ ΘQUj+12(t−Q)

where

{Uj+12t, t = · · · ,−1, 0, 1, · · · } ∼WN(0, σ2U )

holds for each j = 1, . . . , 12. Since the same ARMA(P,Q) model is assumed to apply to each month,

we can rewrite is as

Xt = Φ1Xt−12 + · · ·+ ΦPXt−12P + Ut + Θ1Ut−12 + · · ·+ ΘQUt−12Q

Or

Φ(B12)Xt = Θ(B12)Ut, (7.1)

where Φ(z) = 1− Φ1z − · · ·Φpz
p, Θ(z) = 1 + Θ1z + · · ·ΘQz

Q, and {Uj+12t, t = · · · ,−1, 0, 1, · · · } ∼
WN(0, σ2U ) for each j.

Now, for simplicity, we assume Ut ∼WN(0, σ2), then we have Xt as an ARMA process:

Φ(B12)Xt = Θ(B12)Wt, Wt ∼WN(0, σ2)

Or more generally,

Φ(Bs)Xt = Θ(Bs)Wt, Wt ∼WN(0, σ2)

We call this model as Seasonal ARMA (SARMA) process with period s (an integer), denoted by

ARMA(P,Q)s.

If Φ(z) and Θ(z) make a stationary ARMA(P,Q), then Xt is also a stationary ARMA process.

What would an ARMA(1, 1)4 look like

(1− Φ1B
4)Xt = (1 + Θ1B

4)Wt

which is

Xt = Φ1Xt−4 +Wt + Θ1Wt−4;

i.e., a regular ARMA(4, 4) model (with certain coefficients being zero). Now, let us think about a

monthly model and a seasonal MA; i.e., ARMA(0, 1)12. The model can be written as

Xt = Wt + Θ1Wt−12.

Obviously, it is causal and stationary. Then

γX(h) = E(XtXt+h) = E(Wt+Θ1Wt−12)(Wt+h+Θ1Wt+h−12) = (1+Θ2
1)σ

2I(h = 0)+Θ1σ
2I(h = 12).
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Thus, we should see one spike at lag 0 and also at 12.

N=1050;Wt= rnorm(N,0,1);par(mar=c(4.5,4.5,.1,.1));

design.mat=matrix(c(1:6),3,2); layout(design.mat);

Yt = filter(Wt, sides=1, c(1,.6))[-(1:50)];

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=96);acf(Yt, type="partial",lag=96)

Zt= filter(Wt, sides=1, c(1,rep(0,11),.6))[-(1:50)];

plot.ts(Zt, col="blue",ylab=expression(Z[t]));

acf(Zt,type="correlation",lag=96);acf(Zt, type="partial",lag=96)
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Now, let us check a seasonal AR; i.e., ARMA(1, 0)12; i.e.,

Xt = Φ1Xt−12 +Wt.

Similarly as in the analysis of AR(1) process, we have, recursively,

Xt = Φ1Xt−12 +Wt = Φ2
1Xt−24 + φ1Wt−12 +Wt

= · · ·

=
∞∑
j=0

Φj
1Wt−12j .

Thus,

γX(0) =

∞∑
j=0

Φ2j
1 σ

2 = σ2
1

1− Φ2
1

What about γX(1), γX(2), . . . , γX(11)? They are all zero. And

γX(12) = E

 ∞∑
j=0

Φj
1Wt−12j

 ∞∑
j=0

Φj
1Wt+12−12j


= E

 ∞∑
j=0

Φj
1Wt−12j

Wt+12 + Φ1

∞∑
j=1

Φj−1
1 Wt−12(j−1)


= E

 ∞∑
j=0

Φj
1Wt−12j

Wt+12 + Φ1

∞∑
j=0

Φj
1Wt−12j


= Φ1

∞∑
j=0

Φ2j
1 σ

2 = σ2
Φ1

1− Φ2
1

,

Further

γX(h) = σ2
∑

integer k

Φk
1

1− Φ2
1

I(h = 12k).

This is very similar to an AR(1), however, we are ignoring all the pages between multiples of 12. We

are not worried about what is going on at 1,2,3,4,. . . , we are only interested in the 12,24,36,. . . . You

can certainly generalized it to a general period, like ARMA(1, 0)s, for any integer s.
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N=1050;Wt= rnorm(N,0,1);par(mar=c(4.5,4.5,.1,.1));

design.mat=matrix(c(1:6),3,2); layout(design.mat);

Yt = filter(Wt, filter=c(.6), method="recursive")[-(1:50)];

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=96);acf(Yt, type="partial",lag=96)

Zt = filter(Wt, filter=c(rep(0,11),.6), method="recursive")[-(1:50)];

plot.ts(Zt, col="blue",ylab=expression(Z[t]));

acf(Zt,type="correlation",lag=96);acf(Zt, type="partial",lag=96)
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It is unlikely that the 12 series (in column) corresponding to the different months are uncorrelated.

To incorporate dependence between these series we assume now that the {Ut} sequence follows an

ARMA(p, q) model,

φ(B)Ut = θ(B)Wt, Wt ∼WN(0, σ2).

Then we have

Φ(B12)Xt = Θ(B12)Ut

= Θ(B12)φ−1(B)θ(B)Wt

⇒ φ(B)Φ(B12)Xt = θ(B)Θ(B12)Wt, Wt ∼WN(0, σ2).

More generally, we have the SARMA model as

ARMA(p, q)× (P,Q)s

written as

φ(B)Φ(Bs)Xt = θ(B)Θ(Bs)Wt, Wt ∼WN(0, σ2).

where φ(z) = 1 − φ1z − · · · − φpzp, Φ(z) = 1 − Φ1z − · · · − Φpz
p, θ(z) = 1 + θ1z + · · · + θqz

q and

Θ(z) = 1 + Θ1z + · · ·ΘQz
Q.

For example, we consider ARMA(0, 1)× (0, 1)12; i.e.,

Xt = (1 + θ1B)(1 + Θ1B
12)Wt = Wt + θ1Wt−1 + Θ1Wt−12 + θ1Θ1Wt−13.
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N=1050;Wt= rnorm(N,0,1);par(mar=c(4.5,4.5,.1,.1));

design.mat=matrix(c(1:9),3,3); layout(design.mat);

#MA(1), theta=0.6

Yt = filter(Wt, sides=1, c(1,.6))[-(1:50)];

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=48);acf(Yt, type="partial",lag=48)

#MA(1), theta=0.4

Yt = filter(Wt, sides=1, c(1,.4))[-(1:50)];

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=48);acf(Yt, type="partial",lag=48)

#SARMA(0,1)*(0,1)_{12}, theta=0.6, Theta=0.4

Zt = filter(Wt, sides=1, c(1,.6,rep(0,10),.4,.24))[-(1:50)];

plot.ts(Zt, col="blue",ylab=expression(Z[t]));

acf(Zt,type="correlation",lag=48);acf(Zt, type="partial",lag=48)
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What is an ARMA(1, 1)× (1, 1)12?

(1− φ1B)(1− Φ1B
12)Xt = (1 + θ1B)(1 + Θ1B

12)Wt

as

Xt − φ1Xt−1 − Φ1Xt−12 + φ1Φ1Xt−13 = Wt + θ1Wt−1 + Θ1Wt−12 + θ1Θ1Wt−13.

Things gets mess, specially when you start getting into higher values.

N=1000;Wt= rnorm(N,0,1);par(mar=c(4.5,4.5,.1,.1));

design.mat=matrix(c(1:9),3,3);layout(design.mat);

# ARMA(1,1), phi=0.6, theta=0.4

Yt=arima.sim(model=list(ar=c(.6),ma=c(.4)),n=N)

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=48);acf(Yt, type="partial",lag=48)

# ARMA(1,1), phi=0.9, theta=0.1

Yt=arima.sim(model=list(ar=c(.9),ma=c(.1)),n=N)

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=48);acf(Yt, type="partial",lag=48)

# ARMA(1,1)*(1,1)_12, phi=0.6, Phi=0.9,theta=0.4, Theta=0.1

Yt=arima.sim(model=list(ar=c(.6,rep(0,10),.9,-.54),ma=c(.4,rep(0,10),.1,.04)),n=N)

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=48);acf(Yt, type="partial",lag=48)
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7.3.2 Seasonal ARIMA Models

In equation (7.1), we have

Φ(B12)Xt = Θ(B12)Ut,

We start with Ut to be white noise, then relaxing this a little bit by putting Ut to be an ARMA(p, q)

process, we have the Seasonal ARMA(p, q) model. Now we keep relaxing the assumption. What if

we put Ut to be an ARIMA(p, d, q) process? This makes sense. Think about a monthly temperature

dataset across many years. The period is 12. But, there is a trend among the months. From winter

to summer, it is warmer and warmer, then decreases when getting back to winter. This makes the

stationarity of Ut quite unreasonable. Putting an ARIMA model on Ut can somehow fix this. That

is

φ(B)(1−B)dUt = θ(B)Wt, Wt ∼WN(0, σ2). (7.2)

Then, Xt becomes

Φ(B12)Xt = Θ(B12)Ut ⇒ φ(B)Φ(B12)(1−B)dXt = Θ(B12)θ(B)Wt.

Or more generally, we have Xt as

φ(B)Φ(Bs){(1−B)dXt} = θ(B)Θ(Bs)Wt, Wt ∼WN(0, σ2).

Can we relax it more? On the part of Ut, based on what we have learned, the assumption of Ut

which assumes Ut is ARIMA is the best we have relax. However about on Xt? We can do more! In

equation (7.1), we have Xt satisfies

Φ(B12)Xt = Θ(B12)Ut,

which is a more like stationary structure. What if the structure of Xt is already non-stationary

regardless of the choice of Ut? We put a similar ARIMA structure on Xt, since Xt is seasonal, we

assume

Φ(B12){(1−B12)DXt} = Θ(B12)Ut.

Then combining with (7.2), we have

Φ(B12){(1−B12)DXt} = Θ(B12)Ut

⇒ φ(B)Φ(B12)(1−B)d(1−B12)DXt = θ(B)Θ(B12)Wt.

Generalizing the period form s = 12 to a general s, we finally have the definition of a SARIMA

model as
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The SARIMA(p, d, q) × (P,D,Q)s Process: If d and D are non-negative integers, then {Xt} is

said to be a seasonal ARIMA(p, d, q) × (P,D,Q)s process with period s if the differenced process

Yt = (1−B)d(1−Bs)DXt is a causal ARMA process,

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Wt, Wt ∼WN(0, σ2),

where φ(z) = 1 − φ1z − · · · − φpzp, Φ(z) = 1 − Φ1z − · · · − Φpz
p, θ(z) = 1 + θ1z + · · · + θqz

q and

Θ(z) = 1 + Θ1z + · · ·ΘQz
Q.

Now, we check basic examples. Consider SARIMA(0, 1, 1)× (0, 1, 1)12; i.e.,

(1−B)(1−B12)Xt = (1 + θ1B)(1 + Θ1B
12)Wt.

Then,

Xt −Xt−1 −Xt−12 +Xt−13 = Wt + θ1Wt−1 + Θ1Wt−12 + θ1Θ1Wt−13.

N=1100;Wt= rnorm(N,0,1);par(mar=c(4.5,4.5,.1,.1)); par(mfrow=c(3,1))

Yt=filter(Wt, sides=1, c(1,.4,rep(0,10),.6,.24))[-(1:50)]

Yt=filter(Yt, filter=c(1,rep(0,10),-1,1),method="recursive")[-(1:50)]

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=48);acf(Yt, type="partial",lag=48)
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Then SARIMA(1, 1, 0)× (1, 1, 0)12; i.e.,

(1− φ1B)(1− Φ1B
12)(1−B)(1−B12)Xt = Wt.

Then,

Wt = Xt − (1 + φ1)Xt−1 + φ1Xt−2

− (1 + Φ1)Xt−12 + (1 + φ1 + Φ1 + φ1Φ1)Xt−13 − (φ1 + φ1Φ1)Xt−14

+ Φ1Xt−24 − (Φ1 + φ1Φ1)Xt−25 + φ1Φ1Xt−26

N=1100;Wt= rnorm(N,0,1);par(mar=c(4.5,4.5,.1,.1)); par(mfrow=c(3,1)); phi=.9; Phi=.8;

Yt=filter(Wt, filter=c(1+phi,-phi,rep(0,9),1+Phi,-1-phi-Phi-phi*Phi,phi+phi*Phi,

rep(0,9),-Phi,Phi+phi*Phi,-phi*Phi),method="recursive")[-(1:50)];

plot.ts(Yt, col="blue",ylab=expression(Y[t]));

acf(Yt,type="correlation",lag=48);acf(Yt, type="partial",lag=48)
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Typically, period s is common set by users from the background of the dataset. For example, years

weather dataset usually has s = 12 (12 month a year) ; financial data has s = 4 (four quarters a year);

etc. For the specification of D, in application, it is rarely more than one and P , Q are commonly

less than 3. For given values of p, d, q, P,D,Q, we need estimate the parameters φ,θ,Φ,Θ and σ2.

The estimation is very trivial. Since, once d and D are given, we have Yt = (1 − B)d(1 − Bs)DXt

constitute an ARMA(p+ sP, q + sQ) process in which some of the coefficients are zero and the rest

are function.
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7.4 Regression with stationary errors

Recall classical decomposition model for time series Yt, namely,

Yt = mt + st + Zt (7.3)

where mt is trend; st is periodic with known period s (i.e. st−s = st for all integer t) satisfying∑s
j=1 sj = 0; and Zt is a stationary process with zero mean. Often, mt and st are taken to be

deterministic (no randomness). As we have seen, SARIMA model can help us capture stochastic st,

and can also handle deterministic mt and st through differencing. However, differencing to eliminate

deterministic mt and/or st can lead to undesirable overdifferencing of Zt. As an alternative approach,

one can treat model (7.3) as a regression model with stationary errors.

Standard linear regression models take the form of

Y = Xβ +Z

where

• Y = (Y1, . . . , Yn)′ is vector of responses;

• X is a n× k matrix and X = (x′1, . . . ,x
′
n)′;

• β = (β1, . . . , βk)
′ is the so-called regression coefficients;

• Z = (Z1, . . . , Zn)′ is vector of WN(0, σ2) random variables.

For example, we can take

Yt = β1 + β2t+ Zt

where mt is model by a line β1 + β2t. Or, we have

Yt = β1 + β2 cos(2πδt) + β3 sin(2πδt) + Zt.

which counts for the seasonality. Both of them can be written in the form of

Y = Xβ +Z.

The standard approach is through the use of the so-called ordinary least squares (OLS) estimator,

denoted by β̂ols, which is the minimizer of the sum of squared errors:

S(β) =

n∑
t=1

(Yt − x′tβ)2 = (Y −Xβ)′(Y −Xβ).

Setting the derivative of S(β) to be zero, we obtained the normal equations:

XXX ′XXXβ = XXX ′YYY
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and hence

β̂ols = (XXX ′XXX)−1XXX ′YYY

if XXX ′XXX has full rank. If Zts are white noises, we have β̂old is the best linear unbiased estimator of β

(best in that, if β̂ is any other unbiased estimator, then

Var(c′β̂ols) ≤ Var(c′β̂)

for any vector c of constants) and further the covariance matrix for β̂ols is given by σ2(XXX ′XXX)−1.

However, for time series, uncorrelated errors Z are usually unrealistic. More realistically, we have

the error term Zt to be random variables from a stationary process with zero mean. For example,

{Zt} could be a causal ARMA(p, q) process:

φ(B)Zt = θ(B)Wt, Wt ∼WN(0, σ2).

What should we do? The solution is the generalized least square (GLS) estimator, denoted by β̂gls

which minimizes

S(β) = (YYY −XXX ′β)′Γ−1n (YYY −XXXβ).

Thus, the solution is

β̂gls = (XXX ′Γ−1n XXX)−1XXX ′Γ−1n YYY

Why? Recall in the developing of MLE of ARMA(p, q) processes, we have derived that

Γn = CDC ′.

Then multiplying D−1/2C−1 to the model lead to

D−1/2C−1YYY = D−1/2C−1XXXβ +D−1/2C−1Z

Then

Cov(D−1/2C−1Z) = D−1/2C−1Cov(Z)(D−1/2C−1Z)′

= D−1/2C−1Γn(D−1/2C−1Z)′ = D−1/2C−1CDC ′C ′
−1
D−1/2

= In

Thus, we can view that

ỸYY = X̃XXβ + Z̃, {Zt} ∼WN(0, 1).

where ỸYY = D−1/2C−1YYY , and X̃XX = D−1/2C−1XXX and Z̃ = D−1/2C−1Z. Then based on the OLS

estimator we have the estimator as

(X̃XX
′
X̃XX)−1X̃XX

′
ỸYY = β̂gls.

135



In principle, we can use ML under a Gaussian assumption to estimate all parameters in model

YYY = XXXβ + Z. Note that, all parameters include β and the ARMA(p, q) model for Z. However, in

practice, the following iterative scheme for parameter estimation often works well

1. Fit the model by OLS and obtain β̂ols;

2. Compute the residuals Yt − xxx′tβ̂ols;

3. fit AMAR(p, q) or other stationary model to residuals

4. using fitted model, compute β̂gls and form residuals Yt − xxx′tβ̂gls

5. Fit same model to residuals again

6. repeat steps 4 and 5 until parameter estimates have stabilized.
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8 Multivariate Time Series

In this section, we consider m times series {Xti, t = 0,±1,±2, . . . }, i = 1, 2, . . . ,m jointly.

8.1 Second order properties of multivariate time series

Denote

XXXt = (Xt1, . . . , Xtm)T, t = 0,±1,±2, . . .

The second-order properties of the multivariate time series {XXXt} are then specified by the mean

vectors

µt = EXXXt = (µt1, . . . , µtm)T,

and covariance matrices

Γ(t+ h, t) = Cov(XXXt+h, XXXt) = E{(XXXt+h − µt+h)(XXXt − µt)T} = [γij(t+ h, t)]mi,j=1.

(Stationary Multivariate Time Series). The series {XXXt} is said to be stationary if µt and Γ(t +

h, t), h = 0,±1,±2, . . . , are independent of t.

For a stationary series, we shall use the notation

µ = EXXXt

and

Γ(h) = E{(XXXt+h − µt+h)(XXXt − µt)T} = [γij(h)]mi,j=1

to represent the mean of the series and the covariance matrix at lag h, respectively.

Note that, for each i, {Xti} is stationary with covariance function γii(·) and mean function µi.

The function γij(·) where i 6= j is called the cross-covariance function of the two series {Xti} and

{Xtj}. It should be noted that γij(·) is not in general the same as γji(·).
Further, the correlation matrix function R(·) is defined by

R(h) =

[
γij(h)/

√
γii(0)γjj(0))

]m
i,j=1

= [ρij(h)]mi,j=1.

The function R(·) is the covariance matrix function of the normalized series obtained by subtracting

µ from XXXt and then dividing each component by its standard deviation.

Lemma 8.1. The covariance matrix function Γ(·) = [γij(·)]mi,j=1 of a stationary time series {XXXt} has

the properties

1. Γ(h) = Γ′(−h);

2. |γij(h)| ≤
√
γii(0), γjj(0), i, j = 1, . . . ,m;

3. γii(·) is an autocovariance function, i = 1, . . . ,m;
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4.
∑n

j,k=1 aaa
′
jΓ(j − k)aaak ≥ 0 for all n ∈ {1, 2, . . . } and aaa1, . . . , aaan ∈ Rm.

And the correlation matrix R satisfies the above four and further

ρii(0) = 1.

Example 8.1. Consider the bivariate stationary process {XXXt$} defined by

Xt1 = Wt

Xt2 = Wt + 0.75Wt−10

where {Wt} ∼WN(0, 1). Then

µ = 0

and

Γ(−10) = Cov

{(
Xt−10,1

Xt−10,2

)
,

(
Xt,1

Xt,2

)}

= Cov

{(
Wt−10

Wt−10 + 0.75Wt−20

)
,

(
Wt

Wt + 0.75Wt−10

)}

=

(
0 0.75

0 0.75

)

Γ(0) = Cov

{(
Xt,1

Xt,2

)
,

(
Xt,1

Xt,2

)}

= Cov

{(
Wt

Wt + 0.75Wt−10

)
,

(
Wt

Wt + 0.75Wt−10

)}

=

(
1 1

1 1.5625

)

Γ(10) = Cov

{(
Xt+10,1

Xt+10,2

)
,

(
Xt,1

Xt,2

)}

= Cov

{(
Wt+10

Wt+10 + 0.75Wt

)
,

(
Wt

Wt + 0.75Wt−10

)}

=

(
0 0

0.75 0.75

)
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otherwise Γ(j) = 0. The correlation matrix function is given by

R(−10) =

(
0 0.6

0 0.48

)
, R(0) =

(
1 0.8

0.8 1

)
, R(−10) =

(
0 0

0.6 0.48

)
,

and R(j) = 0 otherwise.

(Multivariate White Noise). The m-variate series {WWW t, t = 0,±1,±2, . . . } is said to be white noise

with mean 0 and covariance matrix Σ written

{WWW t} ∼WN(0,Σ),

if and only if {WWW t} is stationary with mean vector 0 and covariance matrix function,

Γ(h) =

{
Σ if h = 0

0 otherwise.

If further, we have independence, then we write

{WWW t} ∼ IID(0,Σ),

Multivariate white noise is used as a building block from which can be constructed an enormous

variety of multivariate time series. The linear process are those of the form

XXXt =

∞∑
j=−∞

CjWWW t−j , {WWW t} ∼WN(0,Σ),

where {Cj} is a sequence of matrices whose components are absolutely summable. It is easy to see

that, this linear process have mean 0 and covariance matrix function

Γ(h) =
∞∑

j=−∞
Cj+hΣC

′
j , h = 0,±1,±2, . . .

Estimation of µ. Based on the observations XXX1, . . . , XXXn, and unbiased estimate of µ is given by the

vector of sample means

XXXn =
1

n

n∑
t=1

XXXt.

This estimator is consistent and asymptotic normal with rate root−n.
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Estimation of Γ(h). Based on the observations XXX1, . . . , XXXn, as in the univariate case, a natural

estimate of the covariance matrix Γ(h) is

Γ̂(h) =

{
n−1

∑n−h
t=1 (XXXt+h −XXXn)(XXXt −XXXn)′ for 0 ≤ h ≤ n− 1,

n−1
∑n

t=−h+1(XXXt+h −XXXn)(XXXt −XXXn)′ for − n+ 1 ≤ h < 0,

Denoting Γ̂(h) = [γ̂ij(h)]mi,j=1, we estimate the cross correlation function by

ρ̂ij(h) = γ̂ij(h)/
√
γ̂ii(0)γ̂jj(0)

If i = j this reduces to the sample autocorrelation function of the ith series.

Theorem 8.1. Let {XXXt} be the bivariate time series

XXXt =
∞∑

k=−∞
CkWWW t−k, {WWW t = (Wt1,Wt2)

′} ∼ IID(0,Σ)

where {Ck = [Ck(i, j)]
2
i,j=1} is a sequence of matrices with

∑∞
k=−∞ |Ck(i, j)| <∞, i, j = 1, 2,. Then

as n→∞,

γ̂ij(h)
p→ γij(h)

and

ρ̂ij(h)
p→ ρij(h)

for each fixed h ≥ 0 and for i, j = 1, 2.

Theorem 8.2. Suppose that

Xt1 =

∞∑
j=−∞

αjWt−j,1, {Wt1} ∼ IID(0, σ21)

and

Xt2 =

∞∑
j=−∞

βjWt−j,2, {Wt2} ∼ IID(0, σ22)

where the two sequences {Wt1} and {Wt2} are independent,
∑

j |αj | <∞ and
∑

j |βj | <∞. Then if

h ≥ 0,

ρ̂12(h) ∼ AN

0, n−1
∞∑

j=−∞
ρ11(j)ρ22(j)

 .

If h, k ≥ 0 and h 6= k, then(
ρ̂12(h)

ρ̂12(k)

)
∼ AN

{
0,

(
n−1

∑∞
j=−∞ ρ11(j)ρ22(j) n−1

∑∞
j=−∞ ρ11(j)ρ22(j + k − h)

n−1
∑∞

j=−∞ ρ11(j)ρ22(j + k − h) n−1
∑∞

j=−∞ ρ11(j)ρ22(j)

)}
.
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This theorem plays an important role in testing for correlation between two processes. If one of

the two processes is white noise, then

ρ̂12(h) ∼ AN(0, n−1)

in which case it is straightforward to test the hypothesis that ρ12(h) = 0. The rejection region is

|ρ̂12(h)| > zα/2/
√
n

However, if neither process is white noise, then a value of |ρ̂12(h)| which is large relative to n−1/2

does not necessarily indicate that ρ12(h) is different from zero. For example, suppose that {Xt1}
and {Xt2} are two independent and identical AR(1) process with ρ11(h) = ρ22(h) = 0.8|h|. Then the

asymptotic variance of ρ̂12(h) is

n−1

{
1 + 2

∞∑
k=1

(0.8)2k

}
= 4.556n−1.

Thus, the rejection region is

|ρ̂12(h)| > zα/2
√

4.556/
√
n

Thus, it would not be surprising to observe a value of ρ̂12(h) as large as 3n−1/2 even though {Xt1}
and {Xt2} are independent. If no the other hand ρ11(h) = 0.8|h| and ρ22(h) = (−0.8)|h|, then the

asymptotic variance of ρ̂12(h) is 0.2195n−1 and an observed value of 3n−1/2 for ρ̂12(h) would be very

unlikely.

8.2 Multivariate ARMA processes

(Multivariate ARMA(p, q) process). {XXXt, t = 0,±1, . . . } is an m-variate ARMA(p, q) process if {XXXt}
is a stationary solution of the difference equations,

XXXt − Φ1XXXt−1 − · · · − ΦpXXXt−p = WWW t + Θ1WWW t−1 + · · ·+ ΘqWWW t−q,

where Φ1, . . . ,Φp, Θ1, . . . ,Θq are real m×m matrix and {WWW t} ∼WN(0,Σ).

Of course, we can write it in the more compact form

Φ(B)XXXt = Θ(B)WWW t, {Wt} ∼WN(0,Σ).

where Φ(z) = I −Φ1z− · · · −Φpz
p and Θ(z) = I + Θ1z+ · · ·+ Θqz

q are matrix-valued polynomials,

and I is the m×m identity matrix.

Example 8.2. (Multivariate AR(1) process). This process satisfies

XXXt = ΦXXXt−1 +WWW t, {Wt} ∼WN(0,Σ).

141



Same argument, we have

XXXt =
∞∑
j=0

ΦjWWW t−j ,

provided all the eigenvalues of Φ are less than 1 in absolute value, i.e., provided

det(I − zΦ) 6= 0 for all z ∈ C such that |z| ≤ 1.

Theorem 8.3. (Causality Criterion). If

det Φ(z) 6= 0 for all z ∈ C such that |z| ≤ 1.

then we have exactly one stationary solution,

XXXt =
∞∑
j=0

ΨjWWW t−j

where the matrices Ψj are determined uniquely by

Ψ(z) =

∞∑
j=0

Ψjz
j = Φ−1(z)Θ(z), |z| ≤ 1.

Theorem 8.4. (Invertibility Criterion). If

det Θ(z) 6= 0 for all z ∈ C such that |z| ≤ 1,

and {Xt} is a stationary solution of the ARMA equation, then

WWW t =

∞∑
j=0

ΠjXXXt−j

where the matrices Ψj are determined uniquely by

Π(z) =
∞∑
j=0

Πjz
j = Θ−1(z)Φ(z), |z| ≤ 1.
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9 State-Space Models

State-space model define a rich class of processes that have served well as time series models. It

contains ARIMA and SARIMA models as special cases.

9.1 State-Space Models

In this section, we shall illustrate some of the many times series models which can be represented in

linear state-space form. We start with a more general definition of noise.

• WWW t ∼ UN(µt, RRRt) denotes uncorrelated noise with mean vectors µt and covariance matrix RRRt

(noting that they are allowed to change with t)

• WWW t ∼WN(µ, RRR) denotes white noise as defined before.

The state-space model for w-dimensional time series YYY 1, YYY 2, . . . , consists of two equations

1. Observation equation takes form

YYY t = GGGtXXXt +WWW t, t = 1, 2, . . . , (9.1)

where

• XXXt is v-dimensional state vector (stochastic in general)

• YYY t is w-dimensional output vector

• GGGt is w × v observation matrix (deterministic)

• WWW t ∼ UN(0, RRRt) is observation noise, which WWW t & RRRt having dimensions w & w×w (can

be degenerate, i.e., detRRRt = 0).

Observation equation essentially says that we can observe linear combinations of variables in

state vector, but only in presence of noise.

2. State-transition equation takes form

XXXt+1 = FFF tXXXt + VVV t, t = 1, 2, . . . , (9.2)

where

• FFF t is v × v state transition matrix (deterministic)

• VVV t ∼ UN(0, QQQt) is state transition noise, with VVV t & QQQt having dimensions v & v × v.

Recursively, we have

XXXt = FFF t−1(FFF t−2XXXt−2 + VVV t−2) + VVV t−1 = · · ·

= (FFF t−1 · · ·FFF 1)XXX1 + (FFF t−1 · · ·FFF 2)VVV 1 + · · ·+ FFF t−1VVV t−2 + VVV t−2

= ft(XXX1, VVV 1, . . . , VVV t−1)
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And

YYY t = GGGtft(XXX1, VVV 1, . . . , VVV t−1) +WWW t

= gt(XXX1, VVV 1, . . . , VVV t−1,WWW t)

Two additional assumptions

(a) E{WWW sVVV
′
t} = 0 for all s and t (here 0 is a w×v matrix of zeros; in words, every observation

noise random variable is uncorrelated with every state-transition noise random variable).

(b) Assuming E{XXXt} = 0 for convenience, E{XXX1WWW
′
t} = 0 and E{XXX1VVV

′
t} = 0 for all t (in words,

initial state vector random variables are uncorrelated with observation and state-transition

noise).

Example 9.1. To interpret the state-space model, we start with a very simple example: recall the

classical decomposition model for time series Yt, namely,

Yt = mt + st +Wt

where mt is trend, st is periodic, Wt is a stationary process. mt and st can be treated as deterministic

or stochastic. Now, we consider the simple version, which is known as a local level model in which

mt is stochastic and st = 0:

Yt = Xt +Wt, {Wt} ∼WN(0, σ2W )

Xt+1 = Xt + Vt, {Vt} ∼WN(0, σ2V )

where E{WsVt} = 0 for all s & t. This can be easily seen as a simple case of state space model:

YYY t = GGGtXXXt +WWW t,

Yt = Xt +Wt,

where YYY t = Yt, Gt = 1, XXXt = Xt, WWW t = Wt and Rt = σ2W . and

XXXt+1 = FFF tXXXt + VVV t, (9.3)

Xt+1 = Xt + Vt (9.4)

where XXXt+1 = Xt+1, FFF t = 1, VVV t = Vt and Qt = σ2V .

To fully specify this state-space model, we need define initial state XXX1 = Xt to be a random

variable that is uncorrelated with Wt’s and Vt’s. In addition, we assume E(Xt) = m1 and Var(Xt) =

P1. Thus, this model has 4 parameters σ2W = Rt, σ
2
V = Vt, m− 1 and P1.

Since Xt+1 = Xt + Vt, state variable Xt is a random walk starting form m1 and then Yt is the

sequence of Xt which is corrupted by noise Wt.

par(mfrow=c(3,1));par(mar=c(4.5,4.5,.1,.1))

144



m1=1; P1=1; SigmaV=2;

X1=rnorm(1,m1,sqrt(P1));N=100

Vt=rnorm(N-1, 0, SigmaV);Xt=cumsum(c(X1,Vt));

for(SigmaW in c(0,1,5))

{

Yt=rnorm(N,Xt,SigmaW);

plot(1:N, Yt,col="blue",xlab="t", ylab="Yt in blue, Xt in red")

lines(1:N, Xt, col="red")

}
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Example 9.2. AR(1) process as a State-Space Model: The AR(1) model has form

Xt+1 = φXt +Wt+1, {Wt} ∼WN(0, σ2)

This provided Xt =
∑∞

j=0 φ
jWt−j and consequently we have

X1 =
∞∑
j=0

φjW1−j .

Now, we can write it in the state-space model form

XXXt+1 = Xt+1

FFF t = φ

VVV t = Wt+1

YYY t = Xt

GGGt = 1

WWW t = 0.

Example 9.3. How about ARMA(1,1)? let {Xt} be the causal and invertible ARMA(1,1) process

satisfying

Xt = φXt−1 +Wt + θWt−1, {Wt} ∼WN(0, σ2).

To write it in state-space model form, we first observe that

Xt = (1− φB)−1(1 + θB)Wt

= (1 + θB){(1− φB)−1Wt}

= (1 + θB)Zt

=
[
θ 1

] [ Zt−1

Zt

]

where Zt = (1− φB)−1Wt; i.e.,

(1− φB)Zt = Wt or Zt = φZt−1 +Wt,

or [
Zt

Zt+1

]
=

[
0 1

0 φ

][
Zt−1

Zt

]
+

[
0

Wt+1

]
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Further Zt =
∑∞

j=0 φ
jWt−j . Thus, we have

XXXt+1 =

[
Zt

Zt+1

]

FFF t =

[
0 1

0 φ

]

VVV t =

[
0

Wt+1

]
YYY t = Xt

GGGt =
[
θ 1

]
WWW t = 0

with

XXX1 =

[
Z0

Z1

]
=

[ ∑∞
j=0 φ

jW−j∑∞
j=0 φ

jW1−j

]

Example 9.4. AR(p):

Xt = φ1Xt−1 + · · ·φpXt−p +Wt, {Wt} ∼WN(0, σ2).

Then we have

XXXt = (Xt)
′

Four classical problems in State-Space Models: Given observations Y1, . . . , Yt,

1. What is the best predictor of State Xt? (filtering).

2. What is the best predictor of State Xt+1? (forecasting).

3. What is the best predictor of State Xs for s < t? (smoothing).

4. What are the best estimates of model parameters? (estimation).

147


	Introduction
	Some examples
	Time Series Statistical Models

	Stationary Processes
	Measure of Dependence
	Examples
	Identify Non-Stationary Time Series

	Linear Processes
	AR(1) and AR(p) Processes
	AR(1) process
	AR(p) process

	MA(1) and MA(q) Processes
	ARMA(1,1) Processes
	Properties of Xn, "0362X(h) and "0362X(h)
	For Xn
	For X(h) and X(h)


	Autoregressive Moving Average (ARMA) Processes
	Definition
	Causality and Invertibility
	Computing the ACVF of an ARMA(p,q) Process
	First Method
	Second Method
	Third Method


	The Spectral Representation of a Stationary Process
	Complex-Valued Stationary Time Series
	The Spectral Distribution of a Linear Combination of Sinusoids
	Spectral Densities and ARMA Processes
	Causality, Invertibility and the Spectral Density of ARMA(p,q)

	Prediction of Stationary Processes
	Predict Xn+h by Xn
	Predict Xn+h by {Xn,…, X1,1}
	General Case
	The Partial Autocorrelation Fucntion (PACF)
	Recursive Methods for Computing Best Linear Predictors
	Recursive Prediction Using the Durbin-Levinson Algorithm
	Recursive Prediction Using the Innovations Algorithm
	Recursive Calculation of the h-Step Predictors, h1

	Recursive Prediction of an ARMA(p, q) Process
	h-step prediction of an ARMA(p,q) process

	Miscellanea

	Estimation for ARMA Models
	The Yule-Walker Equations and Parameter Estimation for Autoregressive Processes
	Preliminary Estimation for Autoregressive Processes Using the Durbin-Levinson Algorithm
	Preliminary Estimation for Moving Average Processes Using the Innovations Algorithm
	Preliminary Estimation for ARMA(p, q) Processes
	Recursive Calculation of the Likelihood of an Arbitrary Zero-Mean Gaussian Process
	Maximum Likelihood Estimation for ARMA Processes
	Asymptotic properties of the MLE
	Diagnostic checking

	Nonstationary process
	Introduction of ARIMA process
	Over-differencing?
	Seasonal ARIMA Models
	Seasonal ARMA models
	Seasonal ARIMA Models

	Regression with stationary errors

	Multivariate Time Series
	Second order properties of multivariate time series
	Multivariate ARMA processes

	State-Space Models
	State-Space Models


