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1.1 Introduction

The core classical theorems in probability and statistics are the fol-
lowing:
I The law of large numbers (LLN): Suppose {Xn : n ≥ 1} are

independent and identically distributed (iid) random variables
with common mean E (Xn) = µ. The LLN says the sample
average is approximately equal to the mean, so that

1
n

n∑
i=1

Xi → µ.

What does the convergence arrow “→" mean?
Suppose Xi = 1 if event A occurs, = 0 otherwise. Then n−1∑n

i=1 Xi

is the relative frequency of occurrence of A in n repetitions of the
experiment and µ = P(A). The LLN justifies the frequency interpre-
tation of probabilities and much statistical estimation theory where
it underlies the notion of consistency of an estimator.
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1.1 Introduction

I Central limit theorem (CLT): The central limit theorem
assures us that sample averages when centered and scaled to
have mean 0 and variance 1 have a distribution that is
approximately normal. if Xn’s are now iid with mean µ and
variance σ2, then

P

(∑n
i=1 Xi − nµ

σ
√
n

≤ x

)
→ N(x)

.
=

∫ x

−∞

e−u
2/2

√
2π

du.

This result is “the most" important and most frequently applied re-
sult of probability and statistics. How is this result and its variants
proved?
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1.1 Introduction

I martingale convergence theorems and optional stopping: A
martingale is a stochastic process {Xn : n ≥ 0} used to model
a fair sequence of gambles. The conditional expectation of
your wealth Xn+1 after the next gamble given the past equals
the current wealth Xn; i.e.,

E [Xn+1|X0, . . . ,Xn] = Xn.

The martingale results on convergence and optimal stopping underlie
the modern theory of stochastic processes and are essential tools in
application areas such as mathematical finance. What are the basic
results and why do they have such far reaching applicability?
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1.2 Basic Set Theory

We start by listing some basic notation that are essential to the
definition of probability.
I Ω: Sample space (an abstract set representing the sample

space of some experiment).
I An individual element of Ω: ω ∈ Ω, an outcome of the

experiment.
I P(Ω): The power set of Ω, that is, the set of all subsets of Ω.
I Subsets A,B, . . . of Ω: events, that is, collections of simple

points of Omega.
I Collections of subsets A,B, . . . .
I The empty set ∅.
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2.3 Two Constructions

Discrete models: Suppose the sample space Ω = {ω1, ω2, . . . } is
countable. For each i , associate to ωi the number pi where

∀i ≥ 1, pi ≥ 0, and
∞∑
i=1

pi = 1.

Define B = P(Ω), the power set, and for A ∈ B, set

P(A) =
∑
ω∈A

pi .

Then we have the following properties of P :
(i) P(A) ≥ 0 for all A ∈ B.
(ii) P(Ω) =

∑∞
i=1 pi = 1.

(iii) P is σ-additive: if {An : n ≥ 1} are events in B that are
(mutually) disjoint, then

P(∪∞n=1An) =
∑

ωi∈∪∞n=1An

pi =
∞∑
n=1

∑
ωi∈An

pi =
∞∑
n=1

P(An).
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2.3 Two Constructions

Coin tossing N times: The sample space

Ω = {0, 1}N = {ω = (ω1, . . . , ωN) : ωi = 0 or 1}.

For p ≥ 0, q ≥ 0, and p + q = 1, define

pω = p(ω1,...,ωN) = p
∑N

i=1 ωiqN−
∑N

i=1 ωi .

Define B = P(Ω), for A ∈ B, define

P(A) =
∑
ω∈A

pω.

This P also satisfies the (i)–(iii) in previous slide.

What if Ω has a continuous feature (uncountable)? e.g., Ω = R.
How to define probabilities for events from Ω? Where to start?
Should we use P(Ω)? See Section 2.4!
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1.2 Basic Set Theory

Set operations:
1. Complementation: The complement of a subset A ⊂ Ω is

Ac = {ω : ω /∈ A}.

2. Intersection over arbitrary index sets: Suppose T is some index
set and for each t ∈ T we are given At ⊂ Ω. We define

∩t∈TAt = {ω : ω ∈ At , ∀t ∈ T}.

The collection of subsets {At : t ∈ T} is pairwise disjoint (or
mutually disjoint) if whenever t 6= t ′ ∈ T , we have
At ∩ At′ = ∅.

3. Union over arbitrary index sets:

∪t∈TAt = {ω : ω ∈ At , for some t ∈ T}.
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1.2 Basic Set Theory

Set operations:
1. Set difference: A \ B = A ∩ Bc .
2. Symmetric different: A4B = (A \ B) ∪ (B \ A) = Ac4Bc .

Simple relations between sets:
I Containment: A ⊂ B iff A∩B = A or iff ω ∈ A implies ω ∈ B .
I Equality: A = B iff A ⊂ B and B ⊂ A or iff
ω ∈ A ⇐⇒ ω ∈ B .

Example 1.2.1

∪∞n=1[0, n/(n + 1)) =[0, 1)

∩∞n=1(0, 1/n) =∅
∪∞n=1[1/n, (n + 1)/n) =(0, 2)

∩∞n=1[1/n, (n + 1)/n) ={1}
∩∞n=1[0, 1/n) =0.
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1.2 Basic Set Theory

Some laws: (HW 1-1: prove these laws.)
1. Complementation: (Ac)c = A, ∅c = Ω, Ωc = ∅.
2. Commutativity: A ∩ B = B ∩ A, A ∪ B = B ∪ A.
3. Associativity:

(A ∪ B) ∪ C = A ∪ (B ∪ C ),

(A ∩ B) ∩ C = A ∩ (B ∩ C ).

4. De Morgan’s laws: Let T be an index set,

(∪t∈TAt)
c = ∩t∈TAc

t , (∩t∈TAt)
c = ∪t∈TAc

t .

5. Distributivity:

B ∩ (∪t∈TAt) = ∪t∈T (B ∩ At),

B ∪ (∩t∈TAt) = ∩t∈T (B ∪ At).
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1.2.1 Powerful Indicator Functions

If A ⊂ Ω, we define the indicator function of A as

IIIA(ω) =

{
1 if ω ∈ A
0 if ω ∈ Ac .

Some simple properties:
I IIIA ≤ IIIB ⇐⇒ A ⊂ B

I IIIAc = 1− IIIA
I IIIA∪B = max(IIIA, IIIB)

I IIIA∩B = min(IIIA, IIIB)

I IIIA4B = IIIA + IIIB (mod 2)

I E [IIIA(X )] = P(X ∈ A), where X is a well-defined random
variable.
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1.3 Limits of Sets

For a sequence of real numbers an, we have

lim inf
n→∞

an = sup
n≥1

inf
k≥n

ak , lim sup
n→∞

an = inf
n≥1

sup
k≥n

ak ,

and limn→∞ an = a exists iff lim infn→∞ an = lim supn→∞ an = a.

Similarly, for a sequence of sets {An ⊂ Ω : n ≥ 1}, we define

inf
k≥n

Ak = ∩∞k=n Ak , sup
k≥n

Ak = ∪∞k=nAk ,

lim inf
n→∞

An = sup
n≥1

inf
k≥n

Ak = ∪∞n=1 ∩∞k=n Ak ,

lim sup
n→∞

An = inf
n≥1

sup
k≥n

Ak = ∩∞n=1 ∪∞k=n Ak .

The limit of a set sequence {An} exists, denoted by A, if

lim inf
n→∞

An = lim sup
n→∞

An = A,

in shorthand, limn→∞ An = A or An → A.
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1.3 Limits of Sets

Remark (a)
if ω ∈ lim supn→∞ An, then for every n, ω ∈ ∪k≥nAk ; i.e., there
exists some kn ≥ n such that ω ∈ Akn . Therefore

∞∑
j=1

IIIAj
(ω) ≥

∞∑
n=1

IIIAkn
(ω) =∞.

Conversely, if
∑∞

j=1 IIIAj
(ω) =∞, then there exists kn →∞ such

that ω ∈ Akn , and therefore for all n, ω ∈ ∪j≥nAj ; i.e.,
ω ∈ lim supn→∞ An.
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1.3 Limits of Sets

Lemma 1.3.1
Let {An} be a sequence of subsets of Ω.
(a) For lim sup we have the interpretation

lim sup
n→∞

An =

{
ω :

∞∑
n=1

IIIAn(ω) =∞

}
= {ω : ω ∈ Ank , k = 1, 2, . . . }

for some subsequence nk depending on ω. Consequently, we
write

lim sup
n→∞

An = [An i .o.]

where i .o. stands for infinitely often.
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1.3 Limits of Sets

Remark (b)
if ω ∈ lim infn→∞ An = ∪∞n=1 ∩∞k=n Ak , then there exists an n such
that ω ∈ ∩k≥nAk ; Therefore

∞∑
n=1

IIIAc
n
(ω) ≤

n−1∑
j=1

IIIAc
j
(ω) <∞.

Conversely, if
∑∞

n=1 IIIAc
n
(ω) <∞, then there exists n0 such that

IIIAc
n
(ω) = 0 for n ≥ n0; i.e., ω ∈ lim infn→∞ An.

Lemma 1.3.1
(b) For lim inf we have the interpretation

lim inf
n→∞

An ={ω : ω ∈ An for all n except a finite number}

=

{
ω :

∞∑
n=1

IIIAc
n
(ω) <∞

}
= {ω : ω ∈ An,∀n ≥ n0(ω)} .
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1.3 Limits of Sets

In addition, we have

lim inf
n→∞

An ⊂ lim sup
n→∞

An,

(lim inf
n→∞

An)c = (∪∞n=1 ∩∞k=n Ak)c = ∩∞n=1 ∪∞k=nA
c
k = lim sup

n→∞
Ac
n.

Example 1.3.1
lim infn→∞[0, n/(n + 1)) = lim supn→∞[0, n/(n + 1)) = [0, 1).

Say An = B if n is odd; = C otherwise. What are lim infn→∞ An

and lim supn→∞ An?

Suppose an > 0, bn > 1 and limn→∞ an = 0, limn→∞ bn = 1.
Define An = [an, bn), what are lim supn→∞ An and lim infn→∞ An?
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1.3 Limits of Sets

For a sequence of random variables {Xn}, Xn → X0 almost surely
iff

P{ω : limn→∞Xn(ω) = X0(ω)} = 1.

A criterion for this is that for all ε > 0

P([|Xn − X0| > ε] i .o.) = 0.

That is, with An = [|Xn − X0| > ε], we need to check

P

(
lim sup
n→∞

An

)
= 0.

A sufficient condition (Borel-Cantelli Lemma) for this to hold is

∞∑
n=1

P(An) <∞.
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1.4 Monotone Sequences

Just like monotone sequences of real numbers, the limit of a mono-
tone sequence of sets always exists.

Definition
{An} is monotone-increasing, An ↑, if A1 ⊂ A2 ⊂, then

lim
n→∞

An = ∪∞n=1An.

{An} is monotone-decreasing, An ↓, if A1 ⊃ A2 ⊃, then

lim
n→∞

An = ∩∞n=1An.

Consequently, since for any sequences Bn, we have infk≥n Bk ↑ and
supk≥n Bk ↓, it follows that

lim inf
n→∞

Bn = lim
n→∞

(
inf
k≥n

Bk

)
, lim sup

n→∞
Bn = lim

n→∞

(
sup
k≥n

Bk

)
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1.4 Monotone Sequences

Example 1.4.1
1. Let 0 ≤ an <∞ be a sequence of numbers. Then, (yes or no),

sup
n≥1

[0, an) = [0, sup
n≥1

an), sup
n≥1

[0, an] = [0, sup
n≥1

an].

2. How about

lim
n→∞

[0, 1− 1/n] =[0, 1) = lim
n→∞

[0, 1− 1/n)

lim
n→∞

[0, 1 + 1/n] =[0, 1] = lim
n→∞

[0, 1 + 1/n)?

3. Suppose an ↓ a, does (−∞, an] ↓ (−∞, a]?
Or an ↑ a, does (−∞, an] ↑ (−∞, a]?
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1.4 Monotone Sequences

Addition parallels between sets and functions:
(1) III infn≥k An = infn≥k IIIAn and III supn≥k An = supn≥k IIIAn .
(2) III∪nAn ≤

∑
n IIIAn where equality holds if An’s are mutually

disjoint.
(3) III lim supn→∞ An = lim supn→∞ IIIAn and

III lim infn→∞ An = lim infn→∞ IIIAn .
(4) An → A iff IIIAn → IIIA.
We note that (4) can be implied by (3), (3) can be implied by (1),
and (2) is trivial. To prove (1),

III infn≥k
An = 1 iff ω ∈ infn≥k An

iff ω ∈ An for all n ≥ k
iff infn≥k IIIAn = 1.
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1.5 Set Operations and Closure

The class of real numbers is closed under addition and multiplication.
Can a class of set be closed under certain set operations? Suppose
C ⊂ P(Ω) is a collection of subsets of Ω.
(1) Arbitrary union: Let T be any arbitrary index set (could be

finite, countable, or a subset of the real line) and assume for
t ∈ T , At ∈ C, the arbitrary union is ∪t∈TAt .

(2) Countable union: ∪∞j=1Aj .
(3) Finite union: ∪nj=1Aj .
(4) Arbitrary intersection: ∩t∈TAt .
(5) Countable intersection: ∩∞j=1Aj .
(6) Finite intersection: ∩nj=1Aj .
(7) Complementation: Ac

(8) Monotone limits: limn→∞ An where {An} is a monotone
sequence of sets in C.
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1.5 Set Operations and Closure

Definition 1.5.1 (Closure)
Let C be a collection of subsets of Ω. The C is closed under one of
the set operations (1)–(8) listed above if the set obtained by
performing the set operation on sets C yields a set in C.

Example 1.5.1
1. Suppose Ω = R, and C = {(a, b] : −∞ < a ≤ b <∞}. Then C
is not closed under finite unions but is closed under finite
intersections.
2. Suppose Ω = R and C consists of the open subsets of R. Then
C is not closed under complementation.
Closure is important for us to assign probabilities. In general, we
cannot assign probabilities to all subsets (events). We combine and
manipulate events to make more complex events via set operations.
We require that certain set operations do not carry events outside
the event space.
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1.5 Set Operations and Closure

Definition 1.5.2
An algebra (or a field) is a non-empty class of subsets of Ω closed
under finite union, finite intersection, and complementation; i.e.,
For A to be an algebra as long as
(i) Ω ∈ A
(ii) A ∈ A implies Ac ∈ A
(iii) A,B ∈ A implies A ∪ B ∈ A (or by De Morgan’s laws,

A ∩ B ∈ A).
Definition 1.5.3
A σ-algebra (or a σ-field) is a non-empty class of subsets of Ω
closed under countable union, countable intersection, and
complementation; i.e., For B to be a σ-algebra as long as
(i) Ω ∈ B
(ii) B ∈ B implies Bc ∈ B
(iii) Bi ∈ B, i ≥ 1 implies ∪∞i=1Bi ∈ B (or ∩∞i=1Bi ∈ B).
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1.5.1 Examples

(1) What is the most simple σ-algebra?
(2) The power set B = P(Ω) is a σ-algebra.
(3) The countable/co-countable σ-algebra. Let Ω = R and

B = {A ⊂ R : A is countable} ∪ {A ⊂ R : Ac is countable}.

B is a σ-algebra. (Is B closed under arbitrary union?)
(4) Let Ω = (0, 1] and A consists of the empty set and all finite

unions of disjoint intervals of the form (a, a′], 0 ≤ a ≤ a′ ≤ 1.
Is A an algebra? Is it a σ-algebra?

(5) Let Ω = N, the integers. Define
A = {A ⊂ N : A or Ac is finite}. Is A an algebra? Is it a
σ-algebra?

(6) Suppose Ω = {e i2πθ : 0 ≤ θ < 1} is the unit circle. Let A be
the collection of arcs on the unit circle with rational endpoints.
Is A an algebra? Is it a σ-algebra?

(7) Find two σ-algebras, the union of which is not an algebra.
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1.6 The σ-algebra Generated by a Given Class C

Definition 1.6.1
Let C be a collection of subsets of Ω. The σ-algebra generated by
C, denoted by σ(C), is a σ-algebra satisfying
(a) σ(C) ⊃ C
(b) if B is some other σ-algebra containing C, then B ⊃ σ(C).
The σ(C) is known as the minimal σ-algebra over C.

Proposition 1.6.1 Uniqueness (a non-constructive statement)
Given a class C of subsets of Ω, there is a unique minimal σ-algebra
containing C, which is

∩B∈NB, where N = {B : B is a σ-algebra,B ⊃ C}.

Example
1. If A = A, a single set, then σ(A) = {∅,A,Ac ,Ω}.
2. If A is a σ-algebra already, then σ(A) = A.
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2.2 More on Closure

Let A be a collection of subsets of Ω

I A is a monotone class if limn→∞ An ∈ A where {An} is a
monotone sequence of sets in A.

I A is a π-system if A,B ∈ A implies A ∩ B ∈ A.
I A is a Dynkin system (also known as λ-system) if

(i) Ω ∈ A
(ii) A,B ∈ A and B ⊂ A imply A \ B ∈ A
(iii) An ∈ A and An ↑ imply ∪∞n=1An ∈ A.
or equivalently, if
(i) Ω ∈ A
(ii) A implies Ac ∈ A
(iii) An ∈ A and An ∩ Am = ∅ for n 6= m imply ∪∞n=1An ∈ A.
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2.2 More on Closure

Theorem (HW 1-2: Prove this Theorem)

1. Every algebra is a π-system.
2. Every σ-algebra is an algebra.
3. An algebra is a σ-algebra iff it is a monotone class.
4. Every σ-algebra is a Dynkin system.
5. A Dynkin system is a σ-algebra iff it is a π-system.
6. Every Dynkin system is a monotone class.
7. Every σ-algebra is a monotone class.
8. The power set of any subset of Ω is a σ-algebra on that subset.
9. The intersection of any number of σ-algebra, countable or

uncountable, is again, a σ-algebra.
10. If Ω and Ω′ are sets, A′ a σ-algebra in Ω′ and T : Ω→ Ω′ a

mapping, then T−1(A′) = {T−1(A′) : A′ ∈ A′} is a σ-algebra
on Ω (Proposition 3.1.1).
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2.2 More on Closure (Other Generators)

In previous slide, we focus on the structure σ-algebra. We also have
other structures; e.g., the monotone-class, the π-system, the Dynkin
system. Now we fix a structure in mind. Call it S. Then we can
make the following definition.

Definition 2.2.1
The (minimal) structure S generated by a class C is a non-emptry
structure satisfying
(i) S ⊃ C,
(ii) If S ′ is some other structure containing C, then S ′ ⊃ S.
We denote the minimal structure by S(C). If S is the σ-algebra,
then S(C) = σ(C). The Dynkin system generated by A is L(A),
the monotone class generated by A isM(A).

Proposition 2.2.1
The minimal structure S exists and is unique as S(C) = ∩G∈NG
where N = {G : G is a structure,G ⊃ C}.
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2.2 More on Closure (Other Generators)

Some connections
1. Let A be an algebra, thenM(A) = σ(A).
2. If A is an algebra and G a monotone class containing A, then
σ(A) ⊂ G.
3. If A is a σ-algebra, thenM(A) = L(A) = σ(A) = A.

Theorem 2.2.2 (Dynkin’s theorem)

(a) If P is a π-system and L is a Dynkin system such that P ⊂ L,
then σ(P) ⊂ L.

(b) If P is a π-system, σ(P) = L(P).

For example, P = {(−∞, x ] : x ∈ R} is a π-system (will be used late
to justify the uniqueness of a cdf function when defining probability).
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1.7 Borel Sets on the Real Line

Suppose Ω = R and let

C = {(−∞, x ] : x ∈ R}.

Define
B(R) = σ(C)

and call B(R) the Borel subsets of R. Equivalently, we have

B(R) = σ({(a, b] : −∞ ≤ a ≤ b <∞})
= σ({(a, b) : −∞ ≤ a ≤ b ≤ ∞})
= σ({[a, b) : −∞ < a ≤ b ≤ ∞})
= σ({[a, b] : −∞ < a ≤ b <∞})
= σ({(−∞, x) : x ∈ R});

i.e., we can generate the Borel sets with any kind of interval: open,
closed, semi-open, finite, semi-finite, etc. Proofs can be done using
this trick: (a, b) = ∪∞n=1(a, b − 1/n] and (a, b] = ∩∞n=1(a, b + 1/n).
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1.7 Borel Sets on the Real Line

In fact
B(R) = σ(open subsets of R).

(Why? because any open subset of R can be written as a countable
union of disjoint open intervals)

In general, if E is a metric space, it is ususal to define B(E), the
σ-algebra on E, to be the σ-algebra generated by the open subsets
of E. Then B(E) is call the Borel σ-algebra. Examples of metric
spaces E that are useful to consider are
I R
I Rd

I R∞, the space of all real sequences
I C [0,∞), the space of continuous functions on [0,∞).
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1.8 Comparing Borel Sets

Theorem 1.8.1 (HW 1-3: prove this theorem)
Let Ω0 ⊂ Ω.
(1) If B is a σ-algebra of subsets of Ω, then
B0 = {A ∩ Ω0 : A ∈ B} is a σ-algebra of subsets of Ω0.

(2) Suppose C is a class of subsets of Ω and B = σ(C). Set

C0 = C ∩ Ω0 = {A ∩ Ω0 : A ∈ C}.

Then
σ(C0) = σ(C ∩ Ω0) = σ(C) ∩ Ω0

in Ω0.

For example, if we take Ω = R and Ω0 = (0, 1]. Then

B(0, 1] = σ(subintervals of (0, 1]) = B(R) ∩ (0, 1].

(Other HW 1 problems: Section 1.9, Q8–11, Q14-15, Q17-20, Q26-
29, Q31, Q34-35, Q44)
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