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Introduction

We will precisely define a random variable. A random variable is
a real valued function with domain Ω which has an extra property
called measurability that allows us to make probability statements
about the random variable.
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3.1 Inverse Maps

Suppose Ω and Ω′ are two sets. Frequently, Ω′ = R. Suppose

X : Ω 7→ Ω′

meaning X is a function with domain Ω and range Ω′. Then X
determines a function

X−1 : P(Ω′)→ P(Ω)

defined by
X−1(A′) = {ω ∈ Ω : X (ω) ∈ A′}

for A′ ⊂ Ω′.

For example, Ω = {hh, ht, th, tt} collects all possible results of flip-
ping a coin twice, X denotes the number of heads which is a map
from Ω to Ω′ = {0, 1, 2}, where X (hh) = 2, X (ht) = X (th) = 1,
and X (tt) = 0.
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3.1 Inverse Maps

The X−1 preserves complementation, union, and intersections as the
following properties show. For A′ ⊂ Ω′, A′t ⊂ Ω′, and T an arbitrary
index set, we have
(i) X−1(∅) = ∅ and X−1(Ω′) = Ω.
(ii) X−1(A′c) = {X−1(A′)}c or X−1{Ω′ \ A′} = Ω \ X−1(A′).
(iii) X−1(∪t∈TA′t) = ∪t∈TX−1(A′t) and

X−1(∩t∈TA′t) = ∩t∈TX−1(A′t).
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3.1 Inverse Maps

Notation: If C ′ ∈ P(Ω′) is a class of subsets of Ω′, define

X−1(C′) = {X−1(C ′) : C ′ ∈ C′}.

Proposition 3.1.1
If B′ is a σ-algebra of subsets of Ω′, then X−1(B′) is a σ-algebra of
subsets of Ω.

Proposition 3.1.2
If C′ is a class of subsets of Ω′ then

X−1(σ(C′)) = σ(X−1(C′))

that is, the inverse image of the σ-algebra generated by C′ in Ω′ is
the same as the σ-algebra generated in Ω by the inverse image.
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3.1 Inverse Maps

Proof of Proposition 3.1.2
From Proposition 3.1.1, X−1(σ(C′)) is a σ-algebra, and since
σ(C′) ⊃ C′, X−1(σ(C′)) ⊃ X−1(C′). Therefore
X−1(σ(C′)) ⊃ σ(X−1(C′)). Conversely, define

F ′ = {B ′ ∈ P(Ω′) : X−1(B ′) ∈ σ(X−1(C′))} ⊃ C′.

Then F ′ is a σ-algebra since
1. Ω′ ∈ F ′, since X−1(Ω′) = Ω ∈ σ(X−1(C′)).
2. A′ ∈ F ′ implies A′c ∈ F ′ since X−1(A′c) = (X−1(A′))c .
3. B ′n ∈ F ′ implies ∪nB ′n ∈ F ′ since

X−1(∪nB ′n) = ∪nX−1(B ′n) ∈ σ(X−1(C′)).
By definition, X−1(F ′) ⊂ σ(X−1(C′)) and C′ ⊂ F ′. Because F ′ is
an algebra, σ(C′) ⊂ F ′. Thus X−1(σ(C′)) ⊂ X−1(F ′). Done.
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3.2 Measurable Maps, Random Elements, Induced
Probability Measures

A pair (Ω,B) consisting of a set and a σ-field of subsets is called
a measurable space. If (Ω,B) and (Ω′,B′) are two measurable
spaces, then a map X : Ω→ Ω′ is called measurable if

X−1(B′) ⊂ B.

X is also called a random element of Ω′. We will use the notation
that

X ∈ B/B′ or X : (Ω,B) 7→ (Ω′,B′).

A special case occurs when (Ω′,B′) = (R,B(R)). In this case, X
is called a random variable. (e.g., X = IA is a random variable iff
A ∈ B).
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3.2 Measurable Maps, Random Elements, Induced
Probability Measures

Let (Ω,B,P) be a probability space and suppose

X : (Ω,B) 7→ (Ω′,B′)

is measurable. Define for A′ ⊂ Ω′,

[X ∈ A′] = X−1(A′) = {ω : X (ω) ∈ A′}.

Define the set function P ◦ X−1 on B′ by

P ◦ X−1(A′) = P(X−1(A′)),

P ◦ X−1 is a probability on (Ω′,B′) called the induced probability
on the distribution of X . Usually, we write

P ◦ X−1(A) = P[X ∈ A′].

If X is a random variable, then P ◦ X−1 is the measure induced on
R by the distribution function P ◦ X−1(−∞, x ] = P[X ≤ x ].
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Example

Consider the experiment of tossing two die and let

Ω = {(i , j) : 1 ≤ i , j ≤ 6}

and Define X : Ω 7→ {2, 3, . . . , 12} = Ω′ by X ((i , j)) = i + j . Then

X−1({4}) = [X ∈ {4}] = [X = 4] = {(1, 3), (3, 1), (2, 2)} ⊂ Ω

and

X−1({2, 3}) = [X ∈ {2, 3}] = {(1, 1), (1, 2), (2, 1)} ⊂ Ω.

The distribution of X is the probability measure on Ω′ specified by

P ◦ X−1({i}) = P[X = i ], i ∈ Ω′.
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3.2 Measurable Maps, Random Elements, Induced
Probability Measures

We now verify P ◦ X−1 is a probability measure on B′:
(a) P ◦ X−1(Ω′) = P(Ω) = 1
(b) P ◦ X−1(A′) = P(X−1(A′)) ≥ 0
(c) if {A′n} are disjoint in B′, then {X−1(A′n)} are disjoint in B,

P ◦ X−1(∪nA′n) = P(X−1(∪nA′n)) = P(∪nX−1(A′n))

=
∑
n

P(X−1(A′n)) =
∑
n

P ◦ X−1(A′n).

Remark: When X is a random element of B′, we can make probability
statements about X , since X−1(B ′) ∈ B and the probability measure
P knows how to assign probabilities to elements of B. The concept
of measurability is logically necessary in order to be able to assign
probabilities to sets determined by random elements.

10 / 25



3.2 Measurable Maps, Random Elements, Induced
Probability Measures

The definition of measurability makes it seem like we have to check
X−1(A′) ∈ B for every A′ ∈ B′; that is X−1(B′) ⊂ B. In fact, it
usually suffices to check that X−1 is well behaved on a smaller class
than B′.

Proposition 3.2.1 (Test for measurability)
Suppose X : Ω 7→ ω′ where (Ω,B) and (Ω′,B′) are two measurable
spaces. Suppose C′ generates B′; that

B′ = σ(C′).

Then X is measurable iff

X−1(C′) ⊂ B.
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3.2 Measurable Maps, Random Elements, Induced
Probability Measures

Proof of Proposition 3.2.1. if X−1(C′) ⊂ B, then by minimality
σ(X−1(C′)) ⊂ B. However we get

X−1(σ(C′)) = X−1(B′) = σ(X−1(C′)) ⊂ B,

which is the definition of measurability.

Corollary 3.2.1 (Special case of random variables)
The real valued function X : Ω 7→ R is a random variable iff
X−1((−∞, x ]) = [X ≤ x ] ∈ B, for x ∈ R.

Proof of Corollary 3.2.1
This follows directly from

σ((−∞, x ], x ∈ R) = B(R).
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3.2.1 Composition

Proposition 3.2.2 (Composition) (HW 3-1: prove this
proposition)
Let X1, X2 be two measurable maps X1 : (Ω1,B1) 7→ (Ω2,B2) and
X2 : (Ω2,B2) 7→ (Ω3,B3) where (Ωi ,Bi ), i = 1, 2, 3 are measurable
spaces. Define

X = X2 ◦ X1 : Ω1 7→ Ω3

by X (ω) = X2 ◦ X1(ω1) = X2(X1(ω1)), ω1 ∈ Ω1. Then

X = X2 ◦ X1 ∈ B1/B3.
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3.2.2 Random Elements of Metric Spaces

The most common use of the name random elements is when the
range is a metric space. Let (S , d) be a metric space with metric d
so that d : S × S 7→ R+ satisfies
(i) d(x , y) ≥ 0.
(ii) d(x , y) = 0 iff x = y .
(iii) d(x , y) = d(y , x).
(iv) d(x , z) ≤ d(x , y) + d(y , z).
Let O be the class of open subsets of S . Define the Borel σ-algebra
S = σ(O). If X : (Ω,B) 7→ (S ,S), that is X ∈ B/S, then call X a
random element of S .
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3.2.2 Random Elements of Metric Spaces

Noteworthy Examples

1. S = R, d(x , y) = |x − y |, a random element X of S is called a
random variable.

2. S = Rk , d(xxx , yyy) = ‖xxx − yyy‖2 (Euclidean norm), a random
element XXX = (X1, . . . ,Xk) of S is called a random vector.

3. S = R∞,

d(xxx , yyy) =
∞∑
k=1

2−k
( ∑k

i=1 |xi − yi |
1 +

∑k
i=1 |xi − yi |

)
,

a random element XXX = (X1,X2, . . . ) of S is called a random
sequence.
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3.2.2 Random Elements of Metric Spaces

Noteworthy Examples (continued)

4. S = C [0,∞) be the set of all real valued continuous functions
with domain [0,∞). Define

‖x − y‖m = sup
0≤t≤m

|x(t)− y(t)|

and

d(x , y) =
∞∑

m=1

2−m
(
‖x − y‖m

1 + ‖x − y‖m

)
,

a random element X = X (·) of S is called a random
(continuous) function.
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3.2.3 Measurability and Continuity

Proposition 3.2.3
Suppose (Si , di ), i = 1, 2 are two metric spaces. Let the Borel
σ-algebra (generated by open sets) be Si , i = 1, 2. If X : S1 → S2
is continuous, then X is measurable: X ∈ S1/S2.

Proof
Let Oi be the class of open subsets of Si , i = 1, 2. If X is
continuous, then inverse images of open sets are open, which
means that X−1(O2) ⊂ O1 ⊂ σ(O1) = S1. So X ∈ S1/S2 by
Proposition 3.2.1.
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3.2.3 Measurability and Continuity

Corollary 3.2.2
If XXX = (X1, . . . ,Xk) is a random vector, and

g : Rk 7→ R, g ∈ B(Rk)/B(R),

then from Proposition 3.2.2, g(XXX ) is a random variable. In
particular, if g is continuous, then g is measurable and the result
holds.
We often consider g(x1, . . . , xk) =

∑k
i=1 xi , k

−1∑k
i=1 xi ,

∑k
i=1 xi ,∨k

i=1 xi ,
∏k

i=1 xi ,
∑k

i=1 x
2
i , or xi (projection).
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3.2.3 Measurability and Continuity

Proposition 3.2.4
XXX = (X1, . . . ,Xk) is a random vector, that is a measurable map
from (Ω,B) 7→ (Rk ,B(Rk)), iff Xi is a random variable for each
i = 1, . . . , k .

Proposition 3.2.5
XXX = (X1,X2, . . . ) is a random sequence iff Xi is a random variable
for each i . Furthermore, iff (X1, . . . ,Xk) is a random vector for any
k .
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3.2.4 Measurability and Limits

Proposition 3.2.6
Let X1,X2, . . . be random variables defined on (Ω,B). Then
(i)
∨

n Xn and
∧

n Xn are random variables.
(ii) lim infn→∞ Xn and lim supn→∞ Xn are random variables.
(iii) If limn→∞ Xn(ω) exists for all ω, then limn→∞ Xn is a random

variable.
(iv) The set on which {Xn} has a limit is measurable; that is
{ω : limn→∞ Xn(ω) exits} ∈ B.

(i) [
∨

n Xn ≤ x ] = ∩n[Xn ≤ x ] ∈ B, [
∧

n Xn ≤ x ] = ∪n[Xn ≤ x ] ∈ B.
(ii) lim infn→∞ Xn = supn≥1 infk≥n Xk , then use (i).
(iii) If limn→∞ Xn(ω) exists for all ω, then [limn→∞ Xn ≤ x ] =
[lim infn→∞ Xn ≤ x ] ∈ B by (ii).
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3.2.4 Measurability and Limits

(iv) Let Q be the set of all rational real numbers so that Q is count-
able. We have

{ω : lim
n→∞

Xn(ω) exists}c

= {ω : lim inf
n→∞

Xn(ω) < lim sup
n→∞

Xn(ω)}

= ∪r∈Q
[

lim inf
n→∞

Xn ≤ r < lim sup
n→∞

Xn

]
= ∪r∈Q

[
lim inf
n→∞

Xn ≤ r
]
∩
[

lim sup
n→∞

Xn ≤ r

]c
∈ B

since [lim infn→∞ Xn ≤ r ] ∈ B, and [lim supn→∞ Xn ≤ r ] ∈ B.
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σ-Algebras Generated by Maps

Let X : (Ω,B) 7→ (R,B(R)) be a random variable. The σ-algebra
generated by X , denoted by σ(X ), is defined as

σ(X ) = X−1(B(R)) or equivalently {[X ∈ A] : A ∈ B(R)}.

This is the σ-algebra generated by information about X , which
is away of isolating that information in the probability space that
pertains to X .

More generally, suppose X : (Ω,B) 7→ (Ω′,B′). Then we define

σ(X ) = X−1(B′).

If F ⊂ B is a sub-σ-algebra of B, we say X is measurable with
respect to F , written, X ∈ F , if σ(X ) ⊂ F .
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σ-Algebras Generated by Maps

Extreme example: Let X (ω) = 810 for all ω. X can only be 810.
X−1({810}) = Ω. Therefore,

σ(X ) = {∅,Ω}.

Less extreme example: Let X (ω) = IA for some A ∈ B. X can
only take 0 or 1. X−1({0}) = Ac and X−1({1}) = A. Thus

σ(X ) = {∅,Ω,A,Ac}.

Useful example: Simple function. A random variable is simple if
it has a finite range. Suppose the range of X is {a1, . . . , ak}, where
the a’s are distinct. Then define

Ai = X−1({ai}) = [X = ai ].

Then {Ai : i = 1, . . . , k} partitions Ω, X =
∑k

i=1 ai IAi
, and

σ(X ) = σ(A1, . . . ,Ak) = {∪i∈T : T ⊂ {1, . . . , k}}.
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σ-Algebras Generated by Maps

In stochastic process theory, we frequently keep track of potential
information that can be revealed to us by observing the evolution
of a stochastic process by an increasing family of σ-algebras. If
{Xn : n ≥ 1} is a (discrete time) stochastic process, we may define

Bn = σ(X1, . . . ,Xn), n ≥ 1.

Thus, Bn ⊂ Bn+1 and we think Bn as the information potentially
available at time n. This is a way of cataloguing what information
is contained in the probability model.
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σ-Algebras Generated by Maps

Proposition 3.3.1
Suppose X is a random variable and C is a class of subsets of R,
such that σ(C) = R (e.g., C = {(−∞, x ] : x ∈ R}), then

σ(X ) = σ([X ∈ B] : B ∈ C).

Proof: We have

σ([X ∈ B],B ∈ C) = σ(X−1(B),B ∈ C)

= σ(X−1(C)) = X−1(σ(C))

= X−1(B(R)) = σ(X ).

Thus σ(X ) = ({[X ≤ t] : x ∈ R}).
(Other HW 3 problems: Section 3.4, Q1-2, Q4-5, Q8, Q11-12, Q14-
17, Q19)
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