# STAT 810 Probability Theory I 

Chapter 4: Independence

Dr. Dewei Wang<br>Associate Professor<br>Department of Statistics<br>University of South Carolina<br>deweiwang@stat.sc.edu

## Introduction

Independence is a basic property of events and random variables in a probability model. Its intuitive appeal stems from the easily envisioned property that the occurrence or non-occurrence of an event has no effect on our estimate of the probability that an independent event will or will not occur.

Despite the intuitive appeal, it is important to recognize that independence is a technical concept with a technical definition which must be checked with respect to a specific probability model. There are examples of dependent events which intuition insists must be independent, and examples of events which intuition insists cannot be independent but still satisfy the definition.

One really must check the technical definition to be sure.

### 4.1 Basic Definitions

Definition 4.1.1 Independence for two events
Suppose $(\Omega, \mathcal{B}, P)$ is a fixed probability space. Events $A, B \in \mathcal{B}$ are independent if

$$
P(A \cap B)=P(A) P(B)
$$

Definition 4.1.2 Independence of a finite number of events The events $A_{1}, \ldots, A_{n}(n \geq 2)$ are independent if

$$
P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right), \quad \text { fro all finite } I \subset\{1, \ldots, n\}
$$

Definition 4.1.3 Independent classes
Let $\mathcal{C}_{i} \subset \mathcal{B}, i=1, \ldots, n$. The classes $\mathcal{C}_{i}$ are independent, if for any choice $A_{1}, \ldots, A_{n}$ with $A_{i} \in \mathcal{C}_{i}, i=1, \ldots, n$, we have the events $A_{1}, \ldots, A_{n}$ independent events.

### 4.1 Basic Definitions

Theorem 4.1.1 (Basic Criterion)
If for each $i=1, \ldots, n, \mathcal{C}_{i}$ is a non-empty class of events satifying

1. $\mathcal{C}_{i}$ is a $\pi$-system
2. $\mathcal{C}_{i}, i=1, \ldots, n$, are independent, then $\sigma\left(\mathcal{C}_{1}\right), \ldots, \sigma\left(\mathcal{C}_{n}\right) \quad$ are independent.

Proof of this uses a Dynkin system ( $\lambda$-system). Recall that $\mathcal{L}$ is a Dynkin system if (1) $\Omega \in \mathcal{L}$; (2) $A \in \mathcal{L}$ imples $A^{c} \in \mathcal{L}$; (3) if $B_{n} \in \mathcal{L}$ are disjoint, $\cup_{n} B_{n} \in \mathcal{L}$. (A $\lambda$-system is a $\sigma$-algebra iff it is a $\pi$ system).
Dynkin's Theorem 2.2.2 If $\mathcal{P}$ is a $\pi$-system, $\mathcal{L}$ is a $\lambda$-system, and $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

### 4.1 Basic Definitions

Proof of Theorem 4.1.1: We only prove it for $n=2$, by induction it easily gets to $n>2$. Fix $A_{2} \in \mathcal{C}_{2}$. Let

$$
\mathcal{L}=\left\{A \in \mathcal{B}: P\left(A \cap A_{2}\right)=P(A) P\left(A_{2}\right)\right\} .
$$

We claim $\mathcal{L}$ is a $\lambda$-system:
(1) $\Omega \in \mathcal{L}$ is obvious.
(2) if $A \in \mathcal{L}$, we have $P\left(A^{c}\right) P\left(A_{2}\right)=P\left(A_{2}\right)(1-P(A))=$

$$
P\left(A_{2}\right)-P\left(A_{2} \cap A\right)=P\left(A_{2} \cap A^{c}\right) ; \text { i.e., } A^{c} \in \mathcal{L}
$$

(3) if $B_{n} \in \mathcal{L}$ are disjoint, $P\left(\left(\cup_{n} B_{n}\right) \cap A_{2}\right)=P\left(\cup_{n}\left(B_{n} \cap A_{2}\right)\right)=$

$$
\sum_{n} P\left(B_{n} \cap A_{2}\right)=\sum_{n} P\left(B_{n}\right) P\left(A_{2}\right)=P\left(\cup_{n} B_{n}\right) P\left(A_{2}\right) .
$$

Also $\mathcal{C}_{1} \subset L$. By Dynkin's Theorem, $\sigma\left(\mathcal{C}_{1}\right) \subset \mathcal{L}$. Thus $\sigma\left(\mathcal{C}_{1}\right)$ and $\mathcal{C}_{2}$ are independent. Then fix $A_{1} \in \sigma\left(\mathcal{C}_{1}\right)$ and define $\mathcal{L}=\{A \in \mathcal{B}$ : $\left.P\left(A \cap A_{1}\right)=P(A) P\left(A_{1}\right)\right\}$. It is easy to show $\sigma\left(\mathcal{C}_{2}\right)$ and $\sigma\left(\mathcal{C}_{1}\right)$ are independent.

### 4.1 Basic Definitions

Definition 4.1.4 Arbitrary number of independent classes Let $T$ be an arbitray index set. The classes $\mathcal{C}_{t}, t \in T$ are independent families if for any finite $I, I \subset T,\left\{C_{t}: t \in I\right\}$ are independent.

Corollary 4.1.1
If $\left\{\mathcal{C}_{t}: t \in T\right\}$ are non-empty $\pi$-systems that are independent. Then $\left\{\sigma\left(\mathcal{C}_{i}\right): t \in T\right\}$ are independent.

### 4.2 Independent Random Variables

Definition 4.2.1 Independent Random Variables $\left\{X_{t}: t \in T\right\}$ is an independent family of random variables if $\left\{\sigma\left(X_{t}\right): t \in T\right\}$ are independent $\sigma$-algebras.
Random variables are independent if their induced $\sigma$-algebras are independent.

We now give a criterion for independence of random variables in terms of distribution functions. For a family of random variables $\left\{X_{t}\right.$ : $t \in T\}$ indexed by a set $T$, the finite dimensional distribution functions are the family of multivariate distribution functions

$$
F_{J}\left(x_{t}, t \in J\right)=P\left[X_{t} \leq x_{t}, t \in J\right]
$$

for all finite subsets $J \subset T$.

### 4.2 Independent Random Variables

Theorem 4.2.1 Factorization Criterion
A family of random variables $\left\{X_{t}: t \in T\right\}$ indexed by a set $T$, is independent iff for all finite $J \subset T$

$$
\begin{equation*}
F_{J}\left(x_{t}, t \in J\right)=\prod_{t \in J} P\left[X_{t} \leq x_{t}\right], \quad \forall x_{t} \in \mathbb{R} \tag{1}
\end{equation*}
$$

Proof: By Definition 4.1.1, it suffices to show that for a finite index set $J$ that $\left\{X_{t}: t \in J\right\}$ are independent iff (1) holds. Define $\mathcal{C}_{t}=$ $\left\{\left[X_{t} \leq x\right]: x \in \mathbb{R}\right\}$. Then $\sigma\left(X_{t}\right)=\sigma\left(\mathcal{C}_{t}\right)$ and $\mathcal{C}_{t}$ is a $\pi$-system. (1) says $\left\{\mathcal{C}_{t}: t \in J\right\}$ is an independent family and therefore by the Basic Criterion 4.1.1, $\left\{\sigma\left(\mathcal{C}_{t}\right)=\sigma\left(X_{t}\right): t \in J\right\}$ are independent.

### 4.2 Independent Random Variables

Corollary 4.2.1
The finite collection of random variables $X_{1}, \ldots, X_{k}$ is independent iff

$$
P\left[X_{1} \leq x_{1}, \ldots, X_{k} \leq x_{k}\right]=\prod_{i=1}^{k} P\left[X_{i} \leq x_{i}\right]
$$

for all $x_{i} \in \mathbb{R}, i=1, \ldots, k$.
Corollary 4.2.2
The discrete random variables $X_{1}, \ldots, X_{k}$ with countable range $\mathcal{R}$ are independent iff

$$
P\left[X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right]=\prod_{i=1}^{k} P\left[X_{i}=x_{i}\right]
$$

for all $x_{i} \in \mathcal{R}, i=1, \ldots, k$.
Notation: $\perp: X \perp Y, A \perp B, A \perp \mathcal{C}$.

### 4.3.1 Records, Ranks, Renyi Theorem

Let $\left\{X_{n}: n \geq 1\right\}$ be iid with common continuous distribution function $F(x)$. The continuity of $F$ implies

$$
P\left[X_{i}=X_{j}\right]=0,
$$

so that if we define

$$
[\text { Ties }]=\cup_{i \neq j}\left[X_{i}=X_{j}\right]
$$

then

$$
P[\text { Ties }]=0 . \text { Why? }
$$

### 4.3.1 Records, Ranks, Renyi Theorem

Call $X_{n}$ a record of the sequence if

$$
X_{n} \geq \bigvee_{i=1}^{n-1} X_{i}
$$

and define

$$
A_{n}=\left[X_{n} \text { is a record }\right] .
$$

A result due to Renyi says that the events $\left\{A_{j}: j \geq 1\right\}$ are independent and

$$
P\left(A_{j}\right)=j^{-1}, \quad j \geq 2
$$

This is a special case of a result about relative ranks.

### 4.3.1 Records, Ranks, Renyi Theorem

Let $R_{n}$ be the relative rank of $X_{n}$ among $X_{1}, \ldots, X_{n}$ where $R_{n}=$ $\sum_{j=1}^{n} I_{\left[X_{j} \geq X_{n}\right]}$. So $R_{n}=1$ iff $X_{n}$ is a record, $R_{n}=2$ iff $X_{n}$ is the second largest of $X_{1}, \ldots, X_{n}$, and so on.
Theorem 4.3.1 Renyi Theorem
Assume $\left\{X_{n}: n \geq 1\right\}$ are iid with common continuous distribution function $F(x)$.
(a) $\left\{R_{n}: n \geq 1\right\}$ are independent and

$$
P\left[R_{n}=k\right]=\frac{1}{n}, \text { for } k=1, \ldots, n
$$

(b) $\left\{A_{n}: n \geq 1\right\}$ are independent and

$$
P\left(A_{n}\right)=\frac{1}{n}
$$

### 4.3.1 Records, Ranks, Renyi Theorem

Proof of Renyi Theorem: (b) comes from (a) since $A_{n}=\left[R_{n}=1\right]$. It suffices to show (a). There are $n$ ! orderings of $X_{1}, \ldots, X_{n}$. Because $X_{i}$ 's are iid, all possible orderings have the same probability $1 /(n!)$. Each realization of $R_{1}, \ldots, R_{n}$ uniquely determines an ordering. Thus $P\left[R_{1}=r_{1}, \ldots, R_{n}=r_{n}\right]=1 /(n!)$, for $r_{i} \in\{1, \ldots, i\}, i=1, \ldots, n$. Then

$$
P\left[R_{n}=r_{n}\right]=\sum_{r_{1}, \ldots, r_{n-1}} \frac{1}{n!} .
$$

Since $r_{i}$ ranges over $i$ values, the number of terms in the above sum is $(n-1)$ !. Thus $P\left[R_{n}=r_{n}\right]=1 / n$ for $n=1,2, \ldots$. Therefore $P\left[R_{1}=r_{1}, \ldots, R_{n}=r_{n}\right]=P\left[R_{1}=r_{1}\right] \cdots P\left[R_{n}=r_{n}\right]$.

### 4.3.2 Dyadic Expansions of Uniform Random Numbers

Consider

$$
(\Omega, \mathcal{B}, P)=((0,1], \mathcal{B}((0,1]), \lambda)
$$

where $\lambda$ is Lebesgue measure. We write $\omega \in(0,1]$ using its dyadic expansion

$$
\omega=\sum_{n=1}^{\infty} \frac{d_{n}(\omega)}{2^{n}}=. d_{1}(\omega) d_{2}(\omega) d_{3}(\omega) \cdots
$$

where each $d_{n}(\omega)$ is either 0 or 1 . This expansion is not unique; e.g., $0.5=\frac{1}{2}=0.1=0.0111 \cdots$. If it happens, we agree to use the non-terminating one; i.e., $0.5=0.01111 \cdots$.
Fact 1. Each $d_{n}$ is a binary random variable.
Fact 2. $P\left[d_{n}=1\right]=0.5=P\left[d_{n}=0\right]$
Fact 3. The sequence $\left\{d_{n}: n \geq 1\right\}$ is iid.

### 4.3.2 Dyadic Expansions of Uniform Random Numbers

For Fact 1 , it suffices to check $\left[d_{n}=1\right] \in \mathcal{B}((0,1])$. When $n=1$, $\left[d_{n}=1\right]=(0.100 \cdots, 0.111 \cdots]=\left(\frac{1}{2}, 1\right] \in \mathcal{B}((0,1])$. For $n \geq 2$, $\left[d_{n}=1\right]=\cup_{\left(u_{1}, \ldots, u_{n-1} \in\{0,1\}^{n-1}\right.}\left(0 . u_{1} \cdots u_{n-1} 1000 \cdots, 0 . u_{1} \cdots u_{n-1} 1111 \cdots\right.$ which is a disjoint union of $2^{n-1}$ intervals; e.g., $\left[d_{2}=1\right]=\left(\frac{1}{4}, \frac{1}{2}\right] \cup$ $\left(\frac{3}{4}, 1\right]$. Thus $\left[d_{n}=1\right] \in \mathcal{B}((0,1])$.
For Fact 2, we first see that $P\left(\left(0 . u_{1} \cdots u_{n-1} 1000 \cdots, 0 . u_{1} \cdots u_{n-1} 1111 \cdots\right.\right.$ $\frac{1}{2^{n}}$. Thus $P\left[d_{n}=1\right]=2^{n-1} \frac{1}{2^{n}}=1 / 2$.

For Fact 3, only independence is left. For $\left(u_{1}, \ldots, u_{n}\right) \in\{0,1\}^{n}$, we have

$$
\begin{aligned}
P\left(\cap_{i=1}^{n}\left[d_{i}=u_{i}\right]\right) & =P\left(\left(0 . u_{1} \cdots u_{n} 0000 \cdots, 0 . u_{1} \cdots u_{n} 1111 \cdots\right]\right) \\
& =\frac{1}{2^{n}}=\prod_{i=1}^{n} P\left[d_{i}=u_{i}\right] .
\end{aligned}
$$

### 4.4 More on Independence: Groupings

Lemma 4.4.1 (Grouping Lemma)
Let $\left\{\mathcal{B}_{t}: t \in T\right\}$ be an independent family of $\sigma$-algebras. Let $S$ be an index set and suppose for $s \in S$ that $T_{s} \subset T$ and $\left\{T_{s}: s \in S\right\}$ is pairwise disjoint. Now define

$$
\mathcal{B}_{T_{s}}=\bigvee_{t \in T_{s}} \mathcal{B}_{t}=\sigma\left(\mathcal{B}_{t}: t \in T_{s}\right)
$$

Then

$$
\left\{\mathcal{B}_{T_{s}}: s \in \mathcal{S}\right\}
$$

is an independent family of $\sigma$-algebras.
Examples: (a) $\left\{X_{n}: n \geq 1\right\}$ are independent, then $\sigma\left(X_{j}: j \leq n\right)$ and $\sigma\left(X_{j}: j>n\right)$ are independent, so are $\sum_{i=1}^{n} X_{i}$ and $\sum_{i=n+1}^{n+k} X_{i}$, $\max _{i=1}^{n} X_{i}$ and $\max _{i=n+1}^{n+k} X_{i}$. (b) $\left\{A_{n}\right\}$ are independent events. $\cup_{n=1}^{N} A_{n}$ and $\cup_{j=N+1}^{\infty} A_{j}$ are independent.

### 4.4 More on Independence: Groupings

Proof of Lemma 4.4.1: We only need focus on the case where $S$ is finite. Define

$$
\mathcal{C}_{T_{s}}=\left\{\cap_{\alpha \in K} B_{\alpha}: B_{\alpha} \in \mathcal{B}_{\alpha}, K \subset T_{s}, K \text { is finite. }\right\}
$$

Then $\mathcal{C}_{T_{s}}$ is a $\pi$-system for each $s$, and $\left\{\mathcal{C}_{T_{s}}: s \in S\right\}$ are independent classes.

By the Basic Criterion 4.1.1, it suffices to show $\sigma\left(\mathcal{C}_{T_{s}}\right)=\mathcal{B}_{T_{s}}$. It is obvious that $\sigma\left(\mathcal{C}_{T_{s}}\right) \subset \mathcal{B}_{T_{s}}$. Also, $\mathcal{B}_{\alpha} \subset \mathcal{C}_{T_{s}}$, for each $\alpha \in T_{s}$ (when $K=\{\alpha\})$. Hence $\cup_{\alpha \in T_{s}} \mathcal{B}_{\alpha} \subset \sigma\left(\mathcal{C}_{T_{s}}\right)$ which completes the proofs.

### 4.5.1 Borel-Cantelli Lemma

Proposition 4.5.1 (Borel-Cantelli Lemma)
Let $\left\{A_{n}\right\}$ be any events. If

$$
\sum_{n} P\left(A_{n}\right)<\infty
$$

the

$$
P\left(\left[A_{n} \text { i.o. }\right]\right)=P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=0 .
$$

Proof: $\sum_{n} P\left(A_{n}\right)<\infty \Longrightarrow 0=\limsup _{n \rightarrow \infty} \sum_{j=n}^{\infty} P\left(A_{j}\right)$

$$
\begin{aligned}
& \geq \lim _{n \rightarrow \infty} P\left(\cup_{j \geq n} A_{j}\right) \\
& =P\left(\lim _{n \rightarrow \infty} \cup_{j \geq n} A_{j}\right) \\
& =P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=P\left(\left[A_{n} \text { i.o. }\right]\right) .
\end{aligned}
$$

### 4.5.1 Borel-Cantelli Lemma

Example 4.5.1
Suppose $\left\{X_{n}: n \geq 1\right\}$ are Bernoulli random variables (could be dependent) with $P\left[X_{n}=1\right]=p_{n}($ could vary with $n)$. Then

$$
P\left[\lim _{n \rightarrow \infty} X_{n}=0\right]=1 \text { if } \sum_{n} p_{n}<\infty .
$$

Proof: By applying the Borel-Cantelli lemma, we have $\sum_{n} P\left[X_{n}=\right.$ $1]<\infty$ imply $0=P\left(\left[X_{n}=1\right]\right.$, i.o. $)=P\left(\lim \sup _{n \rightarrow \infty}\left[X_{n}=1\right]\right)$. Taking complements, $1=P\left(\liminf _{n \rightarrow \infty}\left[X_{n}=0\right]\right)=P\left(\cup_{n \geq 1} \cap_{k \geq n}\right.$ $\left.\left\{\omega: X_{k}(\omega)=0\right\}\right)$. If $\omega \in \cup_{n \geq 1} \cap_{k \geq n}\left\{\omega: X_{k}(\omega)=0\right\}$, then there exists an $n \geq 1$, for all $k \geq n, X_{k}(\omega)=0$, implying $\lim _{n \rightarrow \infty} X_{n}(\omega)=$ 0 . Thus $\lim \inf _{n \rightarrow \infty}\left[X_{n}=0\right] \subset\left[\lim _{n \rightarrow \infty} X_{n}=0\right]$. Therefore, $P\left(\left[\lim _{n \rightarrow \infty} X_{n}=0\right]\right)=1$.

### 4.5.2 Borel Zero-One Law

Proposition 4.5.2 (Borel Zero-One Law)
If $\left\{A_{n}\right\}$ is a sequence of independent events, then

$$
P\left(\left[A_{n} \text { i.o. }\right]\right)= \begin{cases}0, & \text { iff } \sum_{n} P\left(A_{n}\right)<\infty \\ 1, & \text { iff } \sum_{n} P\left(A_{n}\right)=\infty\end{cases}
$$

Proof: $\sum_{n} P\left(A_{n}\right)<\infty \Longrightarrow P\left(\left[A_{n}\right.\right.$ i.o. $\left.]\right)=0$. Conversely, suppose $\sum_{n} P\left(A_{n}\right)=\infty$. We have $P\left(\left[A_{n}\right.\right.$ i.o. $\left.]\right)=$

$$
\begin{aligned}
& P\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1-P\left(\liminf _{n \rightarrow \infty} A_{n}\right)=1-\lim _{n \rightarrow \infty} P\left(\cap_{k \geq n} A_{k}^{c}\right) \\
= & 1-\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} P\left(\cap_{k=n}^{m} A_{k}^{c}\right)=1-\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \prod_{k=n}^{m}\left\{1-P\left(A_{k}\right)\right\} .
\end{aligned}
$$

### 4.5.2 Borel Zero-One Law

Proof (continued): It suffices to show $\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \prod_{k=n}^{m}\{1-$ $\left.P\left(A_{k}\right)\right\}=0$. Known that $1-x \leq e^{-x}$ for $0<x<1$ and $\sum_{n} P\left(A_{n}\right)=\infty$,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} \prod_{k=n}^{m}\left\{1-P\left(A_{k}\right)\right\} & \leq \lim _{m \rightarrow \infty} \prod_{k=n}^{m} e^{-P\left(A_{k}\right)}=\lim _{m \rightarrow \infty} e^{-\sum_{k=n}^{m} P\left(A_{k}\right)} \\
& =e^{-\sum_{k=n}^{\infty} P\left(A_{k}\right)}=e^{-\infty}=0
\end{aligned}
$$

Example 4.5.1 (continued)
Suppose $\left\{X_{n}: n \geq 1\right\}$ are Bernoulli random variables (could be dependent) with $P\left[X_{n}=1\right]=p_{n}$ (could vary with $n$ ). We assert that

$$
P\left[\lim _{n \rightarrow \infty} X_{n}=0\right]=1 \text { iff } \sum_{n} p_{n}<\infty
$$

### 4.5.2 Borel Zero-One Law

Example 4.5.2 (Behavior of exponential random variables)
Suppose $\left\{E_{n}: n \geq 1\right\}$ are iid unit exponential random variables; that is $P\left[E_{n}>x\right]=e^{-x}$ for $x>0$. Then

$$
P\left[\limsup _{n \rightarrow \infty} E_{n} / \log n=1\right]=1
$$

Proof: For any $\omega \in \Omega$ such that

$$
1=\limsup _{n \rightarrow \infty} \frac{E_{n}(\omega)}{\log n}=\inf _{n \geq 1} \sup _{k \geq n} \frac{E_{k}(\omega)}{\log k} \quad \text { equals to }
$$

(a) $\forall \epsilon>0$,
$\omega \in \cup_{n \geq 1} \cap_{k \geq n}\left[\frac{E_{k}}{\log k} \leq 1+\epsilon\right]=\liminf _{n \rightarrow \infty}\left[\frac{E_{n}}{\log n} \leq 1+\epsilon\right]$.
(b) $\forall \epsilon>0, \frac{E_{n}(\omega)}{\log n}>1-\epsilon$ for infinitely often; i.e.,
$\omega \in \lim \sup _{n \rightarrow \infty}\left[\frac{E_{n}}{\log n}>1-\epsilon\right]$.

### 4.5.2 Borel Zero-One Law

Example 4.5.2 (Behavior of exponential random variables)
Proof continued
Then let $\epsilon_{k} \downarrow 0$,
$\left[\limsup _{n \rightarrow \infty} \frac{E_{n}}{\log n}=1\right]=$

$$
\cap_{k}\left\{\liminf _{n \rightarrow \infty}\left[\frac{E_{n}}{\log n} \leq 1+\epsilon_{k}\right]\right\} \cap \cap_{k}\left\{\limsup _{n \rightarrow \infty}\left[\frac{E_{n}}{\log n}>1-\epsilon_{k}\right]\right\} .
$$

We note that $\sum_{n} P\left[\frac{E_{n}}{\log n}>1-\epsilon_{k}\right]=\sum_{n} \frac{1}{n^{1-\epsilon_{k}}}=\infty$. Thus
$P\left\{\limsup { }_{n \rightarrow \infty}\left[\frac{E_{n}}{\log n}>1-\epsilon_{k}\right]\right\}=1$. And
$\sum_{n} P\left[\frac{E_{n}}{\log n}>1+\epsilon_{k}\right]=\sum_{n} \frac{1}{n^{1+\epsilon_{k}}}<\infty$, thus
$P\left\{\limsup \sin _{n \rightarrow \infty}\left[\frac{E_{n}}{\log n}>1+\epsilon_{k}\right]\right\}=0$ implies $P\left\{\liminf _{n \rightarrow \infty}\left[\frac{E_{n}}{\log n} \leq\right.\right.$
$\left.\left.1+\epsilon_{k}\right]\right\}=1-P\left\{\limsup _{n \rightarrow \infty}\left[\frac{E_{n}}{\log n}>1+\epsilon_{k}\right]\right\}=1$. Therefore,
$\left[\lim \sup _{n \rightarrow \infty} \frac{E_{n}}{\log n}=1\right]=1$.

### 4.5.3 Kolmogorov Zero-One Law

Let $\left\{X_{n}\right\}$ be a sequence of random variables and define

$$
\mathcal{F}_{n}^{\prime}=\sigma\left(X_{n+1}, X_{n+2}, \ldots\right), \quad n=1,2, \ldots
$$

The tail $\sigma$-algebra $\mathcal{T}$ is defined as

$$
\mathcal{T}=\cap_{n} \mathcal{F}_{n}^{\prime}=\lim _{n \rightarrow \infty} \sigma\left(X_{n}, X_{n+1}, \ldots\right)
$$

If $A \in \mathcal{T}$, we will call $A$ a tail event and similarly a random variable measurable with respect to $\mathcal{T}$ is called a tail random variable.

### 4.5.3 Kolmogorov Zero-One Law

Observe that
1.

$$
\left\{\omega: \sum_{n=1}^{\infty} X_{n}(\omega) \text { converges }\right\} \in \mathcal{T}
$$

2. 

$\limsup _{n \rightarrow \infty} X_{n}, \liminf _{n \rightarrow \infty} X_{n},\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)\right.$ exists $\} \in \mathcal{T}$
3. Let $S_{n}=X_{1}+\cdots+X_{n}$. Then

$$
\left\{\omega: \lim _{n \rightarrow \infty} \frac{S_{n}(\omega)}{n}=0\right\} \in \mathcal{T}
$$

### 4.5.3 Kolmogorov Zero-One Law

Call a $\sigma$-algebra, all of whose events have probability 0 or 1 almost trivial. One example is the $\sigma$-algebra $\{\emptyset, \Omega\}$.
Theorem 4.5.3 Kolmogorov Zero-One Law
If $\left\{X_{n}\right\}$ are independent random variables with tail $\sigma$-algebra $\mathcal{T}$, then $\Lambda \in \mathcal{T}$ implies $P(\Lambda)=0$ or 1 so that the tail $\sigma$-albegra is almost trivial.

Corollary 4.5.1
Let $\left\{X_{n}\right\}$ be independent random variables. Then the followings are true.
(a) The event [ $\sum_{n} X_{n}$ converges] has probability 0 or 1 .
(b) The random variables $\lim \sup _{n \rightarrow \infty} X_{n}$ and ${\lim \inf _{n \rightarrow \infty}} X_{n}$ are constant with probability 1.
(c) The event $\left\{\omega: S_{n}(\omega) / n \rightarrow 0\right\}$ has probability 0 or 1 .

### 4.5.3 Kolmogorov Zero-One Law

Lemma 4.5.1 Almost trivial $\sigma$-algebras
Let $\mathcal{G}$ be an almost trivial $\sigma$-algebra and let $X$ be a random variable measurable with respect to $\mathcal{G}$. Then there exists $c$ such that $P[X=c]=1$.
Proof: Let $F(x)=P[X \leq x]$. Then $F$ is non-decreasing and since $[X \leq x] \in \sigma(X) \subset \mathcal{G}, F(x)=0$ or 1 for each $x \in \mathbb{R}$. Let

$$
c=\sup \{x: F(x)=0\} .
$$

The distribution function must have a jump of size 1 at $c$ and thus

$$
P[X=c]=1 .
$$

### 4.5.3 Kolmogorov Zero-One Law

Proof of the Komogorov Zero-One Law. Suppose $\Lambda \in \mathcal{T}$. we show $\Lambda$ is independent of itself; i.e. $P(\Lambda \cap \Lambda)=P(\Lambda)=P(\Lambda)^{2}$. Thus $P(\Lambda)=0$ or 1 .

To show this, define $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)=\bigvee_{j=1}^{\infty} \sigma\left(X_{j}\right)$, so that $F_{n} \uparrow$ and $\mathcal{F}_{\infty}=\sigma\left(X_{1}, \ldots,\right)=\bigvee_{j=1}^{\infty} \sigma\left(X_{j}\right)=\bigvee_{n=1}^{\infty} \mathcal{F}_{n}$. Note that

$$
\Lambda \in \mathcal{T} \subset F_{n}^{\prime}=\sigma\left(X_{n+1}, X_{n+2}, \ldots\right) \subset \mathcal{F}_{\infty}
$$

Now for all $n, \Lambda \in \mathcal{F}_{n}^{\prime}$. Since $\mathcal{F}_{n} \perp \mathcal{F}_{n}^{\prime}$, we have $\Lambda \perp \mathcal{F}_{n}$ for all $n$, and therefore $\Lambda \perp \cup_{n} \mathcal{F}_{n}$.

Let $\mathcal{C}_{1}\{\Lambda\}$ and $\mathcal{C}_{2}=\cup_{n} \mathcal{F}_{n}$. Then $\mathcal{C}_{i}$ is a $\pi$-system, $i=1,2$, $\mathcal{C}_{1} \perp \mathcal{C}_{2}$ and therefore the Basic Criterion 4.1.1. implies $\sigma\left(\mathcal{C}_{1}\right)=$ $\left\{\emptyset, \Omega, \Lambda, \Lambda^{c}\right\} \perp \sigma\left(\mathcal{C}_{2}\right)=\bigvee_{n} \mathcal{F}_{n}=\mathcal{F}_{\infty}$. We have $\Lambda \in \sigma\left(\mathcal{C}_{1}\right)$ and also $\Lambda \in \mathcal{F}_{\infty}$, thus $\Lambda \perp \Lambda$.
HW 4: Section 4.6, Q2, Q5-6, Q11-14, Q16-17, Q18-20, Q22

