STAT 810 Probability Theory I

Chapter 5: Integration and Expectation

Dr. Dewei Wang
Associate Professor
Department of Statistics
University of South Carolina
deweiwang@stat.sc.edu

5.1.1 Simple Functions

On (Ω, \mathcal{B}, P), say $X: \Omega \mapsto \mathbb{R}$ is simple if it has a finite range. Such a function can always be written in the form

$$
X(\omega)=\sum_{i=1}^{k} a_{i} I_{A_{i}}(\omega)
$$

where $a_{i} \in \mathbb{R}$ and $A_{i} \in \mathcal{B}, i=1, \ldots, k$ are disjoint and $\cup_{i=1}^{k} A_{i}=\Omega$. Then

$$
\sigma(X)=\sigma\left(A_{i}: i=1, \ldots, k\right)=\left\{\cup_{i \in I} A_{i}: I \subset\{1, \ldots, k\}\right\} .
$$

Let \mathcal{E} be the set of all simple functions on Ω. We have

1. \mathcal{E} is a vector space; i.e., (i) if $X \in \mathcal{E}$, then $\alpha X \in \mathcal{E}$ for $\alpha \in \mathbb{R}$;
(ii) if $X, Y \in \mathcal{E}$, then $X+Y \in \mathcal{E}$.
2. If $X, Y=\sum_{j} b_{j} I_{B_{j}} \in \mathcal{E}$, then $X Y=\sum_{i, j} a_{i} b_{j} I_{A_{i} \cap B_{j}} \in \mathcal{E}$.
3. If $X, Y \in \mathcal{E}$, then $X \vee Y=\sum_{i, j}\left(a_{i} \vee b_{j}\right) I_{A_{i} \cup B_{j}} \in \mathcal{E}$ and $X \wedge Y=\sum_{i, j}\left(a_{i} \wedge b_{j}\right) I_{A_{i} \cap B_{j}}$

5.1.2 Measurability and Simple Functions

Any measurable function can be approximated by a simple function.
Theorem 5.1.1 (Measurability Theorem)
Suppose $X(\omega) \geq 0$ for all ω. Then $X \in \mathcal{B} / \mathcal{B}(\mathbb{R})$ iff there exist simple functions $X_{n} \in \mathcal{E}$ and

$$
0 \leq X_{n} \uparrow X
$$

Proof: Because taking limits preserves measurability, every simple function is measurable, thus $X \in \mathcal{B} / \mathcal{B}(\mathbb{R})$. Conversely, define

$$
X_{n}=\sum_{k=1}^{n 2^{n}}\left(\frac{k-1}{2^{n}}\right) I_{\left[\frac{k-1}{2^{n}} \leq x \leq \frac{k}{\left.2^{n}\right]}\right.}+n I_{[X \geq n]} .
$$

Because X is measurable, $X_{n} \in \mathcal{E}$. Also $X_{n} \leq X_{n+1}$ and if $X(\omega)<$ ∞, then for large $n,\left|X(\omega)-X_{n}(\omega)\right| \leq 2^{-n} \rightarrow 0$ (Note that if $\sup _{\omega}|X(\omega)|<\infty$, then $\left.\sup _{\omega}\left|X(\omega)-X_{n}(\omega)\right| \rightarrow 0\right)$. If $X(\omega)=\infty$, then $X_{n}(\omega)=n \rightarrow \infty$.

5.2 Expectation and Integration

Suppose $X:(\Omega, \mathcal{B}) \mapsto(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ where $\overline{\mathbb{R}}=[-\infty, \infty]$ (in stochastic modeling, we often deal with waiting time for an event to happen, If the event never occurs, then the return time is infinite). Define

$$
E(X)=\int_{\Omega} X d P \text { or } \int_{\Omega} X(\omega) P(d \omega),
$$

as the Lebesgue-Stieltjes integral of X with respect to P.

5.2.1 Expectation of Simple Functions

Suppose X is a simple random variable of the form

$$
X=\sum_{i=1}^{n} a_{i} I_{A_{i}}
$$

where $\left|a_{i}\right|<\infty,\left\{A_{i}\right\}$ are mutually exclusive, and $\cup_{i} A_{i}=\Omega$. Then

$$
E(X)=\int X d P=\sum_{i=1}^{k} a_{i} P\left(A_{i}\right)
$$

5.2.1 Expectation of Simple Functions

Below are some simple properties (HW 5-1: prove these properties)

1. $E(1)=1, E\left(I_{A}\right)=P(A)$.
2. If $X \geq 0$ and $X \in \mathcal{E}$, then $E(X) \geq 0$.
3. Linearity: if $X, Y \in \mathcal{E}$, then $E(\alpha X+\beta Y)=\alpha E(X)+\beta E(Y)$ for $\alpha, \beta \in \mathbb{R}$.
4. Monotonicity: if $X \leq Y \in \mathcal{E}$, then $E(X) \leq E(Y)$.
5. If $X_{n}, X \in \mathcal{E}$, either $X_{n} \uparrow X$ or $X_{n} \downarrow X$, then $E\left(X_{n}\right) \uparrow E(X)$ or $E\left(X_{n}\right) \downarrow E(X)$.

5.2.2 Extension of the Definition

Let \mathcal{E}_{+}collect all the non-negative valued simple functions, and define

$$
\overline{\mathcal{E}}_{+}=\{X \geq 0: X:(\Omega, \mathcal{B}) \mapsto(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))\}
$$

to be non-negative, measurable functions with domain Ω. If $X \in \overline{\mathcal{E}}_{+}$ and $P[X=\infty]>0$, define $E(X)=\infty$.
Otherwise by Theorem 5.1.1, we may find $X_{n} \in \mathcal{E}_{+}$, such that

$$
0 \leq X_{n} \uparrow X
$$

We call $\left\{X_{n}\right\}$ the approximating sequence to X. The sequence $\left\{E\left(X_{n}\right)\right\}$ is non-decreasing by monotonicity of expectations applied to \mathcal{E}_{+}. Since limits of monotone sequences always exist, we conclude that $\lim _{n \rightarrow \infty} E\left(X_{n}\right)$ exists and define

$$
E(X)=\lim _{n \rightarrow \infty} E\left(X_{n}\right)
$$

This extends expectation from \mathcal{E} to $\overline{\mathcal{E}}_{+}$.

5.2.2 Extension of the Definition

Proposition 5.2.1 (Well definition)
If $X_{n}, Y_{m} \in \mathcal{E}_{+}$and $X_{n} \uparrow X, Y_{m} \uparrow X$, then

$$
\lim _{n \rightarrow \infty} E\left(X_{n}\right)=\lim _{m \rightarrow \infty} E\left(Y_{m}\right)
$$

Proof: We prove that if $\lim _{n \rightarrow \infty} \uparrow X_{n} \leq \lim _{m \rightarrow \infty} \uparrow Y_{m}$, then $\lim _{n \rightarrow \infty} \uparrow E\left(X_{n}\right) \leq \lim _{m \rightarrow \infty} \uparrow E\left(Y_{m}\right)$.

Note that since $\lim _{m \rightarrow \infty} Y_{m} \geq \lim _{n \rightarrow \infty} X_{n} \geq X, \mathcal{E}_{+} \ni X_{n} \wedge Y_{m} \uparrow$ $X_{n} \in \mathcal{E}_{+}$as $m \rightarrow \infty$. By monotonicity of expectation on \mathcal{E}_{+}, $E\left(X_{n}\right)=\lim _{m \rightarrow \infty} \uparrow E\left(X_{n} \wedge Y_{m}\right) \leq \lim _{m \rightarrow \infty} E\left(Y_{m}\right)$ holds for all n, which completes the proof of $\lim _{n \rightarrow \infty} \uparrow E\left(X_{n}\right) \leq \lim _{m \rightarrow \infty} \uparrow E\left(Y_{m}\right)$.

5.2.3 Basic Properties of Expectation

For expectation on $\overline{\mathcal{E}}_{+}$:

1. $0 \leq E(X) \leq \infty$ and if $X \leq Y \in \overline{\mathcal{E}}_{+}$, then $E(X) \leq E(Y)$.

Proof: Find approximating sequences in $\mathcal{E}_{+}: X_{n} \uparrow X, Y_{m} \uparrow Y$.
Then $X=\lim _{n \rightarrow \infty} \uparrow X_{n} \leq \lim _{m \rightarrow \infty} \uparrow Y_{m}=Y$. We have proved that
$E(X)=\lim _{n \rightarrow \infty} \uparrow E\left(X_{n}\right) \leq \lim _{m \rightarrow \infty} \uparrow E\left(Y_{m}\right)=E(Y)$.
2. E is linear: For $\alpha>0$ and $\beta>0$,
$E(\alpha X+\beta Y)=\alpha E(X)+\beta E(Y)$.
Proof: $\mathcal{E}_{+} \ni X_{n}+Y_{m} \uparrow X+Y$.
$E(X+Y)=\lim _{n \rightarrow \infty} E\left(X_{n}+Y_{n}\right)=\lim _{n \rightarrow \infty}\left(E\left(X_{n}\right)+E\left(Y_{n}\right)\right)=$ $\lim _{n \rightarrow \infty} E\left(X_{n}\right)+\lim _{n \rightarrow \infty} E\left(Y_{n}\right)=E(X)+E(Y)$.
For $\alpha>0, \alpha X_{n} \uparrow \alpha X$, thus
$E(\alpha X)=\lim _{n \rightarrow \infty} E\left(\alpha X_{n}\right)=\lim _{n \rightarrow \infty} \alpha E\left(X_{n}\right)=\alpha E(X)$.
3. Monotone Convergence Theorem (MCT) If $0 \leq X_{n} \uparrow X$, then $E\left(X_{n}\right) \uparrow E(X)$ (interchange of expectations and limits).

5.2.3 Basic Properties of Expectation

Proof of MCT: For each $X_{n} \in \overline{\mathcal{E}}_{+}$, find an approximating sequence $Y_{m}^{(n)} \in \mathcal{E}_{+}$such that $Y_{m}^{(n)} \uparrow X_{n}$ as $m \rightarrow \infty$. Define $Z_{m}=\vee_{n \leq m} Y_{m}^{(n)}$. Note that $\left\{Z_{m}\right\}$ is non-decreasing. Next observe that for $n \leq m$, $Y_{m}^{(n)} \leq \bigvee_{j \leq m} Y_{m}^{(j)}=Z_{m} \leq \bigvee X_{j}=X_{m}$. Thus, for all n

$$
X_{n}=\lim _{m \rightarrow \infty} Y_{m}^{(n)} \leq \lim _{m \rightarrow \infty} Z_{m} \leq \lim _{m \rightarrow \infty} X_{m}=X
$$

Therefore $X=\lim _{n \rightarrow \infty} X_{n}=\lim _{m \rightarrow \infty} Z_{m}$. Thus, we have $\left\{Z_{m}\right\}$ as an approximating sequence in \mathcal{E}_{+}of X. Thus $\lim _{m \rightarrow \infty} \uparrow E\left(Z_{m}\right)=$ $E(X)$. Furthermore, we have $E\left(X_{n}\right)=\lim _{m \rightarrow \infty} \uparrow E\left(Y_{m}^{(n)}\right) \leq$ $\lim _{m \rightarrow \infty} \uparrow E\left(Z_{m}\right)=E(X) \leq \lim _{m \rightarrow \infty} \uparrow E\left(X_{m}\right)$ for each n. Taking limit on n, we have $\lim _{n \rightarrow \infty} E\left(X_{n}\right) \leq E(X) \leq \lim _{m \rightarrow \infty} E\left(X_{m}\right)$.

5.2.3 Basic Properties of Expectation on $\overline{\mathcal{E}}_{+}$

We now further extend the definition of $E(X)$ beyond $\overline{\mathcal{E}}_{+}$. For a random variable X, define

$$
X^{+}=X \vee 0, \quad X^{-}=(-X) \vee 0
$$

We have $X^{ \pm} \geq 0, X=X^{+}-X^{-},|X|=X^{+}+X^{-}$and

$$
X \in \mathcal{B} / \mathcal{B}(\mathbb{R}) \text { iff both } X^{ \pm} \in \mathcal{B} / \mathcal{B}(\mathbb{R})
$$

We call X quasi-integrable if at least one of $E\left(X^{+}\right)$and $E\left(X^{-}\right)$ is finite. In this case, define

$$
E(X)=E\left(X^{+}\right)-E\left(X^{-}\right) .
$$

If both $E\left(X^{+}\right)$and $E\left(X^{-}\right)$are finite, call X integrable. This is the case of $E|X|<\infty$. The set of integrable random variables is denoted by L_{1} or $L_{1}(P)=\{X: E|X|<\infty\}$. If both $E\left(X^{+}\right)$and $E\left(X^{-}\right)$are infinite, then $E(X)$ does not exist.

5.2.3 Basic Properties of Expectation (Summary)

$$
\begin{gathered}
X \in \mathcal{E}, E(X)=\sum_{i} a_{i} P\left(A_{i}\right) \\
\downarrow \neq \overline{\mathcal{E}}_{+}: \text {By } \mathcal{E}_{+} \ni X_{n} \uparrow \underset{X}{\chi} E(X)=\lim _{n \rightarrow \infty} E\left(X_{n}\right) \\
\text { General } X: E(X) \stackrel{\downarrow}{=} E\left(X^{+}\right)-E\left(X^{-}\right) .
\end{gathered}
$$

5.2.3 Basic Properties of Expectation

Example 5.2.1 (Heavy Tails)
Let X 's density be $f(x)$, then X 's expectation, if exists, is $E(X)=\int x f(x) d x$.
If $f(x)=x^{-1} /(x>1)$. Then $E(X)$ exists and $E(X)=\infty$.
If $f(x)=0.5|x|^{-2} l(|x|>1)$, then $E\left(X^{+}\right)=E\left(X^{-}\right)=\infty$ and $E(X)$ does not exist.

The same conclusion would hold if f were the Cauchy density; i.e., $f(x)=1 /\left\{\pi\left(1+x^{2}\right)\right\}$ for $x \in \mathbb{R}$.

5.2.3 Basic Properties of Expectation

For expectation of any random variable:

1. If X is integrable, then $P[X= \pm \infty]=0$.

Proof: if $P[X=\infty]>0$, then $E\left(X^{+}\right)=\infty$ and X is not integrable.
2. If $E(X)$ exists, $E(c X)=c E(X)$. If either $E\left(X^{+}\right)<\infty$ and $E\left(Y^{+}\right)<\infty$ or $E\left(X^{-}\right)<\infty$ and $E\left(Y^{-}\right)<\infty$, then $X+Y$ is quasi-integrable and $E(X+Y)=E(X)+E(Y)$.
Proof: We only prove the last equation. It is based on $(X+Y)^{+}-(X+Y)^{-}=X+Y=X^{+}-X^{-}+Y^{+}-Y^{-}$ which implies $(X+Y)^{+}+X^{-}+Y^{-}=(X+Y)^{-}+X^{+}+Y^{+}$.
Taking expectation, we have $E(X+Y)^{+}+E\left(X^{-}\right)+E\left(Y^{-}\right)=E(X+Y)^{-}+E\left(X^{+}\right)+E\left(Y^{+}\right)$. Rearranging completes the proof.

5.2.3 Basic Properties of Expectation

For expectation of any random variable:
3. If $X \geq 0$, then $E(X) \geq 0$. If $X, Y \in L_{1}$ and $X \leq Y$, then
$E(X) \leq E(Y)$.
Proof: $Y-X \geq 0 \Longrightarrow E(Y-X) \geq 0$.
$|Y-X| \leq|Y|+|X|$, thus $Y-X \in L_{1}$. Then by 2, we have $E(Y-X)=E(Y)-E(X)$.
4. Suppose $\left\{X_{n}\right\}$ is a sequence of random variables such that $X_{n} \in L_{1}$ for some n, if either $X_{n} \uparrow X$ or $X_{n} \downarrow X$, then $E\left(X_{n}\right) \uparrow E(X)$ or $E\left(X_{n}\right) \downarrow E(X)$.
Proof: Focus on $X_{n} \uparrow X$. Then $X_{n}^{-} \downarrow X^{-}$so $E\left(X^{-}\right)<\infty$. Then $0 \leq X_{n}^{+}=X_{n}+X_{n}^{-} \leq X_{n}+X_{1}^{-} \uparrow X+X_{1}^{-}$. By MCT, $0 \leq E\left(X_{n}+X_{1}^{-}\right) \uparrow E\left(X+X_{1}^{-}\right)$. Because $X_{n} \in L_{1}$, we have $E\left(X_{n}+X_{1}^{-}\right)=E\left(X_{n}\right)+E\left(X_{1}^{\prime}\right.$ Further because $E\left(X^{-}\right)<\infty$ and $E\left(X_{1}^{-}\right)<\infty$, by 2 , we have $E\left(X+X_{1}^{-}\right)=E(X)+E\left(X_{1}^{-}\right)$. Thus
$\lim _{n \rightarrow \infty}\left\{E\left(X_{n}\right)+E\left(X_{1}^{-}\right)\right\}=E(X)+E\left(X_{1}^{-}\right)$; i.e.,
$\lim _{n \rightarrow \infty} E\left(X_{n}\right)=E(X)$. (HW 5-2: Prove it for $X_{n} \downarrow X$)

5.2.3 Basic Properties of Expectation

For expectation of any random variable:
5. Modulus Inequality. If $X \in L_{1},|E(X)| \leq E(|X|)$.

Proof:
$|E(X)|=\left|E\left(X^{+}\right)-E\left(X^{-}\right)\right| \leq E\left(X^{+}\right)+E\left(X^{-}\right)=E(|X|)$.
6. Variance and Covariance. Suppose $X^{2} \in L_{1}$ (or $X \in L_{2}$), then $\operatorname{Var}(X)=E(X-E(X))^{2}=E\left(X^{2}\right)-(E(X))^{2}$. For $X, Y \in L_{2}$,
$\overline{\operatorname{Cov}(X, Y)}=E((X-E(X))(Y-E(Y)))=E(X Y)-E(X) E(Y)$.
$\operatorname{Cov}(X, Y)=0$ defines that X and Y are uncorrelated If $X \perp Y$ and $X, Y \in L_{2}$, then $\operatorname{Cov}(X, Y)=0$.
If $X_{1}, \ldots, X_{n} \in L_{2}$ are uncorrelated, then
$\operatorname{Var}\left(\sum_{i} X_{i}\right)=\sum_{i} \operatorname{Var}\left(X_{i}\right)$.
Also if $Y_{1}, \ldots, Y_{m} \in L_{2}, a_{i}, b_{i} \in \mathbb{R}$, we have
$\operatorname{Cov}\left(\sum_{i} a_{i} X_{i}, \sum_{j} b_{j} Y_{j}\right)=\sum_{i} \sum_{j} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$.

5.2.3 Basic Properties of Expectation

For expectation of any random variable:
7. Markov inequality. Suppose $X \in L_{1}$. For any $\lambda>0$, $P[|X| \geq \lambda] \leq \lambda^{-1} E(|X|)$.
Proof: observe $1 \times I_{[|X| \geq \lambda]} \leq \frac{|X|}{\lambda}$ then take expectations.
8. Chebychev inequality. Suppose $X \in L_{1}$. For any $\lambda>0$, $P[|X-E(X)| \geq \lambda] \leq \operatorname{Var}(X) / \lambda^{2}$.
Proof: follows from the Markov's inequality.
9. WLLN. Let $\left\{X_{n}\right\}$ be iid with finite mean μ and variance σ^{2}.

Then for any $\epsilon>0, \lim _{n \rightarrow \infty} P\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right]=0$, where
$\bar{X}_{n}=n^{-1} \sum_{i} X_{i}$.
Proof: using Chebyshev yields
$P\left[\left|\bar{X}_{n}-\mu\right|>\epsilon\right] \leq \epsilon^{-2} \operatorname{Var}\left(\bar{X}_{n}\right)=\frac{\left.\operatorname{Var}\left(X_{i}\right)\right)}{n \epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}} \rightarrow 0$.

5.3 Limits and Integrals

Theorem 5.3.1 (MCT)
If $0 \leq X_{n} \uparrow X$, then $0 \leq E\left(X_{n}\right) \uparrow E(X)$.
Corollary 5.3.1 (Series versions of MCT)
if $\xi_{j} \geq 0$ are non-negative random variables for $n \geq 1$, then

$$
E\left(\sum_{j=1}^{\infty} \xi_{j}\right)=\sum_{j=1}^{\infty} E\left(\xi_{j}\right)
$$

Proof: $X_{n}=\sum_{j=1}^{n} \xi_{j}$ and $X=\sum_{j=1}^{\infty} \xi_{j}$. Apply MCT.

5.3 Limits and Integrals

Theorem 5.3.2 (Fatou Lemma)
If $0 \leq X_{n}$, then

$$
E\left(\liminf _{n \rightarrow \infty} X_{n}\right) \leq \liminf _{n \rightarrow \infty} E\left(X_{n}\right) .
$$

More generally, if there exists $Z \in L_{1}$ and $X_{n} \geq Z$, then

$$
E\left(\liminf _{n \rightarrow \infty} X_{n}\right) \leq \liminf _{n \rightarrow \infty} E\left(X_{n}\right) .
$$

Proof: $\lim \inf _{n \rightarrow \infty} X_{n}=\sup _{n \geq 1} \inf _{k \geq n} X_{k}$. Thus if $X_{n} \geq 0$, then
$E\left(\liminf _{n \rightarrow \infty} X_{n}\right)=E\left(\lim _{n \rightarrow \infty} \uparrow\left(\inf _{k \geq n} X_{k}\right)\right)=\lim _{n \rightarrow \infty} \uparrow E\left(\inf _{k \geq n} X_{k}\right) \leq \liminf E\left(X_{n}\right)$.
For $X_{n} \geq Z$, we consider $X_{n}-Z \geq 0$.

5.3 Limits and Integrals

Corollary 5.3.2 (More Fatou)
If $X_{n} \leq Z$ where $Z \in L_{1}$, then

$$
E\left(\limsup _{n \rightarrow \infty} X_{n}\right) \geq \limsup _{n \rightarrow \infty} E\left(X_{n}\right) .
$$

Proof: We have $-X_{n} \geq-Z \in L_{1}$. Then

$$
E\left(\liminf \left(-X_{n}\right)\right) \leq \liminf _{n \rightarrow \infty} E\left(-X_{n}\right),
$$

so that

$$
E\left(-\liminf _{n \rightarrow \infty}\left(-X_{n}\right)\right) \geq-\liminf _{n \rightarrow \infty}\left(-E\left(X_{n}\right)\right) .
$$

It completes the proof because $-\lim \inf _{n \rightarrow \infty}\left(-X_{n}\right)=\lim \sup _{n \rightarrow \infty} X_{n}$ and $-\liminf \lim _{n \rightarrow \infty}\left(-E\left(X_{n}\right)\right)=\lim \sup _{n \rightarrow \infty} E\left(X_{n}\right)$.

5.3 Limits and Integrals

Canonical Example

Nasty things could happened when interchanging limits and integrals: Let $(\Omega, \mathcal{B}, P)=([0,1], \mathcal{B}([0,1]), \lambda)$, where λ is Lebesgue measure. Define

$$
X_{n}=n^{2} I_{(0,1 / n)}
$$

For any $\omega \in[0,1], I_{(0,1 / n)}(\omega) \rightarrow 0$, so $X_{n} \rightarrow 0$. However, $E X_{n}=n^{2}(1 / n)=n \rightarrow \infty$. So

$$
E\left(\liminf _{n \rightarrow \infty} X_{n}\right)=0 \leq \liminf _{n \rightarrow \infty} E\left(X_{n}\right)=\infty
$$

and

$$
E\left(\limsup _{n \rightarrow \infty} X_{n}\right)=0 \nsupseteq \limsup _{n \rightarrow \infty} E\left(X_{n}\right)=\infty .
$$

Corollary 5.3.2 failed because there is no $Z \in L_{1}$ such tat $X_{n} \leq Z$. (Dominating condition is important!)

5.3 Limits and Integrals

Theorem 5.3.3 (Dominated Convergence Theorem (DCT) If $X_{n} \rightarrow X$ and there exists a dominating random variable $Z \in L_{1}$ such that

$$
\left|X_{n}\right| \leq Z
$$

then

$$
E\left(X_{n}\right) \rightarrow E(X)
$$

Proof: We have $-Z \leq X \leq Z$. Thus, we can apply Theorem 5.3.2 and Corollary 5.3.2.

$$
\begin{aligned}
E(X) & =E\left(\liminf _{n \rightarrow \infty} X_{n}\right) \leq \liminf _{n \rightarrow \infty} E\left(X_{n}\right) \\
& \leq \limsup _{n \rightarrow \infty} E\left(X_{n}\right) \leq E\left(\limsup _{n \rightarrow \infty} X_{n}\right)=E(X) .
\end{aligned}
$$

5.4 Indefinite Integrals

Definition 5.4.1
If $X \in L_{1}$, we define

$$
\int_{A} X d P=E\left(X \cdot I_{A}\right)
$$

and call $\int_{A} X d P$ the integral of X over A. Call X the integrand.
Suppose $X \geq 0$, we have (HW 5-3: prove these)

1. $0 \leq \int_{A} X d P \leq E(X)$.
2. $\int_{A} X d P=0$ iff $P(A \cap[X>0])=0$.
3. If $\left\{A_{n}: n \geq 1\right\}$ is a sequence of disjoint events
$\int_{\cup_{n} A_{n}} X d p=\sum_{n=1}^{\infty} \int_{A_{n}} X d p$.
4. If $A_{1} \subset A_{2}$, then $\int_{A_{1}} X d p \leq \int_{A_{2}} X d p$.
5. Suppose $X \in L_{1}$ and $\left\{A_{n}\right\}$ is a monotone sequence of events. If $A_{n} \uparrow A$, then $\int_{A_{n}} X d p \uparrow \int_{A} X d P$; while if If $A_{n} \downarrow A$, then $\int_{A_{n}} X d p \downarrow \int_{A} X d P$.

5.5 The Transformation Theorem and Densities

Suppose $T:(\Omega, \mathcal{B}) \mapsto\left(\Omega^{\prime}, \mathcal{B}^{\prime}\right)$ is a measurable map. P is a probability measure on \mathcal{B}. The induced probability measure on \mathcal{B}^{\prime} is

$$
P^{\prime}=P \circ T^{-1} \text {; i.e., } P^{\prime}\left(A^{\prime}\right)=P\left(T^{-1}\left(A^{\prime}\right)\right), A^{\prime} \in \mathcal{B}^{\prime}
$$

Example
$\Omega=\{(a, b): a, b=1, \ldots, 6\}$: tossing two dices.
$T(a, b)=\max (a, b): \Omega \mapsto \Omega^{\prime}$
$\Omega^{\prime}=\{m: m=1, \ldots, 6\}$: the max of the two dices.
Let $A^{\prime}=\{m=2\}$, then $P^{\prime}(\{m=2\})=P(\{(1,2),(2,1),(2,2)\})$.
Suppose $X^{\prime}:\left(\Omega^{\prime}, \mathcal{B}^{\prime}\right) \mapsto(\mathbb{R}: \mathcal{B}(\mathbb{R}))$ is a random variable, and the induced probability by X^{\prime} is $P_{X^{\prime}}$, where $P_{X^{\prime}}(B)=P^{\prime}\left(X^{\prime-1}(B)\right), B \in$ $\mathcal{B}(\mathbb{R})$.

$$
(\Omega, \mathcal{B}, P) \xrightarrow{T}\left(\Omega^{\prime}, \mathcal{B}^{\prime}, P^{\prime}\right) \xrightarrow{X^{\prime}}\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), F^{\prime}\right)
$$

where $F^{\prime}(A)=P^{\prime} \circ X^{\prime-1}(A)=P \circ T^{-1} \circ X^{\prime-1}(A)$ for $A \in \mathcal{B}(\mathbb{R})$.

5.5 The Transformation Theorem and Densities

Theorem 5.5.1 (Transformation Theorem)
Suppose $X^{\prime}:\left(\Omega^{\prime}, \mathcal{B}^{\prime}\right) \mapsto(\mathbb{R}: \mathcal{B}(\mathbb{R}))$ is a random variable. We know $X^{\prime} \circ T: \Omega \mapsto \mathbb{R}$ is also a random variable by composition.
(i) If $X^{\prime} \geq 0$, then

$$
\int_{\Omega^{\prime}} X^{\prime}\left(\omega^{\prime}\right) P^{\prime}\left(d \omega^{\prime}\right)=\int_{\Omega} X^{\prime}(T(\omega)) P(d \omega), \text { or } E^{\prime}\left(X^{\prime}\right)=E\left(X^{\prime} \circ T\right),
$$

where E^{\prime} is the expectation operator computed with respect to P^{\prime}.
(ii) We have

$$
X^{\prime} \in L_{1}\left(P^{\prime}\right) \text { iff } X^{\prime} \circ T \in L_{1}(P)
$$

in which case

$$
\int_{T^{-1}\left(A^{\prime}\right)} X^{\prime}(T(\omega)) P(d \omega)=\int_{A^{\prime}} X^{\prime}\left(\omega^{\prime}\right) P^{\prime}\left(d \omega^{\prime}\right) .
$$

5.5 The Transformation Theorem and Densities

Proof. (i) Start with X as an indicator function (a), proceeding to X as a simple function (b) and concluding with X being general (c).
(a): Suppose $X^{\prime}\left(\omega^{\prime}\right)=I_{A^{\prime}}\left(\omega^{\prime}\right)$ for $A^{\prime} \in \mathcal{B}^{\prime}$. Then $X^{\prime}(T(\omega))=$ $I\left(T(\omega) \in A^{\prime}\right)=I\left(\omega \in T^{-1}\left(A^{\prime}\right)\right)=I_{T^{-1} A^{\prime}}(\omega)$. Thus
$\int_{\Omega} X^{\prime}(T(\omega)) P(d \omega)=\int_{\Omega} I_{T^{-1} A^{\prime}}(\omega) P(d \omega)=P\left(T^{-1}\left(A^{\prime}\right)\right)$
$=P^{\prime}\left(A^{\prime}\right)=\int_{\Omega^{\prime}} I_{A^{\prime}}\left(\omega^{\prime}\right) P^{\prime}\left(d \omega^{\prime}\right)=\int_{\Omega^{\prime}} X^{\prime}\left(\omega^{\prime}\right) P^{\prime}\left(d \omega^{\prime}\right)$.
(b) Let X^{\prime} be simple: $X^{\prime}\left(\omega^{\prime}\right)=\sum_{t=1}^{k} a_{t}^{\prime} I_{A^{\prime}}\left(\omega^{\prime}\right)$. Then $X^{\prime}(T(\omega))=$ $\sum_{t=1}^{k} a_{t}^{\prime} l_{A_{t}^{\prime}}(T(\omega))=\sum_{t=1}^{k} a_{t}^{\prime} I_{T^{-1} A_{t}^{\prime}}(\omega)$. Then everything follows.

5.5 The Transformation Theorem and Densities

Proof continued. (c) Let $X^{\prime} \geq 0$ which is measurable. There exists an approximating sequence $X_{n}^{\prime} \uparrow X^{\prime}$. By MCT, $E^{\prime}\left(X_{n}^{\prime}\right) \uparrow E^{\prime}\left(X^{\prime}\right)$. Also $X_{n}^{\prime} \circ T \uparrow X^{\prime} \circ T$. Then by MCT: $E\left(X_{n}^{\prime} \circ T\right) \uparrow E\left(X^{\prime} \circ T\right)$. Thus

$$
\begin{aligned}
\int_{\Omega} X^{\prime}(T(\omega)) P(d \omega) & =\lim _{n \rightarrow \infty} \uparrow \int_{\Omega} X_{n}^{\prime}(T(\omega)) P(d \omega) \\
& =\lim _{n \rightarrow \infty} \uparrow \int_{\Omega^{\prime}} X_{n}^{\prime}\left(\omega^{\prime}\right) P^{\prime}\left(d \omega^{\prime}\right) \\
& =\int_{\Omega^{\prime}} X^{\prime}\left(\omega^{\prime}\right) P^{\prime}\left(d \omega^{\prime}\right)
\end{aligned}
$$

THe proof of (ii) is similar by using $X^{\prime} I_{A^{\prime}}$.

5.5.1 Expectation is Always an Integral on R

Let X be a random variable on (Ω, \mathcal{B}, P) and define the induced probability measure on $(\mathbb{R}, \mathcal{B}(R))$ by

$$
F=P \circ X^{-1}, \text { or } F(A)=P \circ X^{-1}(A)=P[X \in A] .
$$

The distribution function of X is $F(x)=P[X \leq x]$. Using the Transformation Theorem allows us to compute the abstract integral

$$
E(X)=\int_{\Omega} X(\omega) P(d \omega)
$$

as

$$
E(X)=\int_{\mathbb{R}} x F(d x)
$$

which is an integral on \mathbb{R}.

5.5.1 Expectation is Always an Integral on R

Corollary 5.5.1 HW 5-4: prove it
(i) If X is an integrable random variable with distribution F, then

$$
E(X)=\int_{\mathbb{R}} x F(d x) .
$$

(ii) Suppose $X:(\Omega, \mathcal{B}) \mapsto(\mathbb{E}, \mathcal{E})$ is a random element of \mathbb{E} with distribution $F=P \circ X^{-1}$ and suppose

$$
g:(\mathbb{E}, \mathcal{E}) \mapsto\left(\mathbb{R}_{+}, \mathcal{B}\left(\mathbb{R}_{+}\right)\right)
$$

is a non-negative measurable function. The expectation of $g(X)$ is

$$
E(g(X))=\int_{\Omega} g(X(\omega)) P(d \omega)=\int_{\mathbb{E}} g(x) F(d x) .
$$

5.5.2 Densities

Let $\boldsymbol{X}:(\Omega, \mathcal{B}) \mapsto\left(\mathbb{R}^{k}, \mathcal{B}\left(\mathbb{R}^{k}\right)\right)$ be a random vector on (Ω, \mathcal{B}, P) with distribution F. We say X or F is absolutely continuous (AC) if there exists a non-negative function

$$
f:\left(\mathbb{R}^{k}, \mathcal{B}\left(\mathbb{R}^{k}\right)\right) \mapsto\left(\mathbb{R}_{+}, \mathcal{B}\left(\mathbb{R}_{+}\right)\right)
$$

such that

$$
F(A)=\int_{A} f(x) d x
$$

where $d x$ stands for Lebesgue measure and the integral is a LebesgueStieltjes integral.

Proposition 5.5.2

Let $g:\left(\mathbb{R}^{k}, \mathcal{B}\left(\mathbb{R}^{k}\right)\right) \mapsto\left(\mathbb{R}_{+}, \mathcal{B}\left(\mathbb{R}_{+}\right)\right)$be a non-negative measurable function. Suppose X is a random vector with distribution F which is $A C$ with density f, then

$$
E(g(X))=\int_{\mathbb{R}} g(\boldsymbol{x}) f(\boldsymbol{x}) d \boldsymbol{x}
$$

5.6 The Riemann vs Lebesgue Integral

We always use Riemann integrals to compute expectations using densities. How does the Riemann integral compare with the Lebesgue integral?
Theorem 5.6.1 (Riemann and Lebesgue)
Suppose $f:(a, b] \mapsto \mathbb{R}$ and
(a) f is $\mathcal{B}((a, b]) / \mathcal{B}(\mathbb{R})$ measurable,
(b) f is Riemann-integrable on $(a, b]$.

Let λ be the Lebesgue measure on $(a, b]$. Then
(i) $f \in L_{1}([a, b], \lambda)$. In fact f is bounded.
(ii) The Riemann integral of f equals the Lebesgue integral.

However, a function could have Lebesgue integral but not Riemann integral. In fact, for a function to be Riemann-integrable, it is necessary and sufficient that the function be bounded and continuous almost everywhere.

5.6 The Riemann vs Lebesgue Integral

Lemma 5.6.1 (Integral Comparison Lemma) HW 5-5: prove it Suppose X and X^{\prime} are random variables on (Ω, \mathcal{B}, P) and suppose $X \in L_{1}$.
(a) If $P\left[X=X^{\prime}\right]=1$, then $X^{\prime} \in L_{1}$ and $E(X)=E\left(X^{\prime}\right)$.
(b) $P\left[X=X^{\prime}\right]=1$ iff $\int_{A} X d P=\int_{A} X^{\prime} d P$ for all $A \in \mathcal{B}$.

5.6 The Riemann vs Lebesgue Integral

Example 5.6.1 (Riemann and Lebesgue)
Set $\Omega=[0,1]$ and $P=\lambda=$ Lebesgue measure. Let $X(s)=\mathscr{l}_{\mathbb{Q}}(s)$ for $s \in \Omega$, where \mathbb{Q} collects the rational real numbers. Then

$$
\lambda(\mathbb{Q})=\lambda\left(\cup_{r \in \mathbb{Q}}\{r\}\right)=\sum_{r \in \mathbb{Q}} \lambda(\{r\})=0 .
$$

Thus $\lambda([X=1])=0$ and $\lambda([X=0])=1-0=1$. Then by Lemma 5.6.1, $E(X)=E(0)=0$. What about using Riemann integral to calculate $E(X)=\int_{[0,1]} X(s) d s$? No matter how fine we partition the $[0,1]$, there always exits rational number in a sub-interval. Thus the upper Riemann approximating sum is always 1 while the lower one is always 0 . Thus the Riemann integral does not exist but the Lebesgue integral does and is equal to 0 .

5.7 Product Spaces, Independence, Fubini Theorem

Let Ω_{1}, Ω_{2} be two sets. Define the product space

$$
\Omega_{1} \times \Omega_{2}=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{i} \in \Omega_{i}, i=1,2\right\}
$$

and define the coordinate or projection maps $\pi_{i}: \Omega_{1} \times \Omega_{2} \mapsto \Omega_{i}$, $i=1,2$, by

$$
\pi_{i}\left(\omega_{1}, \omega_{2}\right)=\omega_{i}
$$

If $A \subset \Omega_{1} \times \Omega_{2}$ define

$$
\begin{aligned}
& A_{\omega_{1}}=\left\{\omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in A\right\} \subset \Omega_{2} \\
& A_{\omega_{2}}=\left\{\omega_{1}:\left(\omega_{1}, \omega_{2}\right) \in A\right\} \subset \Omega_{1}
\end{aligned}
$$

$A_{\omega_{i}}$ is called the section of A at ω_{i}.
(i) If $A \subset \Omega_{1} \times \Omega_{2}$, then $\left(A^{c}\right)_{\omega_{1}}=\left(A_{\omega_{1}}\right)^{c}$.
(ii) If, for an index set T, we have $A_{\alpha} \subset \Omega_{1} \times \Omega_{2}$, for all $\alpha \in T$, then

$$
\left(\cup_{\alpha} A_{\alpha}\right)_{\omega_{1}}=\cup_{\alpha}\left(A_{\alpha}\right)_{\omega_{1}}, \quad\left(\cap_{\alpha} A_{\alpha}\right)_{\omega_{1}}=\cap_{\alpha}\left(A_{\alpha}\right)_{\omega_{1}}
$$

5.7 Product Spaces, Independence, Fubini Theorem

Let X be a function with domain $\Omega_{1} \times \Omega_{2}$ and range S. Define the section of X as

$$
X_{\omega_{1}}\left(\omega_{2}\right)=X\left(\omega_{1}, \omega_{2}\right)
$$

so

$$
X_{\omega_{1}}: \Omega_{2} \mapsto S
$$

We think of ω_{1} as fixed and the section is a function of varying ω_{2}.
Call $X_{\omega_{1}}$ the section of X at ω_{1}.
(i) $\left(I_{A}\right)_{\omega_{1}}=I_{A_{\omega_{1}}}$
(ii) If $S=\mathbb{R}^{k}$ for some $k \geq 1$ and if for $i=1,2$ we have $X_{i}: \Omega_{1} \times \Omega_{2} \mapsto S$, then

$$
\left(X_{1}+X_{2}\right)_{\omega_{1}}=\left(X_{1}\right)_{\omega_{1}}+\left(X_{2}\right)_{\omega_{1}}
$$

(iii) Suppose S is a metric space, $X_{n}: \Omega_{1} \times \Omega_{2} \mapsto S$ and $\lim _{n \rightarrow \infty} X_{n}$ exists. Then

$$
\lim _{n \rightarrow \infty}\left(X_{n}\right)_{\omega_{1}}=\left(\lim _{n \rightarrow \infty} X_{n}\right)_{\omega_{1}}
$$

5.7 Product Spaces, Independence, Fubini Theorem

A rectangle in $\Omega_{1} \times \Omega_{2}$ is a subset of $\Omega_{1} \times \Omega_{2}$ of the form $A_{1} \times A_{2}$ where $A_{i} \in \Omega_{i}, i=1,2$. We call A_{1} and A_{2} the sides of the rectangle. The rectangle is empty if at least one of the sides is empty.

Suppose $\left(\Omega_{i}, \mathcal{B}_{i}\right)$ are two measurable spaces $(i=1,2)$. A rectangle is called measurable if it is of the form $A_{1} \times A_{2}$ where $A_{i} \in \mathcal{B}_{i}$, for $i=1,2$. An important fact: The class of measurable rectangles is a semi-algebra which we call RECT.

We now define a σ-algebra on $\Omega_{1} \times \Omega_{2}$ to be the smallest σ-algebra containing RECT. We denote it by $\mathcal{B}_{1} \times \mathcal{B}_{2}$ and call it the product σ-algebra. Thus

$$
\mathcal{B}_{1} \times \mathcal{B}_{2}=\sigma(\mathrm{RECT})
$$

If $\Omega_{1}=\Omega_{2}=\mathbb{R}$, then

$$
\begin{aligned}
\mathcal{B}_{1} \times \mathcal{B}_{2} & =\sigma\left(A_{1} \times A_{2}: A_{i} \in \mathcal{B}(\mathbb{R}), i=1,2\right) \\
& =\sigma\left(\left\{I_{1} \times I_{2}: I_{i} \text { is of form }(a, b], i=1,2\right\}\right) .
\end{aligned}
$$

5.7 Product Spaces, Independence, Fubini Theorem

Lemma 5.7.1 (Sectioning Sets)

Sections of measurable sets are measurable. If $A \in \mathcal{B}_{1} \times \mathcal{B}_{2}$, then for all $\omega \in \Omega_{1}$,

$$
A_{\omega_{1}} \in \mathcal{B}_{2} .
$$

Proof: Define $\mathcal{C}_{\omega_{1}}=\left\{A \subset \Omega_{1} \times \Omega_{2}: A_{\omega_{1}} \in \mathcal{B}_{2}\right\}$. We prove $\mathcal{C}_{\omega_{1}} \supset \mathcal{B}_{1} \times \mathcal{B}_{2}=\sigma($ RECT $)$. Known RECT is a π-system, by Dynkin's Theorem (2.2.2), it suffices to show that $\mathcal{C}_{\omega_{1}}$ is a Dynkin's system and $\operatorname{RECT} \subset \mathcal{C}_{\omega_{1}}$.

If $A \in \operatorname{RECT}$ and $A=A_{1} \times A_{2}, A_{i} \in \mathcal{B}_{i}$ for $i=1,2$, then $A_{\omega_{1}}=$ $\left\{\omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in A_{1} \times A_{2}\right\}$ which equals to $A_{2} \in \mathcal{B}_{2}$ if $\omega_{1} \in A_{1}$ or $\emptyset \in \mathcal{B}_{2}$ otherwise. Thus $A_{\omega_{1}} \in \mathcal{C}_{\omega_{1}}$. It concludes RECT $\subset \mathcal{C}_{\omega_{1}}$.

5.7 Product Spaces, Independence, Fubini Theorem

Proof continued: We now show $\mathcal{C}_{\omega_{1}}$ is a Dynkin's system.
(i) $\Omega_{1} \times \Omega_{2} \in \operatorname{RECT} \subset \mathcal{C}_{\omega_{1}}$.
(ii) If $A \in \mathcal{C}_{\omega_{1}}$, then $\left(A^{c}\right)_{\omega_{1}}=\left(A_{\omega_{1}}\right)^{c} \in \mathcal{B}_{2}$ because $A_{\omega_{1}} \in \mathcal{B}_{2}$. Thus, $A^{c} \in \mathcal{C}_{\omega_{1}}$.
(iii) If $A_{n} \in \mathcal{C}_{\omega_{1}}$ (meaning $\left(A_{n}\right)_{\omega_{1}} \in \mathcal{B}$) with $\left\{A_{n}\right\}$ disjoint. Then $\left(\cup_{n} A_{n}\right)_{\omega_{1}}=\cup_{n}\left(A_{n}\right)_{\omega_{1}} \in \mathcal{B}_{2}$, thus $\cup_{n} A_{n} \in \mathcal{C}_{\omega_{1}}$.
This completes the proof.

5.7 Product Spaces, Independence, Fubini Theorem

Corollary 5.7.1 (Sectioning Sets)
Sections of measurable function are measurable. That is if

$$
X:\left(\Omega_{1} \times \Omega_{2}, \mathcal{B}_{1} \times \mathcal{B}_{2}\right) \mapsto(S, \mathcal{S})
$$

then

$$
X_{\omega_{1}} \in \mathcal{B}_{2} .
$$

Proof: Since X is $\mathcal{B}_{1} \times \mathcal{B}_{2} / \mathcal{S}$ measurable, we have for $\Lambda \in \mathcal{S}$ that $X^{-1}(\Lambda)=\left\{\left(\omega_{1}, \omega_{2}\right): X\left(\omega_{1}, \omega_{2}\right) \in \Lambda\right\} \in \mathcal{B}_{1} \times \mathcal{B}_{2}$. Therefore, by Lemma 5.7.1, $\left(X^{-1}(\Lambda)\right)_{\omega_{1}} \in \mathcal{B}_{2}$. we note

$$
\begin{aligned}
\left.\left(X^{-1}(\Lambda)\right)\right)_{\omega_{1}} & =\left\{\omega_{2}: X\left(\omega_{1}, \omega_{2}\right) \in \Lambda\right\} \\
& =\left\{\omega_{2}: X_{\omega_{1}}\left(\omega_{2}\right) \in \Lambda\right\}=\left(X_{\omega_{1}}\right)^{-1}(\Lambda) .
\end{aligned}
$$

5.8 Product Measures on Product Spaces

Transition Functions
Call a function

$$
K\left(\omega_{1}, A_{2}\right): \Omega_{1} \times \mathcal{B}_{2} \mapsto[0,1]
$$

a transition function (or transition kernel) if
(i) for each $\omega_{1}, K\left(\omega_{1}, \cdot\right)$ is a probability measure on \mathcal{B}_{2}, and
(ii) for each $A_{2} \in \mathcal{B}_{2}, K\left(\cdot, A_{2}\right)$ is $\mathcal{B}_{1} / \mathcal{B}([0,1])$ measurable.

We interpret $K\left(\omega_{1}, A_{2}\right)$ as the conditional probability given ω_{1}, the result transits to A_{2}.

5.8 Product Measures on Product Spaces

Theorem 5.8.1
Let P_{1} be a probability measure on \mathcal{B}_{1}, and suppose

$$
K: \Omega_{1} \times \mathcal{B}_{2} \mapsto[0,1]
$$

is a transition function. Then K and P_{1}, uniquely determine a probability on $\mathcal{B}_{1} \times \mathcal{B}_{2}$ via the formula

$$
P\left(A_{1} \times A_{2}\right)=\int_{A_{1}} K\left(\omega_{1}, A_{2}\right) P_{1}\left(d \omega_{1}\right)
$$

for all $A_{1} \times A_{2} \in$ RECT.
Interpretation: $P\left(A_{1} \times A_{2}\right)=P\left(A_{2} \mid A_{1}\right) P\left(A_{1}\right)$.

5.8 Product Measures on Product Spaces

Proof of Theorem 5.8.1: Again, we specified P on the semi-algebra RECT. We need to show P is a valid probability measure on $\mathcal{B}_{1} \times$ $\mathcal{B}_{2}=\sigma($ RECT $)$. This can be done by applying the Combo Extension Theorem 2.4.3. It requires us to check P is a σ-additive set function mapping RECT to $[0,1]$ such that $P\left(\Omega_{1} \times \Omega_{2}\right)=1$.

Because, for each $\omega_{1}, K\left(\omega_{1}, \cdot\right)$ is a probability measure on \mathcal{B}_{2},

$$
K\left(\omega_{1}, \Omega_{2}\right)=1, \forall \omega_{1} \in \Omega_{1}
$$

Because P_{1} is probability measure on \mathcal{B}_{1},

$$
\begin{aligned}
P\left(\Omega_{1} \times \Omega_{2}\right) & =\int_{\Omega_{1}} K\left(\omega_{1}, \Omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{1}} P_{1}\left(d \omega_{1}\right)=P_{1}\left(\Omega_{1}\right)=1 .
\end{aligned}
$$

5.8 Product Measures on Product Spaces

Proof of Theorem 5.8.1 (continued): Now we show P is σ additive on RECT. Let $\left\{A^{(n)}=A_{1}^{(n)} \times A_{2}^{(n)}: n \geq 1\right\}$ be disjoint elements of RECT whose union is in RECT (i.e., $\cup_{n=1}^{\infty}\left(A_{1}^{(n)} \times A_{2}^{(n)}\right)=$ $A_{1} \times A_{2}$). We need to show

$$
P\left(A_{1} \times A_{2}\right)=\sum_{n=1}^{\infty} P\left(A_{1}^{(n)} \times A_{2}^{(n)}\right)
$$

Because $K\left(\omega_{1}, \cdot\right)$ is a probability measure on \mathcal{B}_{2}, for any $A_{2} \in \mathcal{B}_{2}$, $K\left(\omega_{1}, A_{2}\right)=\int_{\Omega_{2}} I_{A_{2}}\left(\omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right)$.

$$
\begin{aligned}
P\left(A_{1} \times A_{2}\right) & =\int_{\Omega_{1}} I_{A_{1}}\left(\omega_{1}\right) K\left(\omega_{1}, A_{2}\right) P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{1}} I_{A_{1}}\left(\omega_{1}\right) \int_{\Omega_{2}} I_{A_{2}}\left(\omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{1}} \int_{\Omega_{2}} I_{A_{1}}\left(\omega_{1}\right) I_{A_{2}}\left(\omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) P_{1}\left(d \omega_{1}\right) .
\end{aligned}
$$

5.8 Product Measures on Product Spaces

Proof of Theorem 5.8.1 (continued): Because $\cup_{n=1}^{\infty}\left(A_{1}^{(n)} \times A_{2}^{(n)}\right)=$ $A_{1} \times A_{2}, I_{A_{1}}\left(\omega_{1}\right) I_{A_{2}}\left(\omega_{2}\right)=I_{A_{1} \times A_{2}}\left(\omega_{1}, \omega_{2}\right)=\sum_{n} I_{A_{1}^{(n)}}\left(\omega_{1}\right) I_{A_{2}^{(n)}}\left(\omega_{2}\right)$.
Continued, we have

$$
\begin{aligned}
P\left(A_{1} \times A_{2}\right) & =\int_{\Omega_{1}} \int_{\Omega_{2}} \sum_{n} I_{A_{1}^{(n)}}\left(\omega_{1}\right) I_{A_{2}^{(n)}}\left(\omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
\text { by MTC } & =\int_{\Omega_{1}} \sum_{n} I_{A_{1}^{(n)}}\left(\omega_{1}\right) \int_{\Omega_{2}} I_{A_{2}^{(n)}}\left(\omega_{2}\right) K\left(\omega_{1}, d \omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
\text { by MTC } & =\sum_{n} \int_{\Omega_{1}} I_{A_{1}^{(n)}}\left(\omega_{1}\right) K\left(\omega_{1}, A_{2}^{(n)}\right) P_{1}\left(d \omega_{1}\right) \\
& =\sum_{n} \int_{A_{1}^{(n)}} K\left(\omega_{1}, A_{2}^{(n)}\right) P_{1}\left(d \omega_{1}\right) \\
& =\sum_{n} P\left(A_{1}^{(n)} \times A_{2}^{(n)}\right) .
\end{aligned}
$$

5.8 Product Measures on Product Spaces

Special case. Suppose for some probability measure P_{2} on \mathcal{B}_{2} that $K\left(\omega_{1}, A_{2}\right)=P_{2}\left(A_{2}\right)$. Then the previously defined P satisfies

$$
P\left(A_{1} \times A_{2}\right)=P_{1}\left(A_{1}\right) P_{2}\left(A_{2}\right)
$$

We denote this P by $P_{1} \times P_{2}$ and call P product measure. Define σ-algebra ins $\Omega_{1} \times \Omega_{2}$ by $\mathcal{B}_{1}^{\#}=\left\{A_{1} \times \Omega_{2}: A_{1} \in \mathcal{B}_{1}\right\}$ and $\mathcal{B}_{2}^{\#}=$ $\left\{\Omega_{1} \times A_{2}: A_{2} \in \mathcal{B}_{2}\right\}$. With respect to the product measure P, we have

$$
\mathcal{B}_{1}^{\#} \perp \mathcal{B}_{2}^{\#}
$$

because $P\left(A_{1} \times \Omega_{2} \cap \Omega_{1} \times A_{2}\right)=P\left(A_{1} \times A_{2}\right)=P_{1}\left(A_{1}\right) P_{2}\left(A_{2}\right)=$ $P\left(A_{1} \times \Omega_{2}\right) P\left(\Omega_{1} \times A_{2}\right)$.

5.8 Product Measures on Product Spaces

Special case continued. Suppose $X_{i}:\left(\Omega_{i}, \mathcal{B}_{i}\right) \mapsto(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is a random variable on Ω_{t} for $i=1,2$. Define on $\Omega_{1} \times \Omega_{2}$ the functions

$$
X_{1}^{\#}\left(\omega_{1}, \omega_{2}\right)=X_{1}\left(\omega_{1}\right), \quad X_{2}^{\#}\left(\omega_{1}, \omega_{2}\right)=X_{2}\left(\omega_{2}\right)
$$

with respect to $P=P_{1} \times P_{2}$. The variables $X_{1}^{\#}$ and $X_{2}^{\#}$ are independent because

$$
\begin{aligned}
& P\left[X_{1}^{\#} \leq x, X_{2}^{\#} \leq y\right] \\
= & P_{1} \times P_{2}\left(\left\{\left(\omega_{1}, \omega_{2}\right): X_{1}\left(\omega_{1}\right) \leq x, X_{2}\left(\omega_{2}\right) \leq y\right\}\right) \\
= & P_{1} \times P_{2}\left(\left\{\omega_{1}: X_{1}\left(\omega_{1}\right) \leq x\right\} \times\left\{\omega_{2}: X_{2}\left(\omega_{2}\right) \leq y\right\}\right) \\
= & P_{1}\left[X_{1} \leq x\right] P_{2}\left[X_{2} \leq y\right]=P_{1}\left[X_{1} \leq x\right] P_{2}\left(\Omega_{2}\right) P_{1}\left(\Omega_{1}\right) P_{2}\left[X_{2} \leq y\right] \\
= & P\left(\left[X_{1} \leq x\right] \times \Omega_{2}\right) P\left(\Omega_{1} \times\left[X_{2} \leq y\right]\right) \\
= & P\left(\left\{\left(\omega_{1}, \omega_{2}\right): X_{1}\left(\omega_{1}\right) \leq x\right\}\right) P\left(\left\{\left(\omega_{1}, \omega_{2}\right): X_{2}\left(\omega_{2}\right) \leq y\right\}\right) \\
= & P\left[X_{1}^{\#} \leq x\right] P\left[X_{2}^{\#} \leq y\right] .
\end{aligned}
$$

Independence is automatically built into the model by construction when using product measure.

5.9 Fubini's theorem

Theorem 5.9.1
Let P_{1} be a probability measure on $\left(\Omega_{1}, \mathcal{B}_{1}\right)$ and suppose $K: \Omega_{1} \times \mathcal{B}_{1} \mapsto[0,1]$ is a transition kernel. Define P on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{B}_{1} \times \mathcal{B}_{2}\right)$ by $P\left(A_{1} \times A_{2}\right)=\int_{A_{1}} K\left(\omega_{1}, A_{2}\right) P_{1}\left(d \omega_{1}\right)$.
Assume $X:\left(\Omega_{1} \times \Omega_{2}, \mathcal{B}_{1} \times \mathcal{B}_{2}\right) \mapsto(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and suppose $X \geq 0$ (X is integrable). Then
has the properties

$$
Y\left(\omega_{1}\right)=\int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) X_{\omega_{1}}\left(\omega_{2}\right)
$$

(a) Y is well defined.
(b) $Y \in \mathcal{B}_{1}$
(c) $Y \geq 0\left(Y \in L_{1}\left(P_{1}\right)\right)$.
and furthermore

$$
\begin{align*}
& \int_{\Omega_{1} \times \Omega_{2}} X d P=\int_{\Omega_{1}} Y\left(\omega_{1}\right) P_{1}\left(d \omega_{1}\right) \\
= & \int_{\Omega_{1}}\left[\int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) X_{\omega_{1}}\left(\omega_{2}\right)\right] P_{1}\left(d \omega_{1}\right) . \tag{1}
\end{align*}
$$

5.9 Fubini's theorem

Interpretation: When calculating $\iint h\left(\omega_{1}, \omega_{2}\right) f\left(\omega_{1}, \omega_{2}\right) d \omega_{2} d \omega_{1}$, we can have $f\left(\omega_{1}, \omega_{2}\right)=f_{2 \mid 1}\left(\omega_{2} \mid \omega_{1}\right) f_{1}\left(\omega_{1}\right)$ (joint equals conditional times marginal). Then

$$
\begin{aligned}
& \iint h\left(\omega_{1}, \omega_{2}\right) f\left(\omega_{1}, \omega_{2}\right) d \omega_{2} d \omega_{1} \\
&= \iint h\left(\omega_{1}, \omega_{2}\right) f_{2 \mid 1}\left(\omega_{2} \mid \omega_{1}\right) f_{1}\left(\omega_{1}\right) d \omega_{2} d \omega_{1} \\
&= \iint h\left(\omega_{1}, \omega_{2}\right) f_{2 \mid 1}\left(\omega_{1} \mid \omega_{2}\right) d \omega_{2} \\
& \underbrace{f_{2}\left(\omega_{2}\right) d \omega_{1}}_{Y\left(\omega_{1}\right)} .
\end{aligned}
$$

5.9 Fubini's theorem

Proof of Theorem 5.9.1: We only show (1) under the assumption $X \geq 0$. Start with the indicator function $X=I_{A_{1} \times A_{2}}$, where $A_{1} \times$ $A_{2} \in$ RECT. Then $\int_{\Omega_{1} \times \Omega_{2}} X d P=\int_{A_{1} \times A_{2}} d P=P\left(A_{1} \times A_{2}\right)$. And

$$
\begin{aligned}
\int_{\Omega_{1}} Y\left(\omega_{1}\right) P_{1}\left(d \omega_{1}\right) & =\int_{\Omega_{1}}\left[\int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) I_{A_{1}}\left(\omega_{1}\right) I_{A_{2}}\left(\omega_{2}\right)\right] P_{1}\left(d \omega_{1}\right) \\
& =\int_{A_{1}} K\left(\omega_{1}, A_{2}\right) P_{1}\left(d \omega_{1}\right)=P\left(A_{1} \times A_{2}\right)
\end{aligned}
$$

Thus (1) holds for indicators of measurable rectangles. Let

$$
\mathcal{C}=\left\{A \in \mathcal{B}_{1} \times \mathcal{B}_{2}:(1) \text { holds for } X=I_{A}\right\},
$$

and we know $\operatorname{RECT} \subset \mathcal{C}$. We claim \mathcal{C} is a Dynkin system.

5.9 Fubini's theorem

Proof of Theorem 5.9.1, continued: We check \mathcal{C} is a Dynkin system:
(i) $\Omega_{1} \times \Omega_{2} \in \mathcal{C}$.
(ii) If $A \in \mathcal{C}, A^{c} \in \mathcal{C}$. Because for $X=I_{A^{c}}$, we have

$$
\begin{aligned}
\int_{\Omega_{1} \times \Omega_{2}} X d P & =P\left(A^{c}\right)=1-P(A) \\
& =1-\int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) I_{A_{\omega_{1}}}\left(\omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right)\left(1-I_{A_{\omega_{1}}}\left(\omega_{2}\right)\right) P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) I_{\left(A_{\omega_{1}}\right)^{c}\left(\omega_{2}\right) P_{1}\left(d \omega_{1}\right)} \\
& =\int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) I_{\left(A^{c}\right)_{\omega_{1}}}\left(\omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) X_{\omega_{1}}\left(\omega_{2}\right) P_{1}\left(d \omega_{1}\right) .
\end{aligned}
$$

5.9 Fubini's theorem

Proof of Theorem 5.9.1, continued: We check \mathcal{C} is a Dynkin system:
(iii) If $A_{n} \in \mathcal{C}$, and $\left\{A_{n}: n \geq 1\right\}$ are disjoint events, then $\cup_{n} A_{n} \in \mathcal{C}$. Because if $X=\ell_{\cup_{n} A_{n}}$,

$$
\begin{aligned}
\int_{\Omega_{1} \times \Omega_{2}} X d P & =P\left(\cup_{n} A_{n}\right)=\sum_{n} P\left(A_{n}\right) \\
& =\sum_{n} \int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) I_{\left(A_{n}\right)_{\omega_{1}}}\left(\omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
\text { by MCT } & =\int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) \sum_{n} I_{\left(A_{n}\right)_{\omega_{1}}}\left(\omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) I_{\left(\cup_{n} A_{n}\right)_{\omega_{1}}}\left(\omega_{2}\right) P_{1}\left(d \omega_{1}\right)
\end{aligned}
$$

Then we have show \mathcal{C} is a Dynkin system and the π-system RECT \subset \mathcal{C}. Thus $\sigma($ RECT $)=\mathcal{B}_{1} \times \mathcal{B}_{2} \subset \mathcal{C}$; i.e., for any $A \in \mathcal{B}_{1} \times \mathcal{B}_{2}$, (1) holds for $X=I_{A}$.

5.9 Fubini's theorem

Proof of Theorem 5.9.1, continued: If $X=\sum_{i=1}^{k} a_{i} I_{A_{i}}$, where $A_{i} \in \mathcal{B}_{1} \times \mathcal{B}_{2}$. It is easy to check (1) holds.

For arbitrary $X \geq 0$, denoted its approximating sequence by $X_{n} \uparrow X$. By monotone convergence, $\int_{\Omega_{1} \times \Omega_{2}} X_{n} d P \uparrow \int_{\Omega_{1} \times \Omega_{2}} X d P$. We know (1) holds for each X_{n}; i.e.,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \uparrow \int_{\Omega_{1} \times \Omega_{2}} X_{n} d P \\
= & \lim _{n \rightarrow \infty} \uparrow \int_{\Omega_{1}} \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right)\left(X_{n}\right)_{\omega_{1}}\left(\omega_{2}\right) P_{1}\left(d \omega_{1}\right) \\
\text { by MCT }= & \int_{\Omega_{1}}\left[\lim _{n \rightarrow \infty} \uparrow \int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right)\left(X_{n}\right)_{\omega_{1}}\left(\omega_{2}\right)\right] P_{1}\left(d \omega_{1}\right) \\
\text { by MCT }= & \int_{\Omega_{1}}\left[\int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) \lim _{n \rightarrow \infty} \uparrow\left(X_{n}\right)_{\omega_{1}}\left(\omega_{2}\right)\right] P_{1}\left(d \omega_{1}\right) \\
= & \int_{\Omega_{1}}\left[\int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) X_{\omega_{1}}\left(\omega_{2}\right)\right] P_{1}\left(d \omega_{1}\right) .
\end{aligned}
$$

5.9 Fubini's theorem

Theorem 5.9.2 Fubini Theorem
Let $P=P_{1} \times P_{2}$ be the product measure. If X is $\mathcal{B}_{1} \times \mathcal{B}_{2}$ measurable and is either non-negative or integrable with respect to P, then

$$
\begin{aligned}
\int_{\Omega_{1} \times \Omega_{2}} X d P & =\int_{\Omega_{1}}\left[\int_{\Omega_{2}} X_{\omega_{1}}\left(\omega_{2}\right) P_{2}\left(d \omega_{2}\right)\right] P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{2}}\left[\int_{\Omega_{1}} X_{\omega_{2}}\left(\omega_{1}\right) P_{1}\left(d \omega_{1}\right)\right] P_{2}\left(d \omega_{2}\right)
\end{aligned}
$$

5.9 Fubini's theorem

Proof: Let $K\left(\omega_{1}, A_{2}\right)=P_{2}\left(A_{2}\right)$. Then P_{1} and K determine $P=$ $P_{1} \times P_{2}$ on $\mathcal{B}_{1} \times \mathcal{B}_{2}$ and

$$
\begin{aligned}
\int_{\Omega_{1} \times \Omega_{2}} X d P & =\int_{\Omega_{1}}\left[\int_{\Omega_{2}} K\left(\omega_{1}, d \omega_{2}\right) X_{\omega_{1}}\left(\omega_{2}\right)\right] P_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{1}}\left[\int_{\Omega_{2}} P_{2}\left(d \omega_{2}\right) X_{\omega_{1}}\left(\omega_{2}\right)\right] P_{1}\left(d \omega_{1}\right)
\end{aligned}
$$

Also let $\tilde{K}\left(\omega_{2}, A_{1}\right)=P_{1}\left(A_{1}\right)$ be a transition kernel with $\tilde{K}: \Omega_{2} \times$ $\mathcal{B}_{1} \mapsto[0,1]$. Then \tilde{K} and P_{2} also determine $P=P_{1} \times P_{2}$ and we have

$$
\begin{aligned}
\int_{\Omega_{1} \times \Omega_{2}} X d P & =\int_{\Omega_{2}}\left[\int_{\Omega_{1}} \tilde{K}\left(\omega_{2}, d \omega_{1}\right) X_{\omega_{2}}\left(\omega_{1}\right)\right] P_{2}\left(d \omega_{2}\right) \\
& =\int_{\Omega_{2}}\left[\int_{\Omega_{1}} P_{1}\left(d \omega_{1}\right) X_{\omega_{2}}\left(\omega_{1}\right)\right] P_{2}\left(d \omega_{2}\right)
\end{aligned}
$$

5.9 Fubini's theorem

Example 5.9.2
Let $X_{i} \geq 0, i=1,2$, be two independent random variables. Then

$$
E\left(X_{1} X_{2}\right)=E\left(X_{1}\right) E\left(X_{2}\right)
$$

Proof: Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right), g\left(x_{1}, x_{2}\right)=x_{1} x_{2}, F_{i}$ the distribution of X_{i}. Then $P \circ \boldsymbol{X}^{-1}\left(A_{1} \times A_{2}\right)=P\left[\left(X_{1}, X_{2}\right) \in A_{1} \times A_{2}\right]=P\left[X_{1} \in\right.$ $\left.A_{1}, X_{2} \in A_{2}\right]=P_{1}\left[X_{1} \in A_{1}\right] P_{2}\left[X_{2} \in A_{2}\right]=F_{1}\left(A_{1}\right) F_{2}\left(A_{2}\right)=F_{1} \times$ $F_{2}\left(A_{1} \times A_{2}\right)$. So $P \circ \boldsymbol{X}^{-1}$ and $F_{1} \times F_{2}$ agree on RECT and hence on $\mathcal{B}($ RECT $)=\mathcal{B}_{1} \times \mathcal{B}_{2}$. From Corollary 5.5.1 we have

$$
\begin{aligned}
E\left(X_{1} X_{2}\right) & =E(g(\boldsymbol{X}))=\int_{\mathbb{R}_{+}^{2}} g(\boldsymbol{x}) P \circ \boldsymbol{X}^{-1}(d \boldsymbol{x})=\int_{\mathbb{R}_{+}^{2}} g d\left(F_{1} \times F_{2}\right) \\
\text { by Fubini } & =\int_{\mathbb{R}_{+}} x_{2}\left[\int_{\mathbb{R}_{+}} x_{1} F_{1}\left(d x_{1}\right)\right] F_{2}\left(d x_{2}\right) \\
& =E\left(X_{1}\right) \int x_{2} F_{2}\left(d x_{2}\right)=E\left(X_{1}\right) E\left(X_{2}\right)
\end{aligned}
$$

5.9 Fubini's theorem

Example 5.9.3 (Convolution)
Suppose X_{1} and X_{2} are two independent random variables with distributions F_{1}, F_{2}. The distribution of $X_{1}+X_{2}$ is given by convolution $F_{1} * F_{2}$. For $x \in \mathbb{R}$,

$$
P\left[X_{1}+X_{2} \leq x\right]=F_{1} * F_{2}(x)=\int_{\mathbb{R}} F_{1}(x-u) F_{2}(d u)=\int_{\mathbb{R}} F_{2}(x-u) F_{1}(d u)
$$

Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ which has distribution $F_{1} \times F_{2}$ and set

$$
g\left(x_{1}, x_{2}\right)=I_{\{(u, v): u+v \leq x\}}\left(x_{1}, x_{2}\right), \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

Then $P\left[X_{1}+X_{2} \leq x\right]=E(g(\boldsymbol{X}))=\int_{\mathbb{R}^{2}} g d\left(F_{1} \times F_{2}\right)$

$$
\begin{aligned}
\text { Fubini } & =\int_{\mathbb{R}}\left[\int_{\mathbb{R}} I_{\{(u, v): u+v \leq x\}}\left(x_{1}, x_{2}\right) F_{1}\left(d x_{1}\right)\right] F_{2}\left(d x_{2}\right) \\
& =\int_{\mathbb{R}}\left[\int_{\mathbb{R}} I_{\left\{v: v \leq x-x_{2}\right\}}\left(x_{1}\right) F_{1}\left(d x_{1}\right)\right] F_{2}\left(d x_{2}\right)=\int_{\mathbb{R}} F_{1}\left(x-x_{2}\right) F_{2}\left(d x_{2}\right) .
\end{aligned}
$$

Other HW 5 problems: Section 5.10, Q5-7, Q9-12, Q14-Q16, Q18, Q20, Q22, Q25, Q30-31, Q36.

