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Introduction

Independence is a basic property of events and random variables in
a probability model. Its intuitive appeal stems from the easily envi-
sioned property that the occurrence or non-occurrence of an event
has no effect on our estimate of the probability that an independent
event will or will not occur.

Despite the intuitive appeal, it is important to recognize that in-
dependence is a technical concept with a technical definition which
must be checked with respect to a specific probability model. There
are examples of dependent events which intuition insists must be in-
dependent, and examples of events which intuition insists cannot be
independent but still satisfy the definition.

One really must check the technical definition to be sure.
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4.1 Basic Definitions

Definition 4.1.1 Independence for two events
Suppose (Ω,B,P) is a fixed probability space. Events A,B ∈ B are
independent if

P(A ∩ B) = P(A)P(B).

Definition 4.1.2 Independence of a finite number of events
The events A1, . . . ,An (n ≥ 2) are independent if

P(∩i∈IAi ) =
∏
i∈I

P(Ai ), fro all finite I ⊂ {1, . . . , n}.

Definition 4.1.3 Independent classes
Let Ci ⊂ B, i = 1, . . . , n. The classes Ci are independent, if for any
choice A1, . . . ,An with Ai ∈ Ci , i = 1, . . . , n, we have the events
A1, . . . ,An independent events.
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4.1 Basic Definitions

Theorem 4.1.1 (Basic Criterion)
If for each i = 1, . . . , n, Ci is a non-empty class of events satifying
1. Ci is a π-system
2. Ci , i = 1, . . . , n, are independent, then

σ(C1), . . . , σ(Cn) are independent.

Proof of this uses a Dynkin system (λ-system). Recall that L is
a Dynkin system if (1) Ω ∈ L; (2) A ∈ L imples Ac ∈ L; (3) if
Bn ∈ L are disjoint, ∪nBn ∈ L. (A λ-system is a σ-algebra iff it is a
π system).
Dynkin’s Theorem 2.2.2 If P is a π-system, L is a λ-system, and
P ⊂ L, then σ(P) ⊂ L.
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4.1 Basic Definitions

Proof of Theorem 4.1.1: We only prove it for n = 2, by induction
it easily gets to n > 2. Fix A2 ∈ C2. Let

L = {A ∈ B : P(A ∩ A2) = P(A)P(A2)}.

We claim L is a λ-system:
(1) Ω ∈ L is obvious.
(2) if A ∈ L, we have P(Ac)P(A2) = P(A2)(1− P(A)) =

P(A2)− P(A2 ∩ A) = P(A2 ∩ Ac); i.e., Ac ∈ L.
(3) if Bn ∈ L are disjoint, P((∪nBn) ∩ A2) = P(∪n(Bn ∩ A2)) =∑

n P(Bn ∩ A2) =
∑

n P(Bn)P(A2) = P(∪nBn)P(A2).
Also C1 ⊂ L. By Dynkin’s Theorem, σ(C1) ⊂ L. Thus σ(C1) and
C2 are independent. Then fix A1 ∈ σ(C1) and define L = {A ∈ B :
P(A ∩ A1) = P(A)P(A1)}. It is easy to show σ(C2) and σ(C1) are
independent.
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4.1 Basic Definitions

Definition 4.1.4 Arbitrary number of independent classes
Let T be an arbitray index set. The classes Ct , t ∈ T are
independent families if for any finite I , I ⊂ T , {Ct : t ∈ I} are
independent.

Corollary 4.1.1
If {Ct : t ∈ T} are non-empty π-systems that are independent.
Then {σ(Ci ) : t ∈ T} are independent.
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4.2 Independent Random Variables

Definition 4.2.1 Independent Random Variables
{Xt : t ∈ T} is an independent family of random variables if
{σ(Xt) : t ∈ T} are independent σ-algebras.
Random variables are independent if their induced σ-algebras are
independent.

We now give a criterion for independence of random variables in
terms of distribution functions. For a family of random variables {Xt :
t ∈ T} indexed by a set T , the finite dimensional distribution
functions are the family of multivariate distribution functions

FJ(xt , t ∈ J) = P[Xt ≤ xt , t ∈ J]

for all finite subsets J ⊂ T .
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4.2 Independent Random Variables

Theorem 4.2.1 Factorization Criterion
A family of random variables {Xt : t ∈ T} indexed by a set T , is
independent iff for all finite J ⊂ T

FJ(xt , t ∈ J) =
∏
t∈J

P[Xt ≤ xt ], ∀xt ∈ R. (1)

Proof: By Definition 4.1.1, it suffices to show that for a finite index
set J that {Xt : t ∈ J} are independent iff (1) holds. Define Ct =
{[Xt ≤ x ] : x ∈ R}. Then σ(Xt) = σ(Ct) and Ct is a π-system. (1)
says {Ct : t ∈ J} is an independent family and therefore by the Basic
Criterion 4.1.1, {σ(Ct) = σ(Xt) : t ∈ J} are independent.
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4.2 Independent Random Variables

Corollary 4.2.1
The finite collection of random variables X1, . . . ,Xk is independent
iff

P[X1 ≤ x1, . . . ,Xk ≤ xk ] =
k∏

i=1

P[Xi ≤ xi ],

for all xi ∈ R, i = 1, . . . , k .

Corollary 4.2.2
The discrete random variables X1, . . . ,Xk with countable range R
are independent iff

P[X1 = x1, . . . ,Xk = xk ] =
k∏

i=1

P[Xi = xi ],

for all xi ∈ R, i = 1, . . . , k .
Notation: ⊥: X ⊥ Y , A ⊥ B , A ⊥ C.
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4.3.1 Records, Ranks, Renyi Theorem

Let {Xn : n ≥ 1} be iid with common continuous distribution func-
tion F (x). The continuity of F implies

P[Xi = Xj ] = 0,

so that if we define

[Ties] = ∪i 6=j [Xi = Xj ].

then
P[Ties] = 0.Why?
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4.3.1 Records, Ranks, Renyi Theorem

Call Xn a record of the sequence if

Xn ≥
n−1∨
i=1

Xi ,

and define
An = [Xn is a record].

A result due to Renyi says that the events {Aj : j ≥ 1} are indepen-
dent and

P(Aj) = j−1, j ≥ 2.

This is a special case of a result about relative ranks.
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4.3.1 Records, Ranks, Renyi Theorem

Let Rn be the relative rank of Xn among X1, . . . ,Xn where Rn =∑n
j=1 I[Xj≥Xn]. So Rn = 1 iff Xn is a record, Rn = 2 iff Xn is the

second largest of X1, . . . ,Xn, and so on.

Theorem 4.3.1 Renyi Theorem
Assume {Xn : n ≥ 1} are iid with common continuous distribution
function F (x).
(a) {Rn : n ≥ 1} are independent and

P[Rn = k] =
1
n
, for k = 1, . . . , n.

(b) {An : n ≥ 1} are independent and

P(An) =
1
n
.
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4.3.1 Records, Ranks, Renyi Theorem

Proof of Renyi Theorem: (b) comes from (a) since An = [Rn = 1].
It suffices to show (a). There are n! orderings of X1, . . . ,Xn. Because
Xi ’s are iid, all possible orderings have the same probability 1/(n!).
Each realization of R1, . . . ,Rn uniquely determines an ordering. Thus
P[R1 = r1, . . . ,Rn = rn] = 1/(n!), for ri ∈ {1, . . . , i}, i = 1, . . . , n.
Then

P[Rn = rn] =
∑

r1,...,rn−1

1
n!
.

Since ri ranges over i values, the number of terms in the above sum
is (n − 1)!. Thus P[Rn = rn] = 1/n for n = 1, 2, . . . . Therefore
P[R1 = r1, . . . ,Rn = rn] = P[R1 = r1] · · ·P[Rn = rn].
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4.3.2 Dyadic Expansions of Uniform Random Numbers

Consider
(Ω,B,P) = ((0, 1],B((0, 1]), λ),

where λ is Lebesgue measure. We write ω ∈ (0, 1] using its dyadic
expansion

ω =
∞∑
n=1

dn(ω)

2n
= .d1(ω)d2(ω)d3(ω) · · · ,

where each dn(ω) is either 0 or 1. This expansion is not unique;
e.g., 0.5 = 1

2 = 0.1 = 0.0111 · · · . If it happens, we agree to use the
non-terminating one; i.e., 0.5 = 0.01111 · · · .
Fact 1. Each dn is a binary random variable.
Fact 2. P[dn = 1] = 0.5 = P[dn = 0]
Fact 3. The sequence {dn : n ≥ 1} is iid.
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4.3.2 Dyadic Expansions of Uniform Random Numbers

For Fact 1, it suffices to check [dn = 1] ∈ B((0, 1]). When n = 1,
[dn = 1] = (0.100 · · · , 0.111 · · · ] = (1

2 , 1] ∈ B((0, 1]). For n ≥ 2,
[dn = 1] = ∪(u1,...,un−1∈{0,1}n−1(0.u1 · · · un−11000 · · · , 0.u1 · · · un−11111 · · · ]
which is a disjoint union of 2n−1 intervals; e.g., [d2 = 1] = (1

4 ,
1
2 ] ∪

(3
4 , 1]. Thus [dn = 1] ∈ B((0, 1]).

For Fact 2, we first see that P((0.u1 · · · un−11000 · · · , 0.u1 · · · un−11111 · · · ]) =
1
2n . Thus P[dn = 1] = 2n−1 1

2n = 1/2.

For Fact 3, only independence is left. For (u1, . . . , un) ∈ {0, 1}n, we
have

P(∩ni=1[di = ui ]) = P((0.u1 · · · un0000 · · · , 0.u1 · · · un1111 · · · ])

=
1
2n

=
n∏

i=1

P[di = ui ].
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4.4 More on Independence: Groupings

Lemma 4.4.1 (Grouping Lemma)
Let {Bt : t ∈ T} be an independent family of σ-algebras. Let S be
an index set and suppose for s ∈ S that Ts ⊂ T and {Ts : s ∈ S}
is pairwise disjoint. Now define

BTs =
∨
t∈Ts

Bt = σ(Bt : t ∈ Ts)

Then
{BTs : s ∈ S}

is an independent family of σ-algebras.
Examples: (a) {Xn : n ≥ 1} are independent, then σ(Xj : j ≤ n)

and σ(Xj : j > n) are independent, so are
∑n

i=1 Xi and
∑n+k

i=n+1 Xi ,
maxni=1 Xi and maxn+k

i=n+1 Xi . (b) {An} are independent events. ∪Nn=1An

and ∪∞j=N+1Aj are independent.
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4.4 More on Independence: Groupings

Proof of Lemma 4.4.1: We only need focus on the case where S
is finite. Define

CTs = {∩α∈KBα : Bα ∈ Bα,K ⊂ Ts ,K is finite.}

Then CTs is a π-system for each s, and {CTs : s ∈ S} are indepen-
dent classes.

By the Basic Criterion 4.1.1, it suffices to show σ(CTs ) = BTs . It is
obvious that σ(CTs ) ⊂ BTs . Also, Bα ⊂ CTs , for each α ∈ Ts (when
K = {α}). Hence ∪α∈TsBα ⊂ σ(CTs ) which completes the proofs.
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4.5.1 Borel-Cantelli Lemma

Proposition 4.5.1 (Borel-Cantelli Lemma)
Let {An} be any events. If∑

n

P(An) <∞,

the
P([An i .o.]) = P(lim sup

n→∞
An) = 0.

Proof:
∑
n

P(An) <∞ =⇒ 0 = lim sup
n→∞

∞∑
j=n

P(Aj)

≥ lim
n→∞

P(∪j≥nAj)

= P( lim
n→∞

∪j≥nAj)

= P(lim sup
n→∞

An) = P([An i .o.]).
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4.5.1 Borel-Cantelli Lemma

Example 4.5.1
Suppose {Xn : n ≥ 1} are Bernoulli random variables (could be
dependent) with P[Xn = 1] = pn (could vary with n). Then

P[ lim
n→∞

Xn = 0] = 1 if
∑
n

pn <∞.

Proof: By applying the Borel-Cantelli lemma, we have
∑

n P[Xn =
1] < ∞ imply 0 = P([Xn = 1], i .o.) = P(lim supn→∞[Xn = 1]).
Taking complements, 1 = P(lim infn→∞[Xn = 0]) = P(∪n≥1 ∩k≥n
{ω : Xk(ω) = 0}). If ω ∈ ∪n≥1 ∩k≥n {ω : Xk(ω) = 0}, then there
exists an n ≥ 1, for all k ≥ n, Xk(ω) = 0, implying limn→∞ Xn(ω) =
0. Thus lim infn→∞[Xn = 0] ⊂ [limn→∞ Xn = 0]. Therefore,
P([limn→∞ Xn = 0]) = 1.
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4.5.2 Borel Zero-One Law

Proposition 4.5.2 (Borel Zero-One Law)
If {An} is a sequence of independent events, then

P([An i .o.]) =

{
0, iff

∑
n P(An) <∞,

1, iff
∑

n P(An) =∞.

Proof:
∑

n P(An) < ∞ =⇒ P([An i .o.]) = 0. Conversely, sup-
pose

∑
n P(An) =∞. We have P([An i .o.]) =

P(lim sup
n→∞

An) = 1− P(lim inf
n→∞

An) = 1− lim
n→∞

P(∩k≥nAc
k)

= 1− lim
n→∞

lim
m→∞

P(∩mk=nA
c
k) = 1− lim

n→∞
lim

m→∞

m∏
k=n

{1− P(Ak)}.
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4.5.2 Borel Zero-One Law

Proof (continued): It suffices to show limn→∞ limm→∞
∏m

k=n{1−
P(Ak)} = 0. Known that 1 − x ≤ e−x for 0 < x < 1 and∑

n P(An) =∞,

lim
m→∞

m∏
k=n

{1− P(Ak)} ≤ lim
m→∞

m∏
k=n

e−P(Ak ) = lim
m→∞

e−
∑m

k=n P(Ak )

= e−
∑∞

k=n P(Ak ) = e−∞ = 0.

Example 4.5.1 (continued)
Suppose {Xn : n ≥ 1} are Bernoulli random variables (could be
dependent) with P[Xn = 1] = pn (could vary with n). We assert
that

P[ lim
n→∞

Xn = 0] = 1 iff
∑
n

pn <∞

.
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4.5.2 Borel Zero-One Law

Example 4.5.2 (Behavior of exponential random variables)
Suppose {En : n ≥ 1} are iid unit exponential random variables;
that is P[En > x ] = e−x for x > 0. Then

P[lim sup
n→∞

En/ log n = 1] = 1.

Proof: For any ω ∈ Ω such that

1 = lim sup
n→∞

En(ω)

log n
= inf

n≥1
sup
k≥n

Ek(ω)

log k
equals to

(a) ∀ε > 0,
ω ∈ ∪n≥1 ∩k≥n [ Ek

log k ≤ 1 + ε] = lim infn→∞[ En
log n ≤ 1 + ε].

(b) ∀ε > 0, En(ω)
log n > 1− ε for infinitely often; i.e.,

ω ∈ lim supn→∞[ En
log n > 1− ε].
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4.5.2 Borel Zero-One Law

Example 4.5.2 (Behavior of exponential random variables)
Proof continued
Then let εk ↓ 0,

[lim sup
n→∞

En

log n
= 1] =

∩k
{

lim inf
n→∞

[
En

log n
≤ 1 + εk ]

}
∩ ∩k

{
lim sup
n→∞

[
En

log n
> 1− εk ]

}
.

We note that
∑

n P[ En
log n > 1− εk ] =

∑
n

1
n1−εk

=∞. Thus
P{lim supn→∞[ En

log n > 1− εk ]} = 1. And∑
n P[ En

log n > 1 + εk ] =
∑

n
1

n1+εk
<∞, thus

P{lim supn→∞[ En
log n > 1 + εk ]} = 0 implies P{lim infn→∞[ En

log n ≤
1 + εk ]} = 1− P{lim supn→∞[ En

log n > 1 + εk ]} = 1. Therefore,
[lim supn→∞

En
log n = 1] = 1.
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4.5.3 Kolmogorov Zero-One Law

Let {Xn} be a sequence of random variables and define

F ′n = σ(Xn+1,Xn+2, . . . ), n = 1, 2, . . .

The tail σ-algebra T is defined as

T = ∩nF ′n = lim
n→∞

σ(Xn,Xn+1, . . . ).

If A ∈ T , we will call A a tail event and similarly a random variable
measurable with respect to T is called a tail random variable.
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4.5.3 Kolmogorov Zero-One Law

Observe that
1.

{ω :
∞∑
n=1

Xn(ω) converges} ∈ T .

2.
lim sup
n→∞

Xn, lim inf
n→∞

Xn, {ω : lim
n→∞

Xn(ω) exists} ∈ T

3. Let Sn = X1 + · · ·+ Xn. Then

{ω : lim
n→∞

Sn(ω)

n
= 0} ∈ T .
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4.5.3 Kolmogorov Zero-One Law

Call a σ-algebra, all of whose events have probability 0 or 1 almost
trivial. One example is the σ-algebra {∅,Ω}.

Theorem 4.5.3 Kolmogorov Zero-One Law
If {Xn} are independent random variables with tail σ-algebra T ,
then Λ ∈ T implies P(Λ) = 0 or 1 so that the tail σ-albegra is
almost trivial.

Corollary 4.5.1
Let {Xn} be independent random variables. Then the followings are
true.
(a) The event [

∑
n Xn converges] has probability 0 or 1.

(b) The random variables lim supn→∞ Xn and lim infn→∞ Xn are
constant with probability 1.

(c) The event {ω : Sn(ω)/n→ 0} has probability 0 or 1.
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4.5.3 Kolmogorov Zero-One Law

Lemma 4.5.1 Almost trivial σ-algebras
Let G be an almost trivial σ-algebra and let X be a random variable
measurable with respect to G. Then there exists c such that
P[X = c] = 1.
Proof: Let F (x) = P[X ≤ x ]. Then F is non-decreasing and since
[X ≤ x ] ∈ σ(X ) ⊂ G, F (x) = 0 or 1 for each x ∈ R. Let

c = sup{x : F (x) = 0}.

The distribution function must have a jump of size 1 at c and thus

P[X = c] = 1.
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4.5.3 Kolmogorov Zero-One Law

Proof of the Komogorov Zero-One Law. Suppose Λ ∈ T . we
show Λ is independent of itself; i.e. P(Λ ∩ Λ) = P(Λ) = P(Λ)2.
Thus P(Λ) = 0 or 1.

To show this, define Fn = σ(X1, . . . ,Xn) =
∨∞

j=1 σ(Xj), so that
Fn ↑ and F∞ = σ(X1, . . . , ) =

∨∞
j=1 σ(Xj) =

∨∞
n=1Fn. Note that

Λ ∈ T ⊂ F ′n = σ(Xn+1,Xn+2, . . . ) ⊂ F∞.

Now for all n, Λ ∈ F ′n. Since Fn ⊥ F ′n, we have Λ ⊥ Fn for all n,
and therefore Λ ⊥ ∪nFn.

Let C1{Λ} and C2 = ∪nFn. Then Ci is a π-system, i = 1, 2,
C1 ⊥ C2 and therefore the Basic Criterion 4.1.1. implies σ(C1) =
{∅,Ω,Λ,Λc} ⊥ σ(C2) =

∨
n Fn = F∞. We have Λ ∈ σ(C1) and also

Λ ∈ F∞, thus Λ ⊥ Λ.
HW 4: Section 4.6, Q2, Q5-6, Q11-14, Q16-17, Q18-20, Q22
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