STAT 810 Probability Theory I

Chapter 2: Probability Spaces

Dr. Dewei Wang
Associate Professor
Department of Statistics
University of South Carolina
deweiwang@stat.sc.edu

2.1 Basic Definitions and Properties

A probability space is a triple (Ω, \mathcal{B}, P) where

- Ω is the sample space corresponding to outcomes of some experiment.
- \mathcal{B} is the σ-algebra of subsets of Ω. These subsets are called events.
- P is a probability measure; that is, P is a function with domain \mathcal{B} and range $[0,1]$ such that (Kolmogorov axioms)
(i) $P(A) \geq 0$ for all $A \in \mathcal{B}$.
(ii) P is σ-additive: if $\left\{A_{n}: n \geq 1\right\}$ are events in \mathcal{B} that are disjoint, then

$$
P\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right) .
$$

(iii) $P(\Omega)=1$.

2.1 Basic Definitions and Properties

1. $P\left(A^{c}\right)=1-P(A)$.
2. $P(\emptyset)=0$.
3. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
4. The inclusion-exclusion formula:

$$
\begin{aligned}
& P\left(\cup_{j=1}^{n} A_{j}\right)=\sum_{j=1}^{n} P\left(A_{j}\right)-\sum_{1 \leq i<j \leq n} P\left(A_{i} \cap A_{j}\right)+ \\
& \sum_{1 \leq i<j<k \leq n} P\left(A_{i} \cap A_{j} \cap A_{k}\right)-\cdots+(-1)^{n} P\left(A_{1} \cap \cdots \cap A_{n}\right) .
\end{aligned}
$$

5. Bonferroni inequalities: $P\left(\cup_{j=1}^{n} A_{j}\right) \leq \sum_{j=1}^{n} P\left(A_{j}\right)$, or $P\left(\cup_{j=1}^{n} A_{j}\right) \geq \sum_{j=1}^{n} P\left(A_{j}\right)-\sum_{1 \leq i<j \leq n} P\left(A_{i} \cap A_{j}\right)$.
6. The monotonicity property: if $A \subset B$, then $P(A) \leq P(B)$.
7. Subadditivity: $P\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} P\left(A_{n}\right)$.
8. Continuity: The measure P is continuous in the sense that if $A_{n} \uparrow A$, then $P\left(A_{n}\right) \uparrow P(A)$; if $A_{n} \downarrow A$, then $P\left(A_{n}\right) \downarrow P(A)$; if $A_{n} \rightarrow A$, then $P\left(A_{n}\right) \rightarrow P(A)$.
9. Fatou's lemma: $P\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} P\left(A_{n}\right) \leq$ $\lim \sup _{n \rightarrow \infty} P\left(A_{n}\right) \leq P\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)$.

2.1 Basic Definitions and Properties

Proof of continuity: $A_{n} \uparrow A$. Define $B_{n}=A_{n} \backslash A_{n-1}$. Then $\left\{B_{n}\right\}$ is a disjoint sequence of events such that $\cup_{t=1}^{n} B_{t}=A_{n}$ and $\cup_{t=1}^{\infty} B_{t}=A$. Then $P(A)=P\left(\cup_{t=1}^{\infty} B_{t}\right)=\sum_{i=1}^{\infty} P\left(B_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} P\left(B_{i}\right)=$ $\lim _{n \rightarrow \infty} P\left(\cup_{i=1}^{n} B_{i}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$.

Proof of Fatou's lemma:
$P\left(\liminf _{n \rightarrow \infty} A_{n}\right)=P\left(\cup_{n=1}^{\infty} \cap_{k \geq n} A_{k}\right)=P\left(\lim _{n \rightarrow \infty} \cap_{k \geq n} A_{k}\right)=$ $\lim _{n \rightarrow \infty} P\left(\cap_{k \geq n} A_{k}\right)=\liminf _{n \rightarrow \infty} P\left(\cap_{k \geq n} A_{k}\right) \leq \liminf { }_{n \rightarrow \infty} P\left(A_{n}\right)$. Likewise
$P\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)=P\left(\cap_{n=1}^{\infty} \cup_{k \geq n} A_{k}\right)=P\left(\lim _{n \rightarrow \infty} \cup_{k \geq n} A_{k}\right)=$ $\lim _{n \rightarrow \infty} P\left(\cup_{k \geq n} A_{k}\right)=\lim \sup _{n \rightarrow \infty} P\left(\cup_{k \geq n} A_{k}\right) \geq \lim \sup _{n \rightarrow \infty} P\left(A_{n}\right)$.

2.1 Basic Definitions and Properties

Example 2.1.1 (HW 2-1: Prove (i)-(iii).)
Let $\Omega=\mathbb{R}$, and suppose P is a probability measure on \mathbb{R}. Define

$$
F(x)=P((-\infty, x]), x \in \mathbb{R} .
$$

Then
(i) F is right continuous,
(ii) F is monotone non-decreasing,
(iii) F has limits at $\pm \infty: F(\infty)=\lim _{x \uparrow \infty} F(x)=1$ and $F(-\infty)=\lim _{x \downarrow-\infty} F(x)=0$.
Definition 2.1.1 A function $F: \mathbb{R} \rightarrow[0,1]$ satifying (i),(ii),(iii) is called a (probability) (cumulative) distribution function, (in shorthand, df or cdf).

2.2 More on Closure

A probability measure on \mathbb{R} is uniquely determined by its distribution function.

Corollary 2.2.2
Let $\Omega=\mathbb{R}$. Let P_{1}, P_{2} be two probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that their dfs are equal:

$$
\forall x \in \mathbb{R}: F_{1}(x)=P_{1}((-\infty, x])=F_{2}(x)=P_{2}((-\infty, x])
$$

Then $P_{1}=P_{2}$ on $\mathcal{B}(\mathbb{R})$; i.e., $\forall A \in \mathcal{B}(\mathbb{R})$, $P_{1}(A)=P_{2}(A)$.
We note $\mathcal{P}=\{(-\infty, x]: x \in \mathbb{R}\}$ is a π-system and $\sigma(\mathcal{P})=\mathcal{B}(\mathbb{R})$.
More general: Corollary 2.2.1
If P_{1}, P_{2} are two probability measures on (Ω, \mathcal{B}) and if \mathcal{P} is a
π-system such that $\forall A \in \mathcal{P}, P_{1}(A)=P_{2}(A)$, then $\forall B \in \sigma(\mathcal{P})$, $P_{1}(B)=P_{2}(B)$.

2.2 More on Closure (Other Generators)

Proof of Corollary 2.2.1 follows
Proposition 2.2.3
Let P_{1}, P_{2} be two probability measures on (Ω, \mathcal{B}). The class $\mathcal{L}=\left\{A \in \mathcal{B}: P_{1}(A)=P_{2}(A)\right\}$ is a Dynkin system.
and
(a) in Theorem 2.2.2 (Dynkin's theorem)

If \mathcal{P} is a π-system and \mathcal{L} is a Dynkin system such that $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

2.4 Constructions of Probability Spaces

How to construct probability spaces when Ω is uncountable? Same as in the countable case, we start with a simple class of subsets \mathcal{S} of Ω to which the assignment of probabilities is obvious or natural. Then we extend this assignment of probabilities to $\sigma(\mathcal{S})$. Herein, we focus on the case where $\Omega=\mathbb{R}$. Suppose we are given a distribution function F, we could take \mathcal{S} to be

$$
\mathcal{S}=\{(x, y]:-\infty \leq x \leq y \leq \infty\}
$$

and then define P on \mathcal{S} to be

$$
P((x, y])=F(y)-F(x) .
$$

The problem is to extend the definition of P from \mathcal{S} to $\sigma(\mathcal{S})=\mathcal{B}(\mathbb{R})$, the Borel sets.

2.4 Constructions of Probability Spaces

What do we mean by extension? Suppose two classes $\mathcal{G}_{1}, \mathcal{G}_{2}$ of subsets of Ω such that $\mathcal{G}_{1} \subset \mathcal{G}_{2}$ and two set functions

$$
P_{i}: \mathcal{G}_{i} \mapsto[0,1], i=1,2
$$

we say P_{2} is an extension of P_{1} (or P_{1} extends to P_{2}) if P_{2} restricted to \mathcal{G}_{1} equals P_{1}; i.e., $P_{2}\left(A_{1}\right)=P_{1}\left(A_{1}\right)$ for all $A_{1} \in \mathcal{G}_{1}$.

Semi-algebra

A class \mathcal{S} of subsets of Ω is a semi-algebra if the following holds
(i) $\emptyset, \Omega \in \mathcal{S}$.
(ii) \mathcal{S} is a π-system.
(iii) If $A \in \mathcal{S}$, then there exist some finite n and disjoint sets C_{1}, \ldots, C_{n} with each $C_{i} \in \mathcal{S}$ such that $A^{c}=\cup_{i=1}^{n} C_{i}$.
$\mathcal{S}=\{(x, y]:-\infty \leq x \leq y \leq \infty\}$ is a semialgrebra (not an algebra).

2.4 Constructions of Probability Spaces

The following Theorem show that, we can start with assigning probabilities to \mathcal{S}, then extend it to $\sigma(\mathcal{S})$ uniquely!

Theorem 2.4.3 (Extension Theorem)
Suppose \mathcal{S} is a semi-algebra of subsets of Ω and that P is a σ-additive set function mapping \mathcal{S} into $[0,1]$ such that $P(\Omega)=1$. There is a unique probability measure on $\sigma(\mathcal{S})$ that extends P.

Recall that $P \sigma$-additive if

$$
P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

holds for mutually disjoint $\left\{A_{n}\right\}$ with $A_{j} \in \mathcal{G}$ and $\cup_{j=1}^{\infty} A_{j} \in \mathcal{G}$.

2.4 Constructions of Probability Spaces

We start with something we have known:
Lebesgue Measure on $(0,1]$
Suppose $\Omega=(0,1], \mathcal{B}=\mathcal{B}((0,1]), \mathcal{S}=\{(a, b]: 0 \leq a \leq b \leq 1\}$. Define on \mathcal{S} the function $\lambda: \mathcal{S} \mapsto[0,1]$ by

$$
\lambda(\emptyset)=0, \quad \lambda(a, b]=b-a .
$$

Based on the Extension Theorem, we can extend λ to $\sigma(\mathcal{S})=\mathcal{B}$. The extended measure is the Lebesgue Measure (see Section 2.5.1).

2.5 Probability Construction

Now we discuss the construction of a probability measure on \mathbb{R} with a given df $F(x)$. Based on $F(x)$, we can construct a probability measure on \mathbb{R}, P_{F} (see Section 2.5.2), such that

$$
\begin{aligned}
& P_{F}((x, y])=\underbrace{F(y)}_{b}-\underbrace{F(x)}_{a}=\lambda(a, b] .
\end{aligned}
$$

Intuition: For $A \subset \mathbb{R}$, define

$$
\xi_{F}(A)=\{x \in(0,1]: \inf \{s: F(s) \geq x\} \in A\} .
$$

If $A \in \mathcal{B}(\mathbb{R})$, then $\xi_{F}(A) \in \mathcal{B}((0,1])$. Finally,

$$
P_{F}(A)=\lambda\left(\xi_{F}(A)\right)
$$

(Other HW 2 problems: Section 2.6, Q1-3, Q6, Q8-9, Q12, Q15-17, Q21, Q23)

Appendix: Proof of the Extension Theorem

As we mentioned before, the extension of P is from \mathcal{S} to $\sigma(\mathcal{S})$. We prove this extension using two steps:

- Step 1: We extend P uniquely from \mathcal{S} to $\mathcal{A}(\mathcal{S})$, the smallest algebra containing \mathcal{S} (First Extension Theorem).
- Step 2: We extend P uniquely from $\mathcal{A}(\mathcal{S})$ to $\sigma(\mathcal{S})$ (Second Extension Theorem).

$$
\text { Semi-algebra } \rightarrow \text { Algebra } \rightarrow \sigma \text {-algebra. }
$$

Lemma 2.4.1 The algebra generated by a semi-algebra Suppose \mathcal{S} is a semi-algebra of subsets of Ω. Then $\mathcal{A}(\mathcal{S})=\Lambda$ where

$$
\Lambda=\left\{\cup_{i \in I} S_{i}: I \text { a finite index set, }\left\{S_{i}: i \in I\right\} \text { disjoint, } S_{i} \in \mathcal{S}\right\}
$$

is the family of all unions of finite families of mutually disjoint subsets of Ω in \mathcal{S}.

Proof of Lemma 2.4.1

It is clear that $\mathcal{S} \subset \Lambda$. Now we check whether Λ is an algebra:
(i) $\Omega \in \mathcal{S}$, thus $\Omega \in \Lambda$.
(ii) Λ is closed under finite intersection.
(iii) To check closure under complementation, we see $\left(\cup_{i \in I} S_{i}\right)^{c}=\cap_{i \in I} S_{i}^{c}$. By the definition of $\mathcal{S}, S_{i}^{c}=\cup_{j \in J_{i}} C_{i j}$ for a finite index set J_{i} and mutually disjoint sets $\left\{C_{i j}: j \in J_{i}\right\}$. Thus

$$
\left(\cup_{i \in I} S_{i}\right)^{c}=\cap_{i \in I} \cup_{j \in J_{i}} C_{i j} \in \Lambda
$$

Thus Λ is an algebra containing \mathcal{S}. Because $\mathcal{A}(\mathcal{S})$ is the algebra generated by \mathcal{S}, we conclude $\mathcal{A}(\mathcal{S}) \subset \Lambda$. On the other hand, because Λ is created by applying the finite union structure on $\mathcal{S}, \Lambda \subset \mathcal{A}(\mathcal{S})$. Finally, we have $\mathcal{A}(\mathcal{S})=\Lambda$.

First Extension Theorem

From

$$
\mathcal{S}=\{(x, y]:-\infty \leq x \leq y \leq \infty\}
$$

to
$\mathcal{A}(\mathcal{S})=\left\{\cup_{i \in I} S_{i}: I\right.$ a finite index set, $\left\{S_{i}: i \in I\right\}$ disjoint, $\left.S_{i} \in \mathcal{S}\right\}$.

Theorem 2.4.1 First Extension Theorem
Suppose \mathcal{S} is a semialgrbra of subsets of Ω and $P: \mathcal{S} \mapsto[0,1]$ is σ-additive on \mathcal{S} and satisfies $P(\Omega)=1$. There is a unique extension P^{\prime} of P to $\mathcal{A}(\mathcal{S})$, defined by

$$
P^{\prime}\left(\cup_{i \in I} S_{i}\right)=\sum_{i \in I} P\left(S_{i}\right)
$$

which is a probability measure on $\mathcal{A}(\mathcal{S})$; that is $P^{\prime}(\Omega)=1$ and $P^{\prime} \geq 0$ is σ-additive on $\mathcal{A}(\mathcal{S})$.

Proof of First Extension Theorem

Obviously P^{\prime} is an extension of P from \mathcal{S} to $\mathcal{A}(\mathcal{S})$. Taking I to be a singleton index set, $P^{\prime}(S)=P(S)$ for $S \in \mathcal{S}$.

1. Is P^{\prime} defined unambiguously? Suppose $A=\cup_{i \in I} S_{i}=\cup_{j \in J} S_{j}$,

$$
\begin{aligned}
\sum_{i \in I} P\left(S_{i}\right) & =\sum_{i \in I} P\left(S_{i} \cap A\right)=\sum_{i \in I} P\left(S_{i} \cap\left\{\cup_{j \in J} S_{j}\right\}\right) \\
& =\sum_{i \in I} P\left(\cup_{j \in J}\left\{S_{i} \cap S_{j}\right\}\right)=\sum_{i \in I} \sum_{j \in J} P\left(S_{i} \cap S_{j}\right) \\
& =\sum_{j \in J} \sum_{i \in I} P\left(S_{j} \cap S_{i}\right)=\sum_{j \in J} P\left(S_{j}\right) .
\end{aligned}
$$

Proof of First Extension Theorem

2. Is $P^{\prime} \sigma$-additive on $\mathcal{A}(\mathcal{S})$? Known P is σ-additive on \mathcal{S}.

Suppose for $i \geq 1, A_{i}=\sum_{i \in J_{i}} S_{i j} \in \mathcal{A}(\mathcal{S})$ for some $S_{i j} \in \mathcal{S}$ are mutually disjoint (thus $\left\{S_{i j}: i, j\right\}$ are mutually disjoint) and

$$
A=\cup_{i=1}^{\infty} A_{i}=\cup_{i=1}^{\infty} \cup_{i \in J_{i}} S_{i j} \in \mathcal{A}(\mathcal{S})
$$

We need to show $P^{\prime}(A)=\sum_{i=1}^{\infty} P^{\prime}\left(A_{i}\right)$.
Because $A \in \mathcal{A}(\mathcal{S})$, thus A itself can be written as
$A=\cup_{k \in K} S_{k}, P^{\prime}(A)=\sum_{k \in K} P\left(S_{k}\right)$ for some $S_{k} \in \mathcal{S}$ and a finite K.
Note \mathcal{S} is a π-system, meaning $S_{k} \cap S_{i j} \in \mathcal{S}$. Because P is σ-additive on $\mathcal{S}, P\left(A \cap S_{i j}\right)=P\left(\cup_{k \in K}\left(S_{k} \cap S_{i j}\right)\right)=\sum_{k \in K} P\left(S_{k} \cap S_{i j}\right)$. Again, $P\left(\cup_{j \in J_{i}} S_{i j}\right)=\sum_{j \in J_{i}} P\left(S_{i j}\right)=P^{\prime}\left(A_{i}\right)$. Thus
$\sum_{i=1}^{\infty} P^{\prime}\left(A_{i}\right)=\sum_{i=1}^{\infty} \sum_{j \in J_{i}} P\left(S_{i j}\right)=\sum_{i=1}^{\infty} \sum_{j \in J_{i}} \sum_{k \in K} P\left(S_{k} \cap S_{i j}\right)={ }_{? ?} \sum_{k \in K} P\left(S_{k}\right)$.

Proof of First Extension Theorem

Switching the order of those summations

$$
\sum_{i=1}^{\infty} P^{\prime}\left(A_{i}\right)=\sum_{k \in K} \sum_{i=1}^{\infty} \sum_{j \in J_{i}} P\left(S_{k} \cap S_{i j}\right)_{? ?}^{=} \sum_{k \in K} P\left(S_{k}\right)
$$

It suffices to show $\sum_{i=1}^{\infty} \sum_{j \in J_{i}} P\left(S_{k} \cap S_{i j}\right)=P\left(S_{k}\right)$.
Now play the trick $S_{k}=S_{k} \cap A=S_{k} \cap\left(\cup_{i=1}^{\infty} A_{i}\right)=\cup_{i=1}^{\infty}\left(S_{k} \cap A_{i}\right)=$ $\cup_{i=1}^{\infty} \cup_{j \in J_{i}}\left(S_{k} \cap S_{i j}\right)$. We see that $S_{k} \in \mathcal{S}$ is a countable union of disjoint sets $S_{k} \cap S_{i j}$ in \mathcal{S}. Thus, by the σ-additivity of P on \mathcal{S}, we have $P\left(S_{k}\right)=\sum_{i=1}^{\infty} \sum_{j \in J_{i}} P\left(S_{k} \cap S_{i j}\right)$ which completes the proof.

Proof of First Extension Theorem

3. Is P^{\prime} unique?

Suppose there two P_{1}^{\prime} and $P_{2}^{\prime} \sigma$-additive extensions of P from \mathcal{S} to $\mathcal{A}(\mathcal{S})$, then for any

$$
A=\cup_{i \in I} \mathcal{S}_{i} \in \mathcal{A}(\mathcal{S})
$$

by the σ-additivity, we have

$$
P_{1}^{\prime}(A)=\sum_{i \in I} P\left(\mathcal{S}_{i}\right)=P_{2}^{\prime}(A)
$$

Second Extension Theorem

$$
\begin{aligned}
& \text { Semi-algebra } \rightarrow \text { Algebra } \rightarrow \sigma \text {-algebra. } \\
& \qquad \mathcal{S} \rightarrow \underbrace{\mathcal{A}(\mathcal{S}) \rightarrow \sigma \text {-algebra. }}_{\text {Second Extension Theorem }}
\end{aligned}
$$

Theorem 2.4.2 Second Extension Theorem
A probability measure P defined on an algebra \mathcal{A} of subsets has a unique extension to a probability measure on $\sigma(\mathcal{A})$.

The proof is (very long) broken into 3 parts:

- Part I: extend P to a σ-additive function Π on a class $\mathcal{G} \supset \mathcal{A}$.
- Part II: extend Π to a set function Π^{*} on a class $\mathcal{D} \supset \sigma(\mathcal{A})$.
- Part III: restrict Π^{*} to $\sigma(\mathcal{A})$ yielding the desired extension.

Proof of Second Extension Theorem: Part I

We begin by defining the class \mathcal{G} :

$$
\begin{aligned}
\mathcal{G} & =\left\{\cup_{j=1}^{\infty} A_{j}: A_{j} \in \mathcal{A}\right\} \\
& =\left\{\lim _{n \rightarrow \infty} B_{n}: B_{n} \in \mathcal{A}, B_{n} \subset B_{n+1} \forall n\right\} .
\end{aligned}
$$

That is \mathcal{G} is the class of unions of countable collections of sets in \mathcal{A}, or equivalently, since \mathcal{A} is an algebra, \mathcal{G} is the class of non-decreasing limits of elements of \mathcal{A} (think $B_{n}=\cup_{j=1}^{n} A_{j}$). Of course, $\mathcal{A} \subset \mathcal{G}$. In Section 2.2: Every σ-algebra is a monotone class; An algebra is a σ-algebra iff it is a monotone class.
Now we define $\Pi: \mathcal{G} \mapsto[0,1]$ by: if $G=\lim _{n \rightarrow \infty} B_{n} \in \mathcal{G}$,

$$
\Pi(G)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)
$$

Because P is σ-additive on $\mathcal{A},\left\{P\left(B_{n}\right)\right\}$ is an increasing real sequence in $[0,1]$, thus $\Pi(G)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)$ exists in $[0,1]$.

Proof of Second Extension Theorem: Part I

Furthermore, we need to check if $G=\lim _{n \rightarrow \infty} B_{n}=\lim _{n \rightarrow \infty} B_{n}^{\prime}$ where both $B_{n} \uparrow$ and $B_{n}^{\prime} \uparrow$ in \mathcal{A}, whether

$$
\Pi(G)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}^{\prime}\right)
$$

For a fixed $m, B_{n}^{\prime} \supset\left(B_{m} \cap B_{n}^{\prime}\right)$ and $\left\{B_{m} \cap B_{n}^{\prime}\right\}$ is an increasing sequence of sets, thus $\lim _{n \rightarrow \infty} P\left(B_{n}^{\prime}\right) \geq \lim _{n \rightarrow \infty} P\left(B_{m} \cap B_{n}^{\prime}\right)$.
Because $B_{m} \cap B_{n}^{\prime} \rightarrow B_{m}$ as $n \rightarrow \infty$, by the continuity (a consequence of being σ-additive) of P, we have $\lim _{n \rightarrow \infty} P\left(B_{m} \cap B_{n}^{\prime}\right)=P\left(B_{m}\right)$. Therefore $\lim _{n \rightarrow \infty} P\left(B_{n}^{\prime}\right) \geq \lim _{n \rightarrow \infty} P\left(B_{m} \cap B_{n}^{\prime}\right) \geq P\left(B_{m}\right), \forall m$.
Now take m to infinity, we have

$$
\lim _{n \rightarrow \infty} P\left(B_{n}^{\prime}\right) \geq \lim _{m \rightarrow \infty} P\left(B_{m}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)
$$

Similarly, we have $\lim _{n \rightarrow \infty} P\left(B_{n}\right) \geq \lim _{n \rightarrow \infty} P\left(B_{n}^{\prime}\right)$.
Thus, $\lim _{n \rightarrow \infty} P\left(B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}^{\prime}\right)$.

Proof of Second Extension Theorem: Part I

Obviously, $\Pi(A)=P(A)$ for $A \in \mathcal{A}$ (take $B_{n}=A$). Therefore, we have created an extension Π of P from \mathcal{A} to $\mathcal{G} \subset \mathcal{A}$.

Is Π a σ-additive extension of P ? We answer this question by exploring the properties of Π and \mathcal{G}.

Property 1
Π is an extension of P from \mathcal{A} to \mathcal{G}.
Proof of Property 1 :
$\emptyset \in \mathcal{G}, \Pi(\emptyset)=0, \Omega \in \mathcal{G}, \Pi(\Omega)=1$, and for $G \in \mathcal{G}, 0 \leq \Pi(G) \leq 1$. More generally, we have $\mathcal{A} \subset \mathcal{G}$ and $\Pi(A)=P(A)$ for $A \in \mathcal{A}$; i.e., $\left.\Pi\right|_{\mathcal{A}}=P$.

Proof of Second Extension Theorem: Part I

Property 2: Π is additive on \mathcal{G}.
If $G_{i} \in \mathcal{G}$ for $i=1,2$ then $G_{1} \cup G_{2} \in \mathcal{G}$ and $G_{1} \cap G_{2} \in \mathcal{G}$, and

$$
\Pi\left(G_{1} \cup G_{2}\right)+\Pi\left(G_{1} \cap G_{2}\right)=\Pi\left(G_{1}\right)+\Pi\left(G_{2}\right) .
$$

Proof of Property 2: By the definition of \mathcal{G}, we have $\mathcal{A} \ni B_{n 1} \uparrow G_{1}$ and $\mathcal{A} \ni B_{n 2} \uparrow G_{2}$. Since \mathcal{A} is an algebra, we have $\mathcal{A} \ni B_{n 1} \cup B_{n 2} \uparrow$ $G_{1} \cup G_{2} \in \mathcal{G}$ and $\mathcal{A} \ni B_{n 1} \cap B_{n 2} \uparrow G_{1} \cap G_{2} \in \mathcal{G}$. Further, because P is σ-additive on \mathcal{A}, we have

$$
P\left(B_{n 1} \cup B_{n 2}\right)+P\left(B_{n 1} \cap B_{n 2}\right)=P\left(B_{n 1}\right)+P\left(B_{n 2}\right)
$$

holds for all n. Taking $n \rightarrow \infty$, we proved Property 2.

Proof of Second Extension Theorem: Part I

Property 3: Π is monotone on \mathcal{G}.
If $G_{i} \in \mathcal{G}$ for $i=1,2$ and $G_{1} \subset G_{2}$, then

$$
\Pi\left(G_{1}\right) \leq \Pi\left(G_{2}\right) .
$$

Proof of Property 3: (Similarly to Slide 22) By the definition of \mathcal{G}, we have $\mathcal{A} \ni B_{n i} \uparrow G_{i}$ for $i=1,2$ and $\cup_{n=1}^{\infty} B_{n 1}=G_{1} \subset G_{2}=$ $\cup_{n=1}^{\infty} B_{n 2}$. For a fixed $m, B_{n 2} \supset\left(B_{m 1} \cap B_{n 2}\right)$ and $\left\{B_{m 1} \cap B_{n 2}\right\}$ is an increasing sequence of sets, thus $\lim _{n \rightarrow \infty} P\left(B_{n 2}\right) \geq \lim _{n \rightarrow \infty} P\left(B_{m 1} \cap\right.$ $B_{n 2}$). Because $B_{m 1} \cap B_{n 2} \rightarrow B_{m 1}$ as $n \rightarrow \infty$, by the continuity (a consequence of being σ-additive) of P, we have $\lim _{n \rightarrow \infty} P\left(B_{m 1} \cap\right.$ $\left.B_{n 2}\right)=P\left(B_{m 1}\right)$. Therefore $\lim _{n \rightarrow \infty} P\left(B_{n 2}\right) \geq \lim _{n \rightarrow \infty} P\left(B_{m 1} \cap\right.$ $\left.B_{n 2}\right) \geq P\left(B_{m 1}\right)$ for every m. Now take m to infinity, we have

$$
\Pi\left(G_{2}\right)=\lim _{n \rightarrow \infty} P\left(B_{n 2}\right) \geq \lim _{m \rightarrow \infty} P\left(B_{m 1}\right)=\Pi\left(G_{1}\right) .
$$

Proof of Second Extension Theorem: Part I

Property 4: \mathcal{G} is closed under monotone limits and Π is monotonely continuous on \mathcal{G}.
If $G_{n} \in \mathcal{G}$ and $G_{n} \uparrow G$, then $G \in \mathcal{G}$ and $\Pi(G)=\lim _{n \rightarrow \infty} \Pi\left(G_{n}\right)$.
Proof of Property 4: For each n, we have $\mathcal{A} \ni B_{m, n} \uparrow G_{n}$.
Now define $D_{m}=\cup_{n=1}^{m} B_{m, n}$.
Since \mathcal{A} is closed under finite unions, $D_{m} \in \mathcal{A}$.
We show $D_{m} \uparrow G$.
It is easy to see that $\left\{D_{m}\right\}$ is monotone: $D_{m}=\cup_{n=1}^{m} B_{m, n} \subset$ $\cup_{n=1}^{m} B_{m+1, n} \subset \cup_{n=1}^{m+1} B_{m+1, n}=D_{m+1}$.
If $n \leq m$, we also have $B_{m, n} \subset D_{m}=\cup_{j=1}^{m} B_{m, j} \subset \cup_{j=1}^{m} G_{j}=G_{m}$.
Taking limits on m, we have for any $n \geq 1$,
$G_{n}=\lim _{m \rightarrow \infty} B_{m, n} \subset \lim _{m \rightarrow \infty} D_{m} \subset \lim _{m \rightarrow \infty} G_{m}=G$.
Now taking limits on n yields $G=\lim _{n \rightarrow \infty} G_{n} \subset \lim _{m \rightarrow \infty} D_{m} \subset G$.
Thus $D_{m} \uparrow G$ and proves $G \in \mathcal{G}$.
Furthermore, by the definition of Π, we have $\Pi(G)=\lim _{n \rightarrow \infty} \Pi\left(D_{m}\right)$.

Proof of Second Extension Theorem: Part I

It remains to show $\Pi\left(G_{n}\right) \uparrow \Pi(G)$.
By the monotonicity of Π on \mathcal{G},

$$
\Pi\left(B_{m, n}\right) \leq \Pi\left(D_{m}\right) \leq \Pi\left(G_{m}\right)
$$

Let $m \rightarrow \infty, B_{m, n} \uparrow G_{n}$,

$$
\Pi\left(G_{n}\right)=\lim _{m \rightarrow \infty} \Pi\left(B_{m, n}\right) \leq \lim _{m \rightarrow \infty} \Pi\left(D_{m}\right) \leq \lim _{m \rightarrow \infty} \Pi\left(G_{m}\right), \forall n
$$

Let $n \rightarrow \infty$,

$$
\lim _{n \rightarrow \infty} \Pi\left(G_{n}\right) \leq \lim _{m \rightarrow \infty} \Pi\left(D_{m}\right) \leq \lim _{m \rightarrow \infty} \Pi\left(G_{m}\right)
$$

Therefore

$$
\lim _{n \rightarrow \infty} \Pi\left(G_{n}\right)=\lim _{m \rightarrow \infty} \Pi\left(D_{m}\right)=\Pi(G)
$$

Proof of Second Extension Theorem: Part I

Property 5: Π is σ-additive on \mathcal{G}.
If $\left\{A_{i}: i \geq 1\right\}$ is a disjoint sequence of sets in \mathcal{G}, by Property 2 , we have $G_{n}=\cup_{i=1}^{n} A_{i} \in \mathcal{G}$, by Property 4 , we have $\cup_{i=1}^{\infty} A_{i}=$ $\lim _{n \rightarrow \infty} G_{n} \in \mathcal{G}$ and

$$
\begin{aligned}
\Pi\left(\cup_{i=1}^{\infty} A_{i}\right) & =\Pi\left(\lim _{n \rightarrow \infty} G_{n}\right)=\lim _{n \rightarrow \infty} \Pi\left(G_{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Pi\left(A_{i}\right)=\sum_{i=1}^{\infty} \Pi\left(A_{i}\right) .
\end{aligned}
$$

Proof of Second Extension Theorem: Part II

Part I has extended \mathcal{P} to a σ-additive Π from the algebra \mathcal{A} to the monotone class

$$
\mathcal{G}=\left\{\lim _{n \rightarrow \infty} B_{n}: B_{n} \in \mathcal{A}, B_{n} \subset B_{n+1}, \forall n\right\} .
$$

Part II extends Π to a set function Π^{*} on the power set $\mathcal{P}(\Omega)$ (the largest σ-algebra on Ω) and finally show that the restriction of Π^{*} to a certain subclass \mathcal{D} of $\mathcal{P}(\Omega)$ can yield the desired extension of P.

We define $\Pi^{*}: \mathcal{P}(\Omega) \mapsto[0,1]$ by

$$
\forall A \in \mathcal{P}(\Omega): \Pi^{*}(A)=\inf \{\Pi(G): A \subset G \in \mathcal{G}\}
$$

so $\Pi^{*}(A)$ is the least upper bound of values of Π on sets $G \in \mathcal{G}$ containing A.

Proof of Second Extension Theorem: Part II

We now consider properties of Π^{*} :
Property 1.
We have on \mathcal{G} :

$$
\left.\Pi^{*}\right|_{\mathcal{G}}=\Pi
$$

and $0 \leq \Pi^{*}(A) \leq 1$ for any $A \in \mathcal{P}(\Omega)$.
Proof of Property 1:
For $A \in \mathcal{G}$, Then for any $\mathcal{G} \ni G \supset A$, we have $\Pi(G) \geq \Pi(A)$.
Known $A \subset A$, thus $\Pi^{*}(A)=\inf \{\Pi(G): A \subset G \in \mathcal{G}\}=\Pi(A)$.
In particular, we have $\Pi^{*}(\Omega)=\Pi(\Omega)=1$ and $\Pi^{*}(\emptyset)=\Pi(\emptyset)=0$.

Proof of Second Extension Theorem: Part II

Property 2.
For $A_{1}, A_{2} \in \mathcal{P}(\Omega)$,

$$
\Pi^{*}\left(A_{1} \cup A_{2}\right)+\Pi^{*}\left(A_{1} \cap A_{2}\right) \leq \Pi^{*}\left(A_{1}\right)+\Pi^{*}\left(A_{2}\right)
$$

and consequently $1=\Pi^{*}(\Omega) \leq \Pi^{*}(A)+\Pi^{*}\left(A^{c}\right)$.
Proof of Property 2:
$\forall \epsilon>0$, find $G_{i} \in \mathcal{G}$ such that $G_{i} \supset A_{i}$ and

$$
\Pi^{*}\left(A_{i}\right)+\epsilon / 2 \geq \Pi\left(G_{i}\right) .
$$

Thus

$$
\begin{aligned}
\Pi^{*}\left(A_{1}\right)+\Pi^{*}\left(A_{2}\right)+\epsilon \geq \Pi\left(G_{1}\right)+\Pi\left(G_{2}\right) & =\Pi\left(G_{1} \cup G_{2}\right)+\Pi\left(G_{1} \cap G_{2}\right) \\
& \geq \Pi^{*}\left(A_{1} \cup A_{2}\right)+\Pi^{*}\left(A_{1} \cap A_{2}\right) .
\end{aligned}
$$

Proof of Second Extension Theorem: Part II

Property 3.
Π^{*} is monotone on $\mathcal{P}(\Omega)$.
Proof of Property 3:
This follows the fact that Π is monotone on \mathcal{G}. For $A_{1} \subset A_{2} \in \mathcal{P}(\Omega)$,

$$
\begin{aligned}
\Pi^{*}\left(A_{1}\right) & =\inf \left\{\Pi\left(G_{1}\right): A_{1} \subset G_{1} \in \mathcal{G}\right\} \\
& \leq \inf \left\{\Pi\left(G_{2}\right): A_{1} \subset A_{2} \subset G_{2} \in \mathcal{G}\right\}=\Pi^{*}\left(A_{2}\right)
\end{aligned}
$$

Proof of Second Extension Theorem: Part II

Property 4.

Π^{*} is sequentially monotone continuous on $\mathcal{P}(\Omega)$ in the sense that if $A_{n} \uparrow A$, then $\Pi^{*}\left(A_{n}\right) \uparrow \Pi^{*}(A)$.

Proof of Property 4:
Fix $\epsilon>0$, for each $n \geq 1$, find $G_{n} \in \mathcal{G}$ such that $A_{n} \subset G_{n}$ and $\Pi^{*}\left(A_{n}\right)+\epsilon / 2^{n} \geq \Pi\left(G_{n}\right)$. Define $G_{n}^{\prime}=\cup_{m=1}^{n} G_{m}$. Since \mathcal{G} is closed under finite unions $G_{n}^{\prime} \in \mathcal{G}$ and G_{n}^{\prime} is obviously non-decreasing. We claim for all $n \geq 1$,

$$
\Pi^{*}\left(A_{n}\right)+\epsilon \sum_{i=1}^{n} 2^{-i} \geq \Pi\left(G_{n}^{\prime}\right)
$$

Proof of this claim is by induction. It certainly holds for $n=1$. Suppose it holds for n, we prove it also holds for $n+1$.

Proof of Second Extension Theorem: Part II

Proof of Property 4:

We have $A_{n} \subset G_{n} \subset G_{n}^{\prime}$ and $A_{n} \subset A_{n+1} \subset G_{n+1}$, and consequently $A_{n} \subset G_{n}^{\prime}$ and $A_{n} \subset G_{n+1}$. So $A_{n} \subset G_{n}^{\prime} \cap G_{n+1} \in \mathcal{G}$. Thus

$$
\begin{aligned}
\Pi\left(G_{n+1}^{\prime}\right) & =\Pi\left(G_{n}^{\prime} \cup G_{n+1}\right)=\Pi\left(G_{n}^{\prime}\right)+\Pi\left(G_{n+1}\right)-\Pi\left(G_{n}^{\prime} \cap G_{n+1}\right) \\
& \leq \Pi^{*}\left(A_{n}\right)+\epsilon \sum_{i=1}^{n} 2^{-i}+\Pi^{*}\left(A_{n+1}\right)+\epsilon 2^{-n-1}-\Pi^{*}\left(A_{n}\right) \\
& =\Pi^{*}\left(A_{n+1}\right)+\epsilon \sum_{i=1}^{n+1} 2^{-i} .
\end{aligned}
$$

This finishes the proof of the claim. Now in the claim, we let $n \rightarrow \infty$, by monotonicity of $\left\{\Pi^{*}\left(A_{n}\right)\right\}$ and $\left\{\Pi\left(G_{n}^{\prime}\right)\right\}$ (limits exist),

$$
\lim _{n \rightarrow \infty} \Pi^{*}\left(A_{n}\right)+\epsilon \geq \lim _{n \rightarrow \infty} \Pi\left(G_{n}^{\prime}\right)=\Pi\left(\cup_{j=1}^{\infty} G_{j}^{\prime}\right)
$$

Proof of Second Extension Theorem: Part II

Proof of Property 4:
Since

$$
A=\lim _{n \rightarrow \infty} A_{n} \subset \cup_{j=1}^{\infty} G_{j}^{\prime} \in \mathcal{G}
$$

We conclude (let $\epsilon \rightarrow 0$),

$$
\lim _{n \rightarrow \infty} \Pi^{*}\left(A_{n}\right) \geq \Pi\left(\cup_{j=1}^{\infty} G_{j}^{\prime}\right) \geq \Pi^{*}(A)
$$

On the other hand, by Property 3, we have $\Pi^{*}\left(A_{n}\right)$ and $\Pi^{*}\left(A_{n}\right) \leq \Pi^{*}(A)$. Thus $\lim _{n \rightarrow \infty} \Pi^{*}\left(A_{n}\right) \leq \Pi^{*}(A)$ which proves

$$
\lim _{n \rightarrow \infty} \Pi^{*}\left(A_{n}\right)=\Pi^{*}(A)
$$

Proof of Second Extension Theorem: Part III

Did we prove Π^{*} is σ-additive on $\mathcal{P}(\Omega)$? No, because of the \leq sign in Property 2 on Slide 31, and also because $1=\Pi^{*}(\Omega) \leq$ $\Pi^{*}(A)+\Pi^{*}\left(A^{c}\right)$.

So far, Part I has extended \mathcal{P} to a σ-additive Π from the algebra \mathcal{A} to the monotone class $\mathcal{G}=\left\{\lim _{n \rightarrow \infty} B_{n}: B_{n} \in \mathcal{A}, B_{n} \subset B_{n+1}, \forall n\right\}$. Part II extends Π to a set function Π^{*} (which might not be σ additive) on the power set $\mathcal{P}(\Omega)$.
Part III: We now retract Π^{*} to a certain subclass \mathcal{D} of $\mathcal{P}(\Omega)$ and show that $\left.\Pi^{*}\right|_{\mathcal{D}}$ is the desired extension of P from \mathcal{A} to $\sigma(\mathcal{A}) \subset \mathcal{D}$, where

$$
\mathcal{D}=\left\{D \in \mathcal{P}(\Omega): \Pi^{*}(D)+\Pi^{*}\left(D^{c}\right)=1\right\}
$$

Obviously, $\mathcal{A} \subset \mathcal{D}$, because if $A \in \mathcal{A}$, then $\Pi^{*}(A)=\Pi(A)=$ $1-\Pi\left(A^{c}\right)$.

Proof of Second Extension Theorem: Part III

$$
\mathcal{D}=\left\{D \in \mathcal{P}(\Omega): \Pi^{*}(D)+\Pi^{*}\left(D^{c}\right)=1\right\} .
$$

Lemma 2.4.3
The class \mathcal{D} has the following properties:

1. \mathcal{D} is a σ-field.
2. $\left.\Pi^{*}\right|_{\mathcal{D}}$ is a probability measure on (Ω, \mathcal{D}).

If Lemma 2.4.3 is true, we know that $\mathcal{A} \subset \mathcal{D}$ and thus $\sigma(\mathcal{A}) \subset \mathcal{D}$. The restriction $\left.\Pi^{*}\right|_{\sigma(\mathcal{A})}$ is the desired extension of P on \mathcal{A} to a probability measure on $\sigma(\mathcal{A})$.

Proof of Second Extension Theorem: Part III

Proof of Lemma 2.4.3
We first show that \mathcal{D} is an algebra. Obviously Ω and \emptyset are in \mathcal{D}, and obviously \mathcal{D} is closed under complementation. Next we show \mathcal{D} is closed under finite unions and finite intersections. For $D_{1}, D_{2} \in \mathcal{D}$, from Property 2 of Π^{*} on $\mathcal{P}(\Omega)$:

$$
\begin{aligned}
& \Pi^{*}\left(D_{1} \cup D_{2}\right)+\Pi^{*}\left(D_{1} \cap D_{2}\right) \leq \Pi^{*}\left(D_{1}\right)+\Pi^{*}\left(D_{2}\right) \\
& \Pi^{*}\left(D_{1}^{c} \cup D_{2}^{c}\right)+\Pi^{*}\left(D_{1}^{c} \cap D_{2}^{c}\right) \leq \Pi^{*}\left(D_{1}^{c}\right)+\Pi^{*}\left(D_{2}^{c}\right)
\end{aligned}
$$

Adding them together yields

$$
2 \leq \underbrace{\Pi^{*}\left(D_{1} \cup D_{2}\right)+\Pi^{*}\left(D_{1}^{c} \cap D_{2}^{c}\right)}_{=1}+\underbrace{\Pi^{*}\left(D_{1} \cap D_{2}\right)+\Pi^{*}\left(D_{1}^{c} \cup D_{2}^{c}\right)}_{=1} \leq 2 .
$$

This completes the proof of \mathcal{D} being an algebra. In addition, we must have $\Pi^{*}\left(D_{1} \cup D_{2}\right)+\Pi^{*}\left(D_{1} \cap D_{2}\right)=\Pi^{*}\left(D_{1}\right)+\Pi^{*}\left(D_{2}\right)$ for any D_{1} and D_{2} in \mathcal{D}. Thus Π^{*} is finitely additive on \mathcal{D}.

Proof of Second Extension Theorem: Part III

Proof of Lemma 2.4.3
We now show \mathcal{D} is a σ-algebra. Recall that in Section 2.2: An
algebra is a σ-algebra iff it is a monotone class. It suffices to show
\mathcal{D} is a monotone class. Because of the closeness under
complementation, it is enough to focus on monotone increasing;
i.e., if $D_{n} \in \mathcal{D}, D_{n} \uparrow D$ implies $D \in \mathcal{D}$.

We know $\mathcal{D} \in \mathcal{P}(\Omega)$. By Properties 3 and 2 of Π^{*} on $\mathcal{P}(\Omega)$,
$\lim _{n \rightarrow \infty} \Pi^{*}\left(D_{n}\right)=\Pi^{*}(D)$, and $1 \leq \Pi^{*}(D)+\Pi^{*}\left(D^{c}\right)$.
$\Pi^{*}\left(D^{c}\right)=\Pi^{*}\left(\left(\cup_{n=1}^{\infty} D_{n}\right)^{c}\right)=\Pi^{*}\left(\cap_{n=1}^{\infty} D_{n}^{c}\right) \leq \Pi^{*}\left(D_{m}^{c}\right)$ for any
$m \geq 1$. Thus $1 \leq \Pi^{*}(D)+\Pi^{*}\left(D^{c}\right) \leq \Pi^{*}(D)+\Pi^{*}\left(D_{m}^{c}\right)=$
$\lim _{n \rightarrow \infty} \Pi^{*}\left(D_{n}\right)+\Pi^{*}\left(D_{m}^{c}\right)$. We know $\left\{\Pi^{*}\left(D_{m}^{c}\right)\right\}$ is a bounded
monotone non-increasing sequence. Its limit exists. Thus taking m to infinity,
$1 \leq \Pi^{*}(D)+\Pi^{*}\left(D^{c}\right) \leq \lim _{n \rightarrow \infty} \Pi^{*}\left(D_{n}\right)+\lim _{m \rightarrow \infty} \Pi^{*}\left(D_{m}^{c}\right)=$ $\lim _{n \rightarrow \infty}\left\{\Pi^{*}\left(D_{n}\right)+\Pi^{*}\left(D_{n}^{c}\right)\right\}=1$.

Proof of Second Extension Theorem: Part III

Proof of Lemma 2.4.3

Finally, we show $\left.\Pi^{*}\right|_{\mathcal{D}}$ is σ-additive. Let $\left\{D_{n}\right\}$ be a sequence of disjoint sets in \mathcal{D}. Because Π^{*} is continuous with respect to non-decreasing sequences (Property 4), we have

$$
\Pi^{*}\left(\cup_{n=1}^{\infty} D_{n}\right)=\Pi^{*}\left(\lim _{n \rightarrow \infty} \cup_{i=1}^{n} D_{i}\right)=\lim _{n \rightarrow \infty} \Pi^{*}\left(\cup_{i=1}^{n} D_{i}\right)
$$

Because Π^{*} is finitely additive on $\mathcal{D}, \Pi^{*}\left(\cup_{i=1}^{n} D_{i}\right)=\sum_{i=1}^{n} \Pi^{*}\left(D_{i}\right)$, we have

$$
\Pi^{*}\left(\cup_{n=1}^{\infty} D_{n}\right)=\lim _{n \rightarrow \infty} \Pi^{*}\left(\cup_{i=1}^{n} D_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Pi^{*}\left(D_{i}\right)=\sum_{i=1}^{\infty} \Pi^{*}\left(D_{i}\right)
$$

We have finished the proof of Lemma 2.4.3.
So far, we have shown that $\left.\Pi^{*}\right|_{\sigma(\mathcal{A})}$ is the desired extension of P on \mathcal{A} to a probability measure on $\sigma(\mathcal{A})$.

Proof of Second Extension Theorem: Part III

Did we finish the proof of the Second Extension Theorem? No, we need to show uniqueness.

But it is trivial because of Corollary 2.2.1: If P_{1}, P_{2} are two probability measures on (Ω, \mathcal{B}) and if \mathcal{P} is a π-system such that $\forall A \in \mathcal{P}$, $P_{1}(A)=P_{2}(A)$, then $\forall B \in \sigma(\mathcal{P}), P_{1}(B)=P_{2}(B)$.

If we have two distinct extensions from $\mathcal{A}(\mathcal{S})$ to $\sigma(\mathcal{A}(\mathcal{S}))$, then they must be the same on $\sigma(\mathcal{A}(\mathcal{S}))$ because $\mathcal{A}(\mathcal{S})$ is a π-system.

Summary

First Extension Theorem: uniquely,

Second Extension Theorem: uniquely,

and

