STAT 810 Probability Theory I

Chapter 2: Probability Spaces

Dr. Dewei Wang Associate Professor Department of Statistics University of South Carolina deweiwang@stat.sc.edu

- A probability space is a triple (Ω, \mathcal{B}, P) where
 - Ω is the sample space corresponding to outcomes of some experiment.
 - B is the σ-algebra of subsets of Ω. These subsets are called events.
 - P is a probability measure; that is, P is a function with domain B and range [0, 1] such that (Kolmogorov axioms)
 (i) P(A) ≥ 0 for all A ∈ B.
 (ii) P is σ-additive: if {A_n : n ≥ 1} are events in B that are disjoint, then

$$P(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}P(A_n).$$

(iii) $P(\Omega) = 1$.

- 1. $P(A^c) = 1 P(A)$.
- 2. $P(\emptyset) = 0$.
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 4. The *inclusion-exclusion* formula:
 - $P(\bigcup_{j=1}^{n} A_j) = \sum_{j=1}^{n} P(A_j) \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k) \dots + (-1)^n P(A_1 \cap \dots \cap A_n).$
- 5. Bonferroni inequalities: $P(\cup_{j=1}^{n}A_j) \leq \sum_{j=1}^{n}P(A_j)$, or $P(\cup_{j=1}^{n}A_j) \geq \sum_{j=1}^{n}P(A_j) \sum_{1\leq i< j\leq n}P(A_i \cap A_j)$.
- 6. The monotonicity property: if $A \subset B$, then $P(A) \leq P(B)$.
- 7. Subadditivity: $P(\bigcup_{n=1}^{\infty}A_n) \leq \sum_{n=1}^{\infty}P(A_n)$.
- 8. Continuity: The measure P is continuous in the sense that if $A_n \uparrow A$, then $P(A_n) \uparrow P(A)$; if $A_n \downarrow A$, then $P(A_n) \downarrow P(A)$; if $A_n \to A$, then $P(A_n) \to P(A)$.
- 9. Fatou's lemma: $P(\liminf_{n\to\infty} A_n) \leq \liminf_{n\to\infty} P(A_n) \leq \limsup_{n\to\infty} P(A_n) \leq P(\limsup_{n\to\infty} A_n).$

Proof of continuity: $A_n \uparrow A$. Define $B_n = A_n \setminus A_{n-1}$. Then $\{B_n\}$ is a disjoint sequence of events such that $\bigcup_{t=1}^n B_t = A_n$ and $\bigcup_{t=1}^\infty B_t = A$. Then $P(A) = P(\bigcup_{t=1}^\infty B_t) = \sum_{i=1}^\infty P(B_i) = \lim_{n\to\infty} \sum_{i=1}^n P(B_i) = \lim_{n\to\infty} P(\bigcup_{i=1}^n B_i) = \lim_{n\to\infty} P(A_n)$.

Proof of Fatou's lemma:

 $P(\liminf_{n\to\infty}A_n) = P(\bigcup_{n=1}^{\infty}\cap_{k\geq n}A_k) = P(\lim_{n\to\infty}\cap_{k\geq n}A_k) = \lim_{n\to\infty}P(\cap_{k\geq n}A_k) = \lim_{n\to\infty}P(\cap_{k\geq n}A_k) \leq \lim_{n\to\infty}P(A_n).$ Likewise

 $P(\limsup_{n\to\infty} A_n) = P(\bigcap_{n=1}^{\infty} \bigcup_{k\ge n} A_k) = P(\lim_{n\to\infty} \bigcup_{k\ge n} A_k) = \lim_{n\to\infty} P(\bigcup_{k\ge n} A_k) = \limsup_{n\to\infty} P(\bigcup_{k\ge n} A_k) \ge \limsup_{n\to\infty} P(A_n).$

Example 2.1.1 (HW 2-1: Prove (i)-(iii).)

Let $\Omega = \mathbb{R}$, and suppose *P* is a probability measure on \mathbb{R} . Define

$$F(x) = P((-\infty, x]), x \in \mathbb{R}.$$

Then

- (i) F is right continuous,
- (ii) F is monotone non-decreasing,
- (iii) F has limits at $\pm\infty$: $F(\infty) = \lim_{x\uparrow\infty} F(x) = 1$ and $F(-\infty) = \lim_{x\downarrow-\infty} F(x) = 0$.

Definition 2.1.1 A function $F : \mathbb{R} \to [0, 1]$ satifying (i),(ii),(iii) is called a (probability) (cumulative) distribution function, (in shorthand, df or cdf).

2.2 More on Closure

A probability measure on $\mathbb R$ is uniquely determined by its distribution function.

Corollary 2.2.2

Let $\Omega = \mathbb{R}$. Let P_1 , P_2 be two probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that their dfs are equal:

 $\forall x \in \mathbb{R} : F_1(x) = P_1((-\infty, x]) = F_2(x) = P_2((-\infty, x]).$

Then $P_1 = P_2$ on $\mathcal{B}(\mathbb{R})$; i.e., $\forall A \in \mathcal{B}(\mathbb{R})$, $P_1(A) = P_2(A)$. We note $\mathcal{P} = \{(-\infty, x] : x \in \mathbb{R}\}$ is a π -system and $\sigma(\mathcal{P}) = \mathcal{B}(\mathbb{R})$. More general: Corollary 2.2.1

If P_1 , P_2 are two probability measures on (Ω, \mathcal{B}) and if \mathcal{P} is a π -system such that $\forall A \in \mathcal{P}$, $P_1(A) = P_2(A)$, then $\forall B \in \sigma(\mathcal{P})$, $P_1(B) = P_2(B)$.

Proof of Corollary 2.2.1 follows

Proposition 2.2.3

Let P_1 , P_2 be two probability measures on (Ω, \mathcal{B}) . The class $\mathcal{L} = \{A \in \mathcal{B} : P_1(A) = P_2(A)\}$ is a Dynkin system.

and

(a) in Theorem 2.2.2 (Dynkin's theorem) If \mathcal{P} is a π -system and \mathcal{L} is a Dynkin system such that $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

How to construct probability spaces when Ω is uncountable? Same as in the countable case, we start with a simple class of subsets Sof Ω to which the assignment of probabilities is obvious or natural. Then we extend this assignment of probabilities to $\sigma(S)$. Herein, we focus on the case where $\Omega = \mathbb{R}$. Suppose we are given a distribution function F, we could take S to be

$$\mathcal{S} = \{(x, y] : -\infty \le x \le y \le \infty\}$$

and then define P on S to be

$$P((x,y]) = F(y) - F(x).$$

The problem is to extend the definition of *P* from S to $\sigma(S) = \mathcal{B}(\mathbb{R})$, the Borel sets.

What do we mean by extension? Suppose two classes \mathcal{G}_1 , \mathcal{G}_2 of subsets of Ω such that $\mathcal{G}_1 \subset \mathcal{G}_2$ and two set functions

 $P_i: \mathcal{G}_i \mapsto [0,1], i = 1, 2,$

we say P_2 is an **extension** of P_1 (or P_1 extends to P_2) if P_2 restricted to \mathcal{G}_1 equals P_1 ; i.e., $P_2(A_1) = P_1(A_1)$ for all $A_1 \in \mathcal{G}_1$.

Semi-algebra

A class ${\mathcal S}$ of subsets of Ω is a semi-algebra if the following holds

- (i) $\emptyset, \Omega \in \mathcal{S}$.
- (ii) S is a π -system.
- (iii) If $A \in S$, then there exist some finite *n* and disjoint sets C_1, \ldots, C_n with each $C_i \in S$ such that $A^c = \bigcup_{i=1}^n C_i$.

 $\mathcal{S} = \{(x, y] : -\infty \le x \le y \le \infty\}$ is a semialgrebra (not an algebra).

The following Theorem show that, we can start with assigning probabilities to S, then extend it to $\sigma(S)$ uniquely!

Theorem 2.4.3 (Extension Theorem)

Suppose S is a *semi-algebra* of subsets of Ω and that P is a σ -additive set function mapping S into [0, 1] such that $P(\Omega) = 1$. There is a unique probability measure on $\sigma(S)$ that extends P.

Recall that $P \sigma$ -additive if

$$P(\cup_{i=1}^{\infty}A_i)=\sum_{i=1}^{n}P(A_i)$$

holds for mutually disjoint $\{A_n\}$ with $A_j \in \mathcal{G}$ and $\bigcup_{i=1}^{\infty} A_j \in \mathcal{G}$.

We start with something we have known:

Lebesgue Measure on (0, 1]Suppose $\Omega = (0, 1]$, $\mathcal{B} = \mathcal{B}((0, 1])$, $\mathcal{S} = \{(a, b] : 0 \le a \le b \le 1\}$. Define on \mathcal{S} the function $\lambda : \mathcal{S} \mapsto [0, 1]$ by

 $\lambda(\emptyset) = 0, \quad \lambda(a, b] = b - a.$

Based on the Extension Theorem, we can extend λ to $\sigma(S) = B$. The extended measure is the Lebesgue Measure (see Section 2.5.1).

2.5 Probability Construction

Now we discuss the construction of a probability measure on \mathbb{R} with a given df F(x). Based on F(x), we can construct a probability measure on \mathbb{R} , P_F (see Section 2.5.2), such that

$$P_{F}((x,y]) = \underbrace{F(y)}_{b} - \underbrace{F(x)}_{a} = \lambda(a,b].$$

Intuition: For $A \subset \mathbb{R}$, define

 $\xi_{F}(A) = \{ x \in (0, 1] : \inf\{s : F(s) > x\} \in A \}.$

If $A \in \mathcal{B}(\mathbb{R})$, then $\xi_F(A) \in \mathcal{B}((0,1])$. Finally,

 $P_F(A) = \lambda(\xi_F(A)).$

(Other HW 2 problems: Section 2.6, Q1-3, Q6, Q8-9, Q12, Q15-17, Q21, Q23)

Appendix: Proof of the Extension Theorem

As we mentioned before, the extension of *P* is from S to $\sigma(S)$. We prove this extension using two steps:

- Step 1: We extend P uniquely from S to A(S), the smallest algebra containing S (First Extension Theorem).
- Step 2: We extend *P* uniquely from *A*(*S*) to σ(*S*) (Second Extension Theorem).

Semi-algebra \rightarrow Algebra \rightarrow σ -algebra.

Lemma 2.4.1 The algebra generated by a semi-algebra Suppose S is a semi-algebra of subsets of Ω . Then $\mathcal{A}(S) = \Lambda$ where

 $\Lambda = \{ \bigcup_{i \in I} S_i : I \text{ a finite index set}, \{ S_i : i \in I \} \text{ disjoint}, S_i \in S \},\$

is the family of all unions of finite families of mutually disjoint subsets of Ω in $\mathcal{S}.$

Proof of Lemma 2.4.1

It is clear that $\mathcal{S} \subset \Lambda$. Now we check whether Λ is an algebra:

(i) $\Omega \in S$, thus $\Omega \in \Lambda$.

- (ii) Λ is closed under finite intersection.
- (iii) To check closure under complementation, we see $(\bigcup_{i \in I} S_i)^c = \bigcap_{i \in I} S_i^c$. By the definition of S, $S_i^c = \bigcup_{j \in J_i} C_{ij}$ for a finite index set J_i and mutually disjoint sets $\{C_{ij} : j \in J_i\}$. Thus

$$(\cup_{i\in I}S_i)^c = \cap_{i\in I}\cup_{j\in J_i}C_{ij}\in \Lambda.$$

Thus Λ is an algebra containing S. Because $\mathcal{A}(S)$ is the algebra generated by S, we conclude $\mathcal{A}(S) \subset \Lambda$. On the other hand, because Λ is created by applying the finite union structure on S, $\Lambda \subset \mathcal{A}(S)$. Finally, we have $\mathcal{A}(S) = \Lambda$.

First Extension Theorem

From

$$\mathcal{S} = \{(x, y] : -\infty \le x \le y \le \infty\}$$

to

 $\mathcal{A}(\mathcal{S}) = \{\cup_{i \in I} S_i : I \text{ a finite index set}, \{S_i : i \in I\} \text{ disjoint}, S_i \in \mathcal{S}\}.$

Theorem 2.4.1 First Extension Theorem

Suppose S is a semialgrbra of subsets of Ω and $P : S \mapsto [0, 1]$ is σ -additive on S and satisfies $P(\Omega) = 1$. There is a unique extension P' of P to $\mathcal{A}(S)$, defined by

$$P'(\cup_{i\in I}S_i)=\sum_{i\in I}P(S_i),$$

which is a probability measure on $\mathcal{A}(\mathcal{S})$; that is $P'(\Omega) = 1$ and $P' \ge 0$ is σ -additive on $\mathcal{A}(\mathcal{S})$.

Proof of First Extension Theorem

Obviously P' is an extension of P from S to $\mathcal{A}(S)$. Taking I to be a singleton index set, P'(S) = P(S) for $S \in S$.

1. <u>Is *P'* defined unambiguously?</u> Suppose $A = \bigcup_{i \in J} S_i = \bigcup_{j \in J} S_j$,

$$\sum_{i \in I} P(S_i) = \sum_{i \in I} P(S_i \cap A) = \sum_{i \in I} P(S_i \cap \{\cup_{j \in J} S_j\})$$
$$= \sum_{i \in I} P(\cup_{j \in J} \{S_i \cap S_j\}) = \sum_{i \in I} \sum_{j \in J} P(S_i \cap S_j)$$
$$= \sum_{i \in J} \sum_{i \in I} P(S_j \cap S_i) = \sum_{i \in J} P(S_j).$$

Proof of First Extension Theorem

2. Is $P' \sigma$ -additive on $\mathcal{A}(S)$? Known P is σ -additive on S. Suppose for $i \ge 1$, $A_i = \sum_{i \in J_i} S_{ij} \in \mathcal{A}(S)$ for some $S_{ij} \in S$ are mutually disjoint (thus $\{S_{ij} : i, j\}$ are mutually disjoint) and

 $A = \cup_{i=1}^{\infty} A_i = \cup_{i=1}^{\infty} \cup_{i \in J_i} S_{ij} \in \mathcal{A}(S).$

We need to show $P'(A) = \sum_{i=1}^{\infty} P'(A_i)$. Because $A \in \mathcal{A}(S)$, thus A itself can be written as

$$A = \bigcup_{k \in K} S_k, P'(A) = \sum_{k \in K} P(S_k)$$
 for some $S_k \in S$ and a finite K.

Note S is a π -system, meaning $S_k \cap S_{ij} \in S$. Because P is σ -additive on S, $P(A \cap S_{ij}) = P(\bigcup_{k \in K} (S_k \cap S_{ij})) = \sum_{k \in K} P(S_k \cap S_{ij})$. Again, $P(\bigcup_{j \in J_i} S_{ij}) = \sum_{j \in J_i} P(S_{ij}) = P'(A_i)$. Thus

$$\sum_{i=1}^{\infty} P'(A_i) = \sum_{i=1}^{\infty} \sum_{j \in J_i} P(S_{ij}) = \sum_{i=1}^{\infty} \sum_{j \in J_i} \sum_{k \in \mathcal{K}} P(S_k \cap S_{ij}) \underset{??}{=} \sum_{k \in \mathcal{K}} P(S_k).$$

Switching the order of those summations

$$\sum_{i=1}^{\infty} P'(A_i) = \sum_{k \in K} \sum_{i=1}^{\infty} \sum_{j \in J_i} P(S_k \cap S_{ij}) \underset{??}{=} \sum_{k \in K} P(S_k).$$

It suffices to show $\sum_{i=1}^{\infty} \sum_{j \in J_i} P(S_k \cap S_{ij}) = P(S_k)$. Now play the trick $S_k = S_k \cap A = S_k \cap (\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} (S_k \cap A_i) = \bigcup_{i=1}^{\infty} \bigcup_{j \in J_i} (S_k \cap S_{ij})$. We see that $S_k \in S$ is a countable union of disjoint sets $S_k \cap S_{ij}$ in S. Thus, by the σ -additivity of P on S, we have $P(S_k) = \sum_{i=1}^{\infty} \sum_{j \in J_i} P(S_k \cap S_{ij})$ which completes the proof. 3. <u>Is P' unique?</u> Suppose there two P'_1 and P'_2 σ -additive extensions of P from S to $\mathcal{A}(S)$, then for any

 $A = \cup_{i \in I} S_i \in \mathcal{A}(S),$

by the $\sigma\text{-additivity, we have}$

$$P_1'(A) = \sum_{i \in I} P(\mathcal{S}_i) = P_2'(A).$$

Second Extension Theorem

 $\begin{array}{c} \mathsf{Semi-algebra} \to \mathsf{Algebra} \to \sigma\text{-algebra}.\\ \mathcal{S} \to \underbrace{\mathcal{A}(\mathcal{S}) \to \sigma\text{-algebra}.}_{\mathsf{Second Extension Theorem}}\end{array}$

Theorem 2.4.2 Second Extension Theorem

A probability measure P defined on an algebra \mathcal{A} of subsets has a unique extension to a probability measure on $\sigma(\mathcal{A})$.

The proof is (very long) broken into 3 parts:

- ▶ Part I: extend *P* to a σ -additive function Π on a class $\mathcal{G} \supset \mathcal{A}$.
- ▶ Part II: extend Π to a set function Π^* on a class $\mathcal{D} \supset \sigma(\mathcal{A})$.
- ▶ Part III: restrict Π^* to $\sigma(\mathcal{A})$ yielding the desired extension.

We begin by defining the class \mathcal{G} :

$$\mathcal{G} = \left\{ \bigcup_{j=1}^{\infty} A_j : A_j \in \mathcal{A} \right\}$$
$$= \left\{ \lim_{n \to \infty} B_n : B_n \in \mathcal{A}, B_n \subset B_{n+1} \forall n \right\}.$$

That is \mathcal{G} is the class of unions of countable collections of sets in \mathcal{A} . or equivalently, since \mathcal{A} is an algebra, \mathcal{G} is the class of non-decreasing limits of elements of \mathcal{A} (think $B_n = \bigcup_{i=1}^n A_i$). Of course, $\mathcal{A} \subset \mathcal{G}$. In Section 2.2: Every σ -algebra is a monotone class; An algebra is a σ -algebra iff it is a monotone class.

Now we define $\Pi : \mathcal{G} \mapsto [0, 1]$ by: if $G = \lim_{n \to \infty} B_n \in \mathcal{G}$,

$$\Pi(G) = \lim_{n \to \infty} P(B_n).$$

Because P is σ -additive on A, $\{P(B_n)\}$ is an increasing real sequence in [0, 1], thus $\Pi(G) = \lim_{n \to \infty} P(B_n)$ exists in [0, 1].

Furthermore, we need to check if $G = \lim_{n \to \infty} B_n = \lim_{n \to \infty} B'_n$ where both $B_n \uparrow$ and $B'_n \uparrow$ in \mathcal{A} , whether

$$\Pi(G) = \lim_{n \to \infty} P(B_n) = \lim_{n \to \infty} P(B'_n).$$

For a fixed m, $B'_n \supset (B_m \cap B'_n)$ and $\{B_m \cap B'_n\}$ is an increasing sequence of sets, thus $\lim_{n\to\infty} P(B'_n) \ge \lim_{n\to\infty} P(B_m \cap B'_n)$. Because $B_m \cap B'_n \to B_m$ as $n \to \infty$, by the continuity (a consequence of being σ -additive) of P, we have $\lim_{n\to\infty} P(B_m \cap B'_n) = P(B_m)$. Therefore $\lim_{n\to\infty} P(B'_n) \ge \lim_{n\to\infty} P(B_m \cap B'_n) \ge P(B_m), \forall m$. Now take m to infinity, we have

$$\lim_{n\to\infty} P(B'_n) \geq \lim_{m\to\infty} P(B_m) = \lim_{n\to\infty} P(B_n).$$

Similarly, we have $\lim_{n\to\infty} P(B_n) \ge \lim_{n\to\infty} P(B'_n)$. Thus, $\lim_{n\to\infty} P(B_n) = \lim_{n\to\infty} P(B'_n)$.

Obviously, $\Pi(A) = P(A)$ for $A \in \mathcal{A}$ (take $B_n = A$). Therefore, we have created an extension Π of P from \mathcal{A} to $\mathcal{G} \subset \mathcal{A}$.

Is Π a σ -additive extension of *P*? We answer this question by exploring the properties of Π and \mathcal{G} .

Property 1

 Π is an extension of *P* from \mathcal{A} to \mathcal{G} .

Proof of Property 1: $\emptyset \in \mathcal{G}, \ \Pi(\emptyset) = 0, \ \Omega \in \mathcal{G}, \ \Pi(\Omega) = 1, \ \text{and for } G \in \mathcal{G}, \ 0 \le \Pi(G) \le 1.$ More generally, we have $\mathcal{A} \subset \mathcal{G}$ and $\Pi(A) = P(A)$ for $A \in \mathcal{A}$; i.e., $\Pi|_{\mathcal{A}} = P$.

Property 2: Π is additive on \mathcal{G} . If $G_i \in \mathcal{G}$ for i = 1, 2 then $G_1 \cup G_2 \in \mathcal{G}$ and $G_1 \cap G_2 \in \mathcal{G}$, and

 $\Pi(G_1\cup G_2)+\Pi(G_1\cap G_2)=\Pi(G_1)+\Pi(G_2).$

<u>Proof of Property 2:</u> By the definition of \mathcal{G} , we have $\mathcal{A} \ni B_{n1} \uparrow G_1$ and $\mathcal{A} \ni B_{n2} \uparrow G_2$. Since \mathcal{A} is an algebra, we have $\mathcal{A} \ni B_{n1} \cup B_{n2} \uparrow$ $G_1 \cup G_2 \in \mathcal{G}$ and $\mathcal{A} \ni B_{n1} \cap B_{n2} \uparrow G_1 \cap G_2 \in \mathcal{G}$. Further, because Pis σ -additive on \mathcal{A} , we have

 $P(B_{n1} \cup B_{n2}) + P(B_{n1} \cap B_{n2}) = P(B_{n1}) + P(B_{n2})$

holds for all *n*. Taking $n \to \infty$, we proved Property 2.

Property 3: Π is monotone on \mathcal{G} . If $G_i \in \mathcal{G}$ for i = 1, 2 and $G_1 \subset G_2$, then

 $\Pi(G_1) \leq \Pi(G_2).$

Proof of Property 3: (Similarly to Slide 22) By the definition of \mathcal{G} , we have $\mathcal{A} \ni B_{ni} \uparrow G_i$ for i = 1, 2 and $\bigcup_{n=1}^{\infty} B_{n1} = G_1 \subset G_2 = \bigcup_{n=1}^{\infty} B_{n2}$. For a fixed $m, B_{n2} \supset (B_{m1} \cap B_{n2})$ and $\{B_{m1} \cap B_{n2}\}$ is an increasing sequence of sets, thus $\lim_{n\to\infty} P(B_{n2}) \ge \lim_{n\to\infty} P(B_{m1} \cap B_{n2})$. Because $B_{m1} \cap B_{n2} \to B_{m1}$ as $n \to \infty$, by the continuity (a consequence of being σ -additive) of P, we have $\lim_{n\to\infty} P(B_{m1} \cap B_{n2}) = P(B_{m1})$. Therefore $\lim_{n\to\infty} P(B_{n2}) \ge \lim_{n\to\infty} P(B_{m1} \cap B_{n2}) \ge P(B_{m1})$ for every m. Now take m to infinity, we have

 $\Pi(G_2) = \lim_{n \to \infty} P(B_{n2}) \ge \lim_{m \to \infty} P(B_{m1}) = \Pi(G_1).$

Property 4: \mathcal{G} is closed under monotone limits and Π is monotonely continuous on \mathcal{G} .

If $G_n \in \mathcal{G}$ and $G_n \uparrow G$, then $G \in \mathcal{G}$ and $\Pi(G) = \lim_{n \to \infty} \Pi(G_n)$.

Proof of Property 4: For each *n*, we have $\mathcal{A} \ni B_{m,n} \uparrow G_n$. Now define $D_m = \bigcup_{n=1}^m B_{m,n}$. Since \mathcal{A} is closed under finite unions, $D_m \in \mathcal{A}$. We show $D_m \uparrow G$. It is easy to see that $\{D_m\}$ is monotone: $D_m = \bigcup_{n=1}^m B_{m,n} \subset$ $\cup_{n=1}^{m} B_{m+1,n} \subset \cup_{n=1}^{m+1} B_{m+1,n} = D_{m+1}.$ If $n \leq m$, we also have $B_{m,n} \subset D_m = \bigcup_{i=1}^m B_{m,i} \subset \bigcup_{i=1}^m G_i = G_m$. Taking limits on *m*, we have for any n > 1, $G_n = \lim_{m \to \infty} B_{m,n} \subset \lim_{m \to \infty} D_m \subset \lim_{m \to \infty} G_m = G.$ Now taking limits on *n* yields $G = \lim_{n \to \infty} G_n \subset \lim_{m \to \infty} D_m \subset G$. Thus $D_m \uparrow G$ and proves $G \in \mathcal{G}$. Furthermore, by the definition of Π , we have $\Pi(G) = \lim_{n \to \infty} \Pi(D_m)$.

It remains to show $\Pi(G_n) \uparrow \Pi(G)$. By the monotonicity of Π on \mathcal{G} ,

 $\Pi(B_{m,n}) \leq \Pi(D_m) \leq \Pi(G_m).$

Let $m \to \infty$, $B_{m,n} \uparrow G_n$,

 $\Pi(G_n) = \lim_{m \to \infty} \Pi(B_{m,n}) \le \lim_{m \to \infty} \Pi(D_m) \le \lim_{m \to \infty} \Pi(G_m), \forall n$

Let $n \to \infty$,

$$\lim_{n\to\infty}\Pi(G_n)\leq \lim_{m\to\infty}\Pi(D_m)\leq \lim_{m\to\infty}\Pi(G_m).$$

Therefore

$$\lim_{n\to\infty}\Pi(G_n)=\lim_{m\to\infty}\Pi(D_m)=\Pi(G).$$

Property 5: Π is σ -additive on \mathcal{G} .

If $\{A_i : i \ge 1\}$ is a disjoint sequence of sets in \mathcal{G} , by Property 2, we have $G_n = \bigcup_{i=1}^n A_i \in \mathcal{G}$, by Property 4, we have $\bigcup_{i=1}^\infty A_i = \lim_{n \to \infty} G_n \in \mathcal{G}$ and

$$\Pi(\cup_{i=1}^{\infty}A_i) = \Pi(\lim_{n\to\infty}G_n) = \lim_{n\to\infty}\Pi(G_n)$$
$$= \lim_{n\to\infty}\sum_{i=1}^{n}\Pi(A_i) = \sum_{i=1}^{\infty}\Pi(A_i).$$

Part I has extended \mathcal{P} to a σ -additive Π from the algebra \mathcal{A} to the monotone class

$$\mathcal{G} = \{\lim_{n\to\infty} B_n : B_n \in \mathcal{A}, B_n \subset B_{n+1}, \forall n\}.$$

Part II extends Π to a set function Π^* on the power set $\mathcal{P}(\Omega)$ (the largest σ -algebra on Ω) and finally show that the restriction of Π^* to a certain subclass \mathcal{D} of $\mathcal{P}(\Omega)$ can yield the desired extension of P.

We define $\Pi^* : \mathcal{P}(\Omega) \mapsto [0,1]$ by

 $\forall A \in \mathcal{P}(\Omega) : \Pi^*(A) = \inf\{\Pi(G) : A \subset G \in \mathcal{G}\},\$

so $\Pi^*(A)$ is the least upper bound of values of Π on sets $G \in \mathcal{G}$ containing A.

We now consider properties of Π^* :

Property 1.

We have on \mathcal{G} :

 $\Pi^*|_{\mathcal{G}}=\Pi$

and $0 \leq \Pi^*(A) \leq 1$ for any $A \in \mathcal{P}(\Omega)$.

Proof of Property 1:

For $A \in \mathcal{G}$, Then for any $\mathcal{G} \ni G \supset A$, we have $\Pi(G) \ge \Pi(A)$. Known $A \subset A$, thus $\Pi^*(A) = \inf\{\Pi(G) : A \subset G \in \mathcal{G}\} = \Pi(A)$. In particular, we have $\Pi^*(\Omega) = \Pi(\Omega) = 1$ and $\Pi^*(\emptyset) = \Pi(\emptyset) = 0$.

Property 2. For $A_1, A_2 \in \mathcal{P}(\Omega)$, $\Pi^*(A_1 \cup A_2) + \Pi^*(A_1 \cap A_2) < \Pi^*(A_1) + \Pi^*(A_2)$ and consequently $1 = \Pi^*(\Omega) \leq \Pi^*(A) + \Pi^*(A^c)$. Proof of Property 2: $\forall \epsilon > 0$, find $G_i \in \mathcal{G}$ such that $G_i \supset A_i$ and $\Pi^*(A_i) + \epsilon/2 > \Pi(G_i).$ Thus

 $\begin{aligned} \Pi^*(A_1) + \Pi^*(A_2) + \epsilon &\geq \Pi(G_1) + \Pi(G_2) = \Pi(G_1 \cup G_2) + \Pi(G_1 \cap G_2) \\ &\geq \Pi^*(A_1 \cup A_2) + \Pi^*(A_1 \cap A_2). \end{aligned}$

Property 3. Π^* is monotone on $\mathcal{P}(\Omega)$.

Proof of Property 3:

This follows the fact that Π is monotone on \mathcal{G} . For $A_1 \subset A_2 \in \mathcal{P}(\Omega)$,

 $\begin{aligned} \Pi^*(A_1) &= \inf\{\Pi(G_1) : A_1 \subset G_1 \in \mathcal{G}\} \\ &\leq \inf\{\Pi(G_2) : A_1 \subset A_2 \subset G_2 \in \mathcal{G}\} = \Pi^*(A_2). \end{aligned}$

Property 4.

 Π^* is sequentially monotone continuous on $\mathcal{P}(\Omega)$ in the sense that if $A_n \uparrow A$, then $\Pi^*(A_n) \uparrow \Pi^*(A)$.

Proof of Property 4:

Fix $\epsilon > 0$, for each $n \ge 1$, find $G_n \in \mathcal{G}$ such that $A_n \subset G_n$ and $\Pi^*(A_n) + \epsilon/2^n \ge \Pi(G_n)$. Define $G'_n = \bigcup_{m=1}^n G_m$. Since \mathcal{G} is closed under finite unions $G'_n \in \mathcal{G}$ and G'_n is obviously non-decreasing. We claim for all $n \ge 1$,

$$\Pi^*(A_n) + \epsilon \sum_{i=1}^n 2^{-i} \ge \Pi(G'_n).$$

Proof of this claim is by induction. It certainly holds for n = 1. Suppose it holds for n, we prove it also holds for n + 1.

Proof of Property 4:
We have
$$A_n \subset G_n \subset G'_n$$
 and $A_n \subset A_{n+1} \subset G_{n+1}$, and consequently
 $A_n \subset G'_n$ and $A_n \subset G_{n+1}$. So $A_n \subset G'_n \cap G_{n+1} \in \mathcal{G}$. Thus
 $\Pi(G'_{n+1}) = \Pi(G'_n \cup G_{n+1}) = \Pi(G'_n) + \Pi(G_{n+1}) - \Pi(G'_n \cap G_{n+1})$
 $\leq \Pi^*(A_n) + \epsilon \sum_{i=1}^n 2^{-i} + \Pi^*(A_{n+1}) + \epsilon 2^{-n-1} - \Pi^*(A_n)$
 $= \Pi^*(A_{n+1}) + \epsilon \sum_{i=1}^{n+1} 2^{-i}.$

This finishes the proof of the claim. Now in the claim, we let $n \to \infty$, by monotonicity of $\{\Pi^*(A_n)\}$ and $\{\Pi(G'_n)\}$ (limits exist),

$$\lim_{n\to\infty}\Pi^*(A_n)+\epsilon\geq\lim_{n\to\infty}\Pi(G'_n)=\Pi(\cup_{j=1}^{\infty}G'_j).$$

Proof of Property 4:

Since

$$A=\lim_{n\to\infty}A_n\subset \cup_{j=1}^{\infty}G'_j\in \mathcal{G}.$$

We conclude (let $\epsilon \rightarrow 0$),

$$\lim_{n\to\infty}\Pi^*(A_n)\geq\Pi(\cup_{j=1}^\infty G'_j)\geq\Pi^*(A).$$

On the other hand, by Property 3, we have $\Pi^*(A_n)$ and $\Pi^*(A_n) \leq \Pi^*(A)$. Thus $\lim_{n\to\infty} \Pi^*(A_n) \leq \Pi^*(A)$ which proves

 $\lim_{n\to\infty}\Pi^*(A_n)=\Pi^*(A).$

Did we prove Π^* is σ -additive on $\mathcal{P}(\Omega)$? No, because of the \leq sign in Property 2 on Slide 31, and also because $1 = \Pi^*(\Omega) \leq \Pi^*(A) + \Pi^*(A^c)$.

So far, **Part I** has extended \mathcal{P} to a σ -additive Π from the algebra \mathcal{A} to the monotone class $\mathcal{G} = \{\lim_{n \to \infty} B_n : B_n \in \mathcal{A}, B_n \subset B_{n+1}, \forall n\}$. **Part II** extends Π to a set function Π^* (which might not be σ -additive) on the power set $\mathcal{P}(\Omega)$.

Part III: We now retract Π^* to a certain subclass \mathcal{D} of $\mathcal{P}(\Omega)$ and show that $\Pi^*|_{\mathcal{D}}$ is the desired extension of P from \mathcal{A} to $\sigma(\mathcal{A}) \subset \mathcal{D}$, where

$$\mathcal{D} = \{ D \in \mathcal{P}(\Omega) : \Pi^*(D) + \Pi^*(D^c) = 1 \}.$$

Obviously, $\mathcal{A} \subset \mathcal{D}$, because if $A \in \mathcal{A}$, then $\Pi^*(A) = \Pi(A) = 1 - \Pi(A^c)$.

 $\mathcal{D} = \{ D \in \mathcal{P}(\Omega) : \Pi^*(D) + \Pi^*(D^c) = 1 \}.$

Lemma 2.4.3

The class \mathcal{D} has the following properties:

- 1. \mathcal{D} is a σ -field.
- 2. $\Pi^*|_{\mathcal{D}}$ is a probability measure on (Ω, \mathcal{D}) .

If Lemma 2.4.3 is true, we know that $\mathcal{A} \subset \mathcal{D}$ and thus $\sigma(\mathcal{A}) \subset \mathcal{D}$. The restriction $\Pi^*|_{\sigma(\mathcal{A})}$ is the desired extension of P on \mathcal{A} to a probability measure on $\sigma(\mathcal{A})$.

Proof of Lemma 2.4.3

We first show that \mathcal{D} is an algebra. Obviously Ω and \emptyset are in \mathcal{D} , and obviously \mathcal{D} is closed under complementation. Next we show \mathcal{D} is closed under finite unions and finite intersections. For $D_1, D_2 \in \mathcal{D}$, from Property 2 of Π^* on $\mathcal{P}(\Omega)$:

 $egin{aligned} \Pi^*(D_1\cup D_2)+\Pi^*(D_1\cap D_2)&\leq \Pi^*(D_1)+\Pi^*(D_2)\ \Pi^*(D_1^c\cup D_2^c)+\Pi^*(D_1^c\cap D_2^c)&\leq \Pi^*(D_1^c)+\Pi^*(D_2^c). \end{aligned}$

Adding them together yields

 $2 \leq \underbrace{\Pi^*(D_1 \cup D_2) + \Pi^*(D_1^c \cap D_2^c)}_{=1} + \underbrace{\Pi^*(D_1 \cap D_2) + \Pi^*(D_1^c \cup D_2^c)}_{=1} \leq 2.$

This completes the proof of \mathcal{D} being an algebra. In addition, we must have $\Pi^*(D_1 \cup D_2) + \Pi^*(D_1 \cap D_2) = \Pi^*(D_1) + \Pi^*(D_2)$ for any D_1 and D_2 in \mathcal{D} . Thus Π^* is finitely additive on \mathcal{D} .

Proof of Lemma 2.4.3 We now show \mathcal{D} is a σ -algebra. Recall that in Section 2.2: An algebra is a σ -algebra iff it is a monotone class. It suffices to show \mathcal{D} is a monotone class. Because of the closeness under complementation, it is enough to focus on monotone increasing; i.e., if $D_n \in \mathcal{D}$, $D_n \uparrow D$ implies $D \in \mathcal{D}$. We know $\mathcal{D} \in \mathcal{P}(\Omega)$. By Properties 3 and 2 of Π^* on $\mathcal{P}(\Omega)$, $\lim_{n\to\infty} \Pi^*(D_n) = \Pi^*(D)$, and $1 < \Pi^*(D) + \Pi^*(D^c)$. $\Pi^*(D^c) = \Pi^*((\bigcup_{n=1}^{\infty} D_n)^c) = \Pi^*(\bigcap_{n=1}^{\infty} D_n^c) < \Pi^*(D_m^c)$ for any m > 1. Thus $1 < \Pi^*(D) + \Pi^*(D^c) < \Pi^*(D) + \Pi^*(D_m^c) =$ $\lim_{n\to\infty} \Pi^*(D_n) + \Pi^*(D_m^c)$. We know $\{\Pi^*(D_m^c)\}$ is a bounded monotone non-increasing sequence. Its limit exists. Thus taking mto infinity.

 $1 \leq \Pi^*(D) + \Pi^*(D^c) \leq \lim_{n \to \infty} \Pi^*(D_n) + \lim_{m \to \infty} \Pi^*(D_m^c) = \lim_{n \to \infty} \{\Pi^*(D_n) + \Pi^*(D_n^c)\} = 1.$

Proof of Lemma 2.4.3

Finally, we show $\Pi^*|_{\mathcal{D}}$ is σ -additive. Let $\{D_n\}$ be a sequence of disjoint sets in \mathcal{D} . Because Π^* is continuous with respect to non-decreasing sequences (Property 4), we have

$$\Pi^*(\bigcup_{n=1}^{\infty} D_n) = \Pi^*(\lim_{n\to\infty} \bigcup_{i=1}^n D_i) = \lim_{n\to\infty} \Pi^*(\bigcup_{i=1}^n D_i).$$

Because Π^* is finitely additive on \mathcal{D} , $\Pi^*(\cup_{i=1}^n D_i) = \sum_{i=1}^n \Pi^*(D_i)$, we have

$$\Pi^*(\cup_{n=1}^{\infty}D_n) = \lim_{n\to\infty}\Pi^*(\cup_{i=1}^nD_i) = \lim_{n\to\infty}\sum_{i=1}^n\Pi^*(D_i) = \sum_{i=1}^{\infty}\Pi^*(D_i).$$

We have finished the proof of Lemma 2.4.3. So far, we have shown that $\Pi^*|_{\sigma(\mathcal{A})}$ is the desired extension of P on \mathcal{A} to a probability measure on $\sigma(\mathcal{A})$. Did we finish the proof of the Second Extension Theorem? No, we need to show uniqueness.

But it is trivial because of Corollary 2.2.1: If P_1 , P_2 are two probability measures on (Ω, \mathcal{B}) and if \mathcal{P} is a π -system such that $\forall A \in \mathcal{P}$, $P_1(A) = P_2(A)$, then $\forall B \in \sigma(\mathcal{P})$, $P_1(B) = P_2(B)$.

If we have two distinct extensions from $\mathcal{A}(\mathcal{S})$ to $\sigma(\mathcal{A}(\mathcal{S}))$, then they must be the same on $\sigma(\mathcal{A}(\mathcal{S}))$ because $\mathcal{A}(\mathcal{S})$ is a π -system.

Summary

First Extension Theorem: uniquely,

Second Extension Theorem: uniquely,

