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2.1 Basic Definitions and Properties

A probability space is a triple (Ω,B,P) where
I Ω is the sample space corresponding to outcomes of some

experiment.
I B is the σ-algebra of subsets of Ω. These subsets are called

events.
I P is a probability measure; that is, P is a function with

domain B and range [0, 1] such that (Kolmogorov axioms)
(i) P(A) ≥ 0 for all A ∈ B.
(ii) P is σ-additive: if {An : n ≥ 1} are events in B that are

disjoint, then

P(∪∞n=1An) =
∞∑
n=1

P(An).

(iii) P(Ω) = 1.
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2.1 Basic Definitions and Properties

1. P(Ac) = 1− P(A).
2. P(∅) = 0.
3. P(A ∪ B) = P(A) + P(B)− P(A ∩ B).
4. The inclusion-exclusion formula:

P(∪nj=1Aj) =
∑n

j=1 P(Aj)−
∑

1≤i<j≤n P(Ai ∩ Aj) +∑
1≤i<j<k≤n P(Ai ∩ Aj ∩ Ak)− · · ·+ (−1)nP(A1 ∩ · · · ∩ An).

5. Bonferroni inequalities: P(∪nj=1Aj) ≤
∑n

j=1 P(Aj), or
P(∪nj=1Aj) ≥

∑n
j=1 P(Aj)−

∑
1≤i<j≤n P(Ai ∩ Aj).

6. The monotonicity property : if A ⊂ B , then P(A) ≤ P(B).
7. Subadditivity : P(∪∞n=1An) ≤

∑∞
n=1 P(An).

8. Continuity : The measure P is continuous in the sense that if
An ↑ A, then P(An) ↑ P(A); if An ↓ A, then P(An) ↓ P(A); if
An → A, then P(An)→ P(A).

9. Fatou’s lemma: P(lim infn→∞ An) ≤ lim infn→∞ P(An) ≤
lim supn→∞ P(An) ≤ P(lim supn→∞ An).
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2.1 Basic Definitions and Properties

Proof of continuity: An ↑ A. Define Bn = An\An−1. Then {Bn} is a
disjoint sequence of events such that ∪nt=1Bt = An and ∪∞t=1Bt = A.
Then P(A) = P(∪∞t=1Bt) =

∑∞
i=1 P(Bi ) = limn→∞

∑n
i=1 P(Bi ) =

limn→∞ P(∪ni=1Bi ) = limn→∞ P(An).

Proof of Fatou’s lemma:
P(lim infn→∞ An) = P(∪∞n=1 ∩k≥n Ak) = P(limn→∞ ∩k≥nAk) =
limn→∞ P(∩k≥nAk) = lim infn→∞ P(∩k≥nAk) ≤ lim infn→∞ P(An).
Likewise
P(lim supn→∞ An) = P(∩∞n=1 ∪k≥n Ak) = P(limn→∞ ∪k≥nAk) =
limn→∞ P(∪k≥nAk) = lim supn→∞ P(∪k≥nAk) ≥ lim supn→∞ P(An).
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2.1 Basic Definitions and Properties

Example 2.1.1 (HW 2-1: Prove (i)–(iii).)
Let Ω = R, and suppose P is a probability measure on R. Define

F (x) = P((−∞, x ]), x ∈ R.

Then
(i) F is right continuous,
(ii) F is monotone non-decreasing,
(iii) F has limits at ±∞: F (∞) = limx↑∞ F (x) = 1 and

F (−∞) = limx↓−∞ F (x) = 0.
Definition 2.1.1 A function F : R→ [0, 1] satifying (i),(ii),(iii) is
called a (probability) (cumulative) distribution function, (in
shorthand, df or cdf).
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2.2 More on Closure

A probability measure on R is uniquely determined by its distribution
function.

Corollary 2.2.2
Let Ω = R. Let P1, P2 be two probability measures on (R,B(R))
such that their dfs are equal:

∀x ∈ R : F1(x) = P1((−∞, x ]) = F2(x) = P2((−∞, x ]).

Then P1 = P2 on B(R); i.e., ∀A ∈ B(R), P1(A) = P2(A).
We note P = {(−∞, x ] : x ∈ R} is a π-system and σ(P) = B(R).

More general: Corollary 2.2.1
If P1, P2 are two probability measures on (Ω,B) and if P is a
π-system such that ∀A ∈ P, P1(A) = P2(A), then ∀B ∈ σ(P),
P1(B) = P2(B).
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2.2 More on Closure (Other Generators)

Proof of Corollary 2.2.1 follows

Proposition 2.2.3
Let P1, P2 be two probability measures on (Ω,B). The class
L = {A ∈ B : P1(A) = P2(A)} is a Dynkin system.
and

(a) in Theorem 2.2.2 (Dynkin’s theorem)
If P is a π-system and L is a Dynkin system such that P ⊂ L, then
σ(P) ⊂ L.
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2.4 Constructions of Probability Spaces

How to construct probability spaces when Ω is uncountable? Same
as in the countable case, we start with a simple class of subsets S
of Ω to which the assignment of probabilities is obvious or natural.
Then we extend this assignment of probabilities to σ(S). Herein, we
focus on the case where Ω = R. Suppose we are given a distribution
function F , we could take S to be

S = {(x , y ] : −∞ ≤ x ≤ y ≤ ∞}

and then define P on S to be

P((x , y ]) = F (y)− F (x).

The problem is to extend the definition of P from S to σ(S) = B(R),
the Borel sets.
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2.4 Constructions of Probability Spaces

What do we mean by extension? Suppose two classes G1, G2 of
subsets of Ω such that G1 ⊂ G2 and two set functions

Pi : Gi 7→ [0, 1], i = 1, 2,

we say P2 is an extension of P1 (or P1 extends to P2) if P2 restricted
to G1 equals P1; i.e., P2(A1) = P1(A1) for all A1 ∈ G1.

Semi-algebra
A class S of subsets of Ω is a semi-algebra if the following holds
(i) ∅,Ω ∈ S.
(ii) S is a π-system.
(iii) If A ∈ S, then there exist some finite n and disjoint sets

C1, . . . ,Cn with each Ci ∈ S such that Ac = ∪ni=1Ci .

S = {(x , y ] : −∞ ≤ x ≤ y ≤ ∞} is a semialgrebra (not an algebra).
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2.4 Constructions of Probability Spaces

The following Theorem show that, we can start with assigning prob-
abilities to S, then extend it to σ(S) uniquely!

Theorem 2.4.3 (Extension Theorem)
Suppose S is a semi-algebra of subsets of Ω and that P is a
σ-additive set function mapping S into [0, 1] such that P(Ω) = 1.
There is a unique probability measure on σ(S) that extends P .

Recall that P σ-additive if

P(∪∞i=1Ai ) =
n∑

i=1

P(Ai )

holds for mutually disjoint {An} with Aj ∈ G and ∪∞j=1Aj ∈ G.
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2.4 Constructions of Probability Spaces

We start with something we have known:

Lebesgue Measure on (0, 1]

Suppose Ω = (0, 1], B = B((0, 1]), S = {(a, b] : 0 ≤ a ≤ b ≤ 1}.
Define on S the function λ : S 7→ [0, 1] by

λ(∅) = 0, λ(a, b] = b − a.

Based on the Extension Theorem, we can extend λ to σ(S) = B.
The extended measure is the Lebesgue Measure (see Section 2.5.1).
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2.5 Probability Construction

Now we discuss the construction of a probability measure on R with
a given df F (x). Based on F (x), we can construct a probability
measure on R, PF (see Section 2.5.2), such that

PF ((x , y ]) = F (y)︸︷︷︸
b

−F (x)︸︷︷︸
a

= λ(a, b].

Intuition: For A ⊂ R, define

ξF (A) = {x ∈ (0, 1] : inf{s : F (s) ≥ x} ∈ A}.

If A ∈ B(R), then ξF (A) ∈ B((0, 1]). Finally,

PF (A) = λ(ξF (A)).

(Other HW 2 problems: Section 2.6, Q1-3, Q6, Q8-9, Q12, Q15-17,
Q21, Q23)
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Appendix: Proof of the Extension Theorem

As we mentioned before, the extension of P is from S to σ(S). We
prove this extension using two steps:
I Step 1: We extend P uniquely from S to A(S), the smallest

algebra containing S (First Extension Theorem).
I Step 2: We extend P uniquely from A(S) to σ(S) (Second

Extension Theorem).
Semi-algebra → Algebra → σ-algebra.

Lemma 2.4.1 The algebra generated by a semi-algebra
Suppose S is a semi-algebra of subsets of Ω. Then A(S) = Λ where

Λ = {∪i∈ISi : I a finite index set, {Si : i ∈ I} disjoint, Si ∈ S} ,

is the family of all unions of finite families of mutually disjoint
subsets of Ω in S.
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Proof of Lemma 2.4.1

It is clear that S ⊂ Λ. Now we check whether Λ is an algebra:
(i) Ω ∈ S, thus Ω ∈ Λ.
(ii) Λ is closed under finite intersection.
(iii) To check closure under complementation, we see

(∪i∈ISi )c = ∩i∈ISc
i . By the definition of S, Sc

i = ∪j∈JiCij for
a finite index set Ji and mutually disjoint sets {Cij : j ∈ Ji}.
Thus

(∪i∈ISi )c = ∩i∈I ∪j∈Ji Cij ∈ Λ.

Thus Λ is an algebra containing S. Because A(S) is the algebra
generated by S, we conclude A(S) ⊂ Λ. On the other hand, because
Λ is created by applying the finite union structure on S, Λ ⊂ A(S).
Finally, we have A(S) = Λ.
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First Extension Theorem

From
S = {(x , y ] : −∞ ≤ x ≤ y ≤ ∞}

to

A(S) = {∪i∈ISi : I a finite index set, {Si : i ∈ I} disjoint,Si ∈ S} .

Theorem 2.4.1 First Extension Theorem
Suppose S is a semialgrbra of subsets of Ω and P : S 7→ [0, 1] is
σ-additive on S and satisfies P(Ω) = 1. There is a unique
extension P ′ of P to A(S), defined by

P ′(∪i∈ISi ) =
∑
i∈I

P(Si ),

which is a probability measure on A(S); that is P ′(Ω) = 1 and
P ′ ≥ 0 is σ-additive on A(S).
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Proof of First Extension Theorem

Obviously P ′ is an extension of P from S to A(S). Taking I to be
a singleton index set, P ′(S) = P(S) for S ∈ S.

1. Is P ′ defined unambiguously? Suppose A = ∪i∈ISi = ∪j∈JSj ,∑
i∈I

P(Si ) =
∑
i∈I

P(Si ∩ A) =
∑
i∈I

P(Si ∩ {∪j∈JSj})

=
∑
i∈I

P(∪j∈J{Si ∩ Sj}) =
∑
i∈I

∑
j∈J

P(Si ∩ Sj)

=
∑
j∈J

∑
i∈I

P(Sj ∩ Si ) =
∑
j∈J

P(Sj).
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Proof of First Extension Theorem

2. Is P ′ σ-additive on A(S)? Known P is σ-additive on S.
Suppose for i ≥ 1, Ai =

∑
i∈Ji Sij ∈ A(S) for some Sij ∈ S are

mutually disjoint (thus {Sij : i , j} are mutually disjoint) and

A = ∪∞i=1Ai = ∪∞i=1 ∪i∈Ji Sij ∈ A(S).

We need to show P ′(A) =
∑∞

i=1 P
′(Ai ).

Because A ∈ A(S), thus A itself can be written as

A = ∪k∈KSk ,P ′(A) =
∑
k∈K

P(Sk) for some Sk ∈ S and a finite K .

Note S is a π-system, meaning Sk∩Sij ∈ S. Because P is σ-additive
on S, P(A∩ Sij) = P(∪k∈K (Sk ∩ Sij)) =

∑
k∈K P(Sk ∩ Sij). Again,

P(∪j∈JiSij) =
∑

j∈Ji P(Sij) = P ′(Ai ). Thus

∞∑
i=1

P ′(Ai ) =
∞∑
i=1

∑
j∈Ji

P(Sij) =
∞∑
i=1

∑
j∈Ji

∑
k∈K

P(Sk ∩ Sij)=
??

∑
k∈K

P(Sk).
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Proof of First Extension Theorem

Switching the order of those summations

∞∑
i=1

P ′(Ai ) =
∑
k∈K

∞∑
i=1

∑
j∈Ji

P(Sk ∩ Sij)=
??

∑
k∈K

P(Sk).

It suffices to show
∑∞

i=1
∑

j∈Ji P(Sk ∩ Sij) = P(Sk).
Now play the trick Sk = Sk ∩A = Sk ∩ (∪∞i=1Ai ) = ∪∞i=1(Sk ∩Ai ) =
∪∞i=1 ∪j∈Ji (Sk ∩ Sij). We see that Sk ∈ S is a countable union of
disjoint sets Sk ∩ Sij in S. Thus, by the σ-additivity of P on S, we
have P(Sk) =

∑∞
i=1
∑

j∈Ji P(Sk ∩ Sij) which completes the proof.
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Proof of First Extension Theorem

3. Is P ′ unique?
Suppose there two P ′1 and P ′2 σ-additive extensions of P from S to
A(S), then for any

A = ∪i∈ISi ∈ A(S),

by the σ-additivity, we have

P ′1(A) =
∑
i∈I

P(Si ) = P ′2(A).
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Second Extension Theorem

Semi-algebra → Algebra → σ-algebra.
S → A(S)→ σ-algebra.︸ ︷︷ ︸

Second Extension Theorem

Theorem 2.4.2 Second Extension Theorem
A probability measure P defined on an algebra A of subsets has a
unique extension to a probability measure on σ(A).

The proof is (very long) broken into 3 parts:
I Part I: extend P to a σ-additive function Π on a class G ⊃ A.
I Part II: extend Π to a set function Π∗ on a class D ⊃ σ(A).
I Part III: restrict Π∗ to σ(A) yielding the desired extension.

20 / 42



Proof of Second Extension Theorem: Part I

We begin by defining the class G:

G =
{
∪∞j=1Aj : Aj ∈ A

}
=
{

lim
n→∞

Bn : Bn ∈ A,Bn ⊂ Bn+1∀n
}
.

That is G is the class of unions of countable collections of sets in A,
or equivalently, since A is an algebra, G is the class of non-decreasing
limits of elements of A (think Bn = ∪nj=1Aj). Of course, A ⊂ G.
In Section 2.2: Every σ-algebra is a monotone class; An algebra is a
σ-algebra iff it is a monotone class.
Now we define Π : G 7→ [0, 1] by: if G = limn→∞ Bn ∈ G,

Π(G ) = lim
n→∞

P(Bn).

Because P is σ-additive on A, {P(Bn)} is an increasing real se-
quence in [0, 1], thus Π(G ) = limn→∞ P(Bn) exists in [0, 1].
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Proof of Second Extension Theorem: Part I

Furthermore, we need to check if G = limn→∞ Bn = limn→∞ B ′n
where both Bn ↑ and B ′n ↑ in A, whether

Π(G ) = lim
n→∞

P(Bn) = lim
n→∞

P(B ′n).

For a fixed m, B ′n ⊃ (Bm ∩ B ′n) and {Bm ∩ B ′n} is an increasing
sequence of sets, thus limn→∞ P(B ′n) ≥ limn→∞ P(Bm ∩ B ′n).
Because Bm∩B ′n → Bm as n→∞, by the continuity (a consequence
of being σ-additive) of P , we have limn→∞ P(Bm ∩ B ′n) = P(Bm).
Therefore limn→∞ P(B ′n) ≥ limn→∞ P(Bm ∩ B ′n) ≥ P(Bm),∀m.
Now take m to infinity, we have

lim
n→∞

P(B ′n) ≥ lim
m→∞

P(Bm) = lim
n→∞

P(Bn).

Similarly, we have limn→∞ P(Bn) ≥ limn→∞ P(B ′n).
Thus, limn→∞ P(Bn) = limn→∞ P(B ′n).
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Proof of Second Extension Theorem: Part I

Obviously, Π(A) = P(A) for A ∈ A (take Bn = A). Therefore, we
have created an extension Π of P from A to G ⊂ A.

Is Π a σ-additive extension of P? We answer this question by ex-
ploring the properties of Π and G.

Property 1
Π is an extension of P from A to G.

Proof of Property 1:
∅ ∈ G, Π(∅) = 0, Ω ∈ G, Π(Ω) = 1, and for G ∈ G, 0 ≤ Π(G ) ≤ 1.
More generally, we have A ⊂ G and Π(A) = P(A) for A ∈ A; i.e.,
Π|A = P .
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Proof of Second Extension Theorem: Part I

Property 2: Π is additive on G.
If Gi ∈ G for i = 1, 2 then G1 ∪ G2 ∈ G and G1 ∩ G2 ∈ G, and

Π(G1 ∪ G2) + Π(G1 ∩ G2) = Π(G1) + Π(G2).

Proof of Property 2: By the definition of G, we have A 3 Bn1 ↑ G1
and A 3 Bn2 ↑ G2. Since A is an algebra, we have A 3 Bn1 ∪Bn2 ↑
G1 ∪G2 ∈ G and A 3 Bn1 ∩Bn2 ↑ G1 ∩G2 ∈ G. Further, because P
is σ-additive on A, we have

P(Bn1 ∪ Bn2) + P(Bn1 ∩ Bn2) = P(Bn1) + P(Bn2)

holds for all n. Taking n→∞, we proved Property 2.
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Proof of Second Extension Theorem: Part I

Property 3: Π is monotone on G.
If Gi ∈ G for i = 1, 2 and G1 ⊂ G2, then

Π(G1) ≤ Π(G2).

Proof of Property 3: (Similarly to Slide 22) By the definition of G,
we have A 3 Bni ↑ Gi for i = 1, 2 and ∪∞n=1Bn1 = G1 ⊂ G2 =
∪∞n=1Bn2. For a fixed m, Bn2 ⊃ (Bm1 ∩Bn2) and {Bm1 ∩Bn2} is an
increasing sequence of sets, thus limn→∞ P(Bn2) ≥ limn→∞ P(Bm1∩
Bn2). Because Bm1 ∩ Bn2 → Bm1 as n → ∞, by the continuity (a
consequence of being σ-additive) of P , we have limn→∞ P(Bm1 ∩
Bn2) = P(Bm1). Therefore limn→∞ P(Bn2) ≥ limn→∞ P(Bm1 ∩
Bn2) ≥ P(Bm1) for every m. Now take m to infinity, we have

Π(G2) = lim
n→∞

P(Bn2) ≥ lim
m→∞

P(Bm1) = Π(G1).
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Proof of Second Extension Theorem: Part I

Property 4: G is closed under monotone limits and Π is
monotonely continuous on G.
If Gn ∈ G and Gn ↑ G , then G ∈ G and Π(G ) = limn→∞Π(Gn).

Proof of Property 4: For each n, we have A 3 Bm,n ↑ Gn.
Now define Dm = ∪mn=1Bm,n.
Since A is closed under finite unions, Dm ∈ A.
We show Dm ↑ G .
It is easy to see that {Dm} is monotone: Dm = ∪mn=1Bm,n ⊂
∪mn=1Bm+1,n ⊂ ∪m+1

n=1 Bm+1,n = Dm+1.
If n ≤ m, we also have Bm,n ⊂ Dm = ∪mj=1Bm,j ⊂ ∪mj=1Gj = Gm.
Taking limits on m, we have for any n ≥ 1,
Gn = limm→∞ Bm,n ⊂ limm→∞Dm ⊂ limm→∞ Gm = G .
Now taking limits on n yields G = limn→∞ Gn ⊂ limm→∞Dm ⊂ G .
Thus Dm ↑ G and proves G ∈ G.
Furthermore, by the definition of Π, we have Π(G ) = limn→∞Π(Dm).
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Proof of Second Extension Theorem: Part I

It remains to show Π(Gn) ↑ Π(G ).
By the monotonicity of Π on G,

Π(Bm,n) ≤ Π(Dm) ≤ Π(Gm).

Let m→∞, Bm,n ↑ Gn,

Π(Gn) = lim
m→∞

Π(Bm,n) ≤ lim
m→∞

Π(Dm) ≤ lim
m→∞

Π(Gm),∀n

Let n→∞,

lim
n→∞

Π(Gn) ≤ lim
m→∞

Π(Dm) ≤ lim
m→∞

Π(Gm).

Therefore
lim
n→∞

Π(Gn) = lim
m→∞

Π(Dm) = Π(G ).
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Proof of Second Extension Theorem: Part I

Property 5: Π is σ-additive on G.

If {Ai : i ≥ 1} is a disjoint sequence of sets in G, by Property
2, we have Gn = ∪ni=1Ai ∈ G, by Property 4, we have ∪∞i=1Ai =
limn→∞ Gn ∈ G and

Π(∪∞i=1Ai ) = Π( lim
n→∞

Gn) = lim
n→∞

Π(Gn)

= lim
n→∞

n∑
i=1

Π(Ai ) =
∞∑
i=1

Π(Ai ).
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Proof of Second Extension Theorem: Part II

Part I has extended P to a σ-additive Π from the algebra A to the
monotone class

G = { lim
n→∞

Bn : Bn ∈ A,Bn ⊂ Bn+1,∀n}.

Part II extends Π to a set function Π∗ on the power set P(Ω) (the
largest σ-algebra on Ω) and finally show that the restriction of Π∗ to
a certain subclass D of P(Ω) can yield the desired extension of P .

We define Π∗ : P(Ω) 7→ [0, 1] by

∀A ∈ P(Ω) : Π∗(A) = inf{Π(G ) : A ⊂ G ∈ G},

so Π∗(A) is the least upper bound of values of Π on sets G ∈ G
containing A.
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Proof of Second Extension Theorem: Part II

We now consider properties of Π∗:

Property 1.
We have on G:

Π∗|G = Π

and 0 ≤ Π∗(A) ≤ 1 for any A ∈ P(Ω).

Proof of Property 1:
For A ∈ G, Then for any G 3 G ⊃ A, we have Π(G ) ≥ Π(A).
Known A ⊂ A, thus Π∗(A) = inf{Π(G ) : A ⊂ G ∈ G} = Π(A).
In particular, we have Π∗(Ω) = Π(Ω) = 1 and Π∗(∅) = Π(∅) = 0.
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Proof of Second Extension Theorem: Part II

Property 2.
For A1,A2 ∈ P(Ω),

Π∗(A1 ∪ A2) + Π∗(A1 ∩ A2) ≤ Π∗(A1) + Π∗(A2)

and consequently 1 = Π∗(Ω) ≤ Π∗(A) + Π∗(Ac).

Proof of Property 2:
∀ε > 0, find Gi ∈ G such that Gi ⊃ Ai and

Π∗(Ai ) + ε/2 ≥ Π(Gi ).

Thus

Π∗(A1) + Π∗(A2) + ε ≥ Π(G1) + Π(G2) = Π(G1 ∪ G2) + Π(G1 ∩ G2)

≥ Π∗(A1 ∪ A2) + Π∗(A1 ∩ A2).
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Proof of Second Extension Theorem: Part II

Property 3.
Π∗ is monotone on P(Ω).

Proof of Property 3:
This follows the fact that Π is monotone on G. For
A1 ⊂ A2 ∈ P(Ω),

Π∗(A1) = inf{Π(G1) : A1 ⊂ G1 ∈ G}
≤ inf{Π(G2) : A1 ⊂ A2 ⊂ G2 ∈ G} = Π∗(A2).
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Proof of Second Extension Theorem: Part II

Property 4.
Π∗ is sequentially monotone continuous on P(Ω) in the sense that
if An ↑ A, then Π∗(An) ↑ Π∗(A).

Proof of Property 4:
Fix ε > 0, for each n ≥ 1, find Gn ∈ G such that An ⊂ Gn and
Π∗(An) + ε/2n ≥ Π(Gn). Define G ′n = ∪nm=1Gm. Since G is closed
under finite unions G ′n ∈ G and G ′n is obviously non-decreasing. We
claim for all n ≥ 1,

Π∗(An) + ε

n∑
i=1

2−i ≥ Π(G ′n).

Proof of this claim is by induction. It certainly holds for n = 1.
Suppose it holds for n, we prove it also holds for n + 1.
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Proof of Second Extension Theorem: Part II

Proof of Property 4:
We have An ⊂ Gn ⊂ G ′n and An ⊂ An+1 ⊂ Gn+1, and consequently
An ⊂ G ′n and An ⊂ Gn+1. So An ⊂ G ′n ∩ Gn+1 ∈ G. Thus

Π(G ′n+1) = Π(G ′n ∪ Gn+1) = Π(G ′n) + Π(Gn+1)− Π(G ′n ∩ Gn+1)

≤ Π∗(An) + ε

n∑
i=1

2−i + Π∗(An+1) + ε2−n−1 − Π∗(An)

= Π∗(An+1) + ε

n+1∑
i=1

2−i .

This finishes the proof of the claim. Now in the claim, we let
n→∞, by monotonicity of {Π∗(An)} and {Π(G ′n)} (limits exist),

lim
n→∞

Π∗(An) + ε ≥ lim
n→∞

Π(G ′n) = Π(∪∞j=1G
′
j ).
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Proof of Second Extension Theorem: Part II

Proof of Property 4:
Since

A = lim
n→∞

An ⊂ ∪∞j=1G
′
j ∈ G.

We conclude (let ε→ 0),

lim
n→∞

Π∗(An) ≥ Π(∪∞j=1G
′
j ) ≥ Π∗(A).

On the other hand, by Property 3, we have Π∗(An) and
Π∗(An) ≤ Π∗(A). Thus limn→∞Π∗(An) ≤ Π∗(A) which proves

lim
n→∞

Π∗(An) = Π∗(A).
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Proof of Second Extension Theorem: Part III

Did we prove Π∗ is σ-additive on P(Ω)? No, because of the ≤
sign in Property 2 on Slide 31, and also because 1 = Π∗(Ω) ≤
Π∗(A) + Π∗(Ac).

So far, Part I has extended P to a σ-additive Π from the algebra A
to the monotone class G = {limn→∞ Bn : Bn ∈ A,Bn ⊂ Bn+1,∀n}.
Part II extends Π to a set function Π∗ (which might not be σ-
additive) on the power set P(Ω).
Part III: We now retract Π∗ to a certain subclass D of P(Ω) and
show that Π∗|D is the desired extension of P from A to σ(A) ⊂ D,
where

D = {D ∈ P(Ω) : Π∗(D) + Π∗(Dc) = 1}.

Obviously, A ⊂ D, because if A ∈ A, then Π∗(A) = Π(A) =
1− Π(Ac).
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Proof of Second Extension Theorem: Part III

D = {D ∈ P(Ω) : Π∗(D) + Π∗(Dc) = 1}.

Lemma 2.4.3
The class D has the following properties:
1. D is a σ-field.
2. Π∗|D is a probability measure on (Ω,D).

If Lemma 2.4.3 is true, we know that A ⊂ D and thus σ(A) ⊂ D.
The restriction Π∗|σ(A) is the desired extension of P on A to a
probability measure on σ(A).

37 / 42



Proof of Second Extension Theorem: Part III

Proof of Lemma 2.4.3
We first show that D is an algebra. Obviously Ω and ∅ are in D,
and obviously D is closed under complementation. Next we show D
is closed under finite unions and finite intersections. For
D1,D2 ∈ D, from Property 2 of Π∗ on P(Ω):

Π∗(D1 ∪ D2) + Π∗(D1 ∩ D2) ≤ Π∗(D1) + Π∗(D2)

Π∗(Dc
1 ∪ Dc

2 ) + Π∗(Dc
1 ∩ Dc

2 ) ≤ Π∗(Dc
1 ) + Π∗(Dc

2 ).

Adding them together yields

2 ≤ Π∗(D1 ∪ D2) + Π∗(Dc
1 ∩ Dc

2 )︸ ︷︷ ︸
=1

+ Π∗(D1 ∩ D2) + Π∗(Dc
1 ∪ Dc

2 )︸ ︷︷ ︸
=1

≤ 2.

This completes the proof of D being an algebra. In addition, we
must have Π∗(D1 ∪D2) + Π∗(D1 ∩D2) = Π∗(D1) + Π∗(D2) for any
D1 and D2 in D. Thus Π∗ is finitely additive on D.
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Proof of Second Extension Theorem: Part III

Proof of Lemma 2.4.3
We now show D is a σ-algebra. Recall that in Section 2.2: An
algebra is a σ-algebra iff it is a monotone class. It suffices to show
D is a monotone class. Because of the closeness under
complementation, it is enough to focus on monotone increasing;
i.e., if Dn ∈ D, Dn ↑ D implies D ∈ D.
We know D ∈ P(Ω). By Properties 3 and 2 of Π∗ on P(Ω),
limn→∞Π∗(Dn) = Π∗(D), and 1 ≤ Π∗(D) + Π∗(Dc).
Π∗(Dc) = Π∗((∪∞n=1Dn)c) = Π∗(∩∞n=1D

c
n ) ≤ Π∗(Dc

m) for any
m ≥ 1. Thus 1 ≤ Π∗(D) + Π∗(Dc) ≤ Π∗(D) + Π∗(Dc

m) =
limn→∞Π∗(Dn) + Π∗(Dc

m). We know {Π∗(Dc
m)} is a bounded

monotone non-increasing sequence. Its limit exists. Thus taking m
to infinity,
1 ≤ Π∗(D) + Π∗(Dc) ≤ limn→∞Π∗(Dn) + limm→∞Π∗(Dc

m) =
limn→∞{Π∗(Dn) + Π∗(Dc

n )} = 1.
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Proof of Second Extension Theorem: Part III

Proof of Lemma 2.4.3
Finally, we show Π∗|D is σ-additive. Let {Dn} be a sequence of
disjoint sets in D. Because Π∗ is continuous with respect to
non-decreasing sequences (Property 4), we have

Π∗(∪∞n=1Dn) = Π∗( lim
n→∞

∪ni=1Di ) = lim
n→∞

Π∗(∪ni=1Di ).

Because Π∗ is finitely additive on D, Π∗(∪ni=1Di ) =
∑n

i=1 Π∗(Di ),
we have

Π∗(∪∞n=1Dn) = lim
n→∞

Π∗(∪ni=1Di ) = lim
n→∞

n∑
i=1

Π∗(Di ) =
∞∑
i=1

Π∗(Di ).

We have finished the proof of Lemma 2.4.3.
So far, we have shown that Π∗|σ(A) is the desired extension of P on
A to a probability measure on σ(A).
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Proof of Second Extension Theorem: Part III

Did we finish the proof of the Second Extension Theorem?
No, we need to show uniqueness.

But it is trivial because of Corollary 2.2.1: If P1, P2 are two proba-
bility measures on (Ω,B) and if P is a π-system such that ∀A ∈ P,
P1(A) = P2(A), then ∀B ∈ σ(P), P1(B) = P2(B).

If we have two distinct extensions from A(S) to σ(A(S)), then they
must be the same on σ(A(S)) because A(S) is a π-system.
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Summary

First Extension Theorem: uniquely,

σ−additive︷ ︸︸ ︷
P on S︸ ︷︷ ︸

Semi−algebra

→
σ−additive︷ ︸︸ ︷

P ′ on A(S)︸ ︷︷ ︸
algebra

.

Second Extension Theorem: uniquely,

σ−additive︷ ︸︸ ︷
P ′ on A(S)︸ ︷︷ ︸

algebra

→
σ−additive︷ ︸︸ ︷
Π on G︸ ︷︷ ︸

monotone class

→
not σ−additive︷ ︸︸ ︷
Π∗ on P(Ω)︸ ︷︷ ︸

largest σ−algebra

and

not σ−additive︷ ︸︸ ︷
Π∗ on P(Ω)︸ ︷︷ ︸

largest σ−algebra

restriction−→
σ−additive︷ ︸︸ ︷
Π∗ on D︸ ︷︷ ︸

smaller σ−algebra

restriction−→
σ−additive︷ ︸︸ ︷

Π∗ on σ(A(S))︸ ︷︷ ︸
GOAL

.
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