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5.1.1 Simple Functions

On (Ω,B,P), say X : Ω 7→ R is simple if it has a finite range. Such
a function can always be written in the form

X (ω) =
k∑

i=1

ai IAi
(ω),

where ai ∈ R and Ai ∈ B, i = 1, . . . , k are disjoint and ∪ki=1Ai = Ω.
Then

σ(X ) = σ(Ai : i = 1, . . . , k) = {∪i∈IAi : I ⊂ {1, . . . , k}} .

Let E be the set of all simple functions on Ω. We have
1. E is a vector space; i.e., (i) if X ∈ E , then αX ∈ E for α ∈ R;

(ii) if X ,Y ∈ E , then X + Y ∈ E .
2. If X ,Y =

∑
j bj IBj

∈ E , then XY =
∑

i ,j aibj IAi∩Bj
∈ E .

3. If X ,Y ∈ E , then X ∨ Y =
∑

i ,j(ai ∨ bj)IAi∪Bj
∈ E and

X ∧ Y =
∑

i ,j(ai ∧ bj)IAi∩Bj
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5.1.2 Measurability and Simple Functions

Any measurable function can be approximated by a simple function.

Theorem 5.1.1 (Measurability Theorem)
Suppose X (ω) ≥ 0 for all ω. Then X ∈ B/B(R) iff there exist
simple functions Xn ∈ E and

0 ≤ Xn ↑ X .

Proof: Because taking limits preserves measurability, every simple
function is measurable, thus X ∈ B/B(R). Conversely, define

Xn =
n2n∑
k=1

(
k − 1
2n

)
I[ k−1

2n ≤X≤
k
2n ] + nI[X≥n].

Because X is measurable, Xn ∈ E . Also Xn ≤ Xn+1 and if X (ω) <
∞, then for large n, |X (ω) − Xn(ω)| ≤ 2−n → 0 (Note that if
supω |X (ω)| < ∞, then supω |X (ω) − Xn(ω)| → 0). If X (ω) = ∞,
then Xn(ω) = n→∞.
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5.2 Expectation and Integration

Suppose X : (Ω,B) 7→ (R̄,B(R̄)) where R̄ = [−∞,∞] (in stochastic
modeling, we often deal with waiting time for an event to happen, If
the event never occurs, then the return time is infinite). Define

E (X ) =

∫
Ω
XdP or

∫
Ω
X (ω)P(dω),

as the Lebesgue-Stieltjes integral of X with respect to P .
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5.2.1 Expectation of Simple Functions

Suppose X is a simple random variable of the form

X =
n∑

i=1

ai IAi

where |ai | <∞, {Ai} are mutually exclusive, and ∪iAi = Ω. Then

E (X ) =

∫
XdP =

k∑
i=1

aiP(Ai ).
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5.2.1 Expectation of Simple Functions

Below are some simple properties (HW 5-1: prove these properties)
1. E (1) = 1, E (IA) = P(A).
2. If X ≥ 0 and X ∈ E , then E (X ) ≥ 0.
3. Linearity: if X ,Y ∈ E , then E (αX + βY ) = αE (X ) + βE (Y )

for α, β ∈ R.
4. Monotonicity: if X ≤ Y ∈ E , then E (X ) ≤ E (Y ).
5. If Xn,X ∈ E , either Xn ↑ X or Xn ↓ X , then E (Xn) ↑ E (X ) or

E (Xn) ↓ E (X ).
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5.2.2 Extension of the Definition

Let E+ collect all the non-negative valued simple functions, and de-
fine

Ē+ = {X ≥ 0 : X : (Ω,B) 7→ (R̄,B(R̄))}

to be non-negative, measurable functions with domain Ω. If X ∈ Ē+

and P[X =∞] > 0, define E (X ) =∞.
Otherwise by Theorem 5.1.1, we may find Xn ∈ E+, such that

0 ≤ Xn ↑ X .

We call {Xn} the approximating sequence to X . The sequence
{E (Xn)} is non-decreasing by monotonicity of expectations applied
to E+. Since limits of monotone sequences always exist, we conclude
that limn→∞ E (Xn) exists and define

E (X ) = lim
n→∞

E (Xn).

This extends expectation from E to Ē+.
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5.2.2 Extension of the Definition

Proposition 5.2.1 (Well definition)
If Xn,Ym ∈ E+ and Xn ↑ X , Ym ↑ X , then

lim
n→∞

E (Xn) = lim
m→∞

E (Ym).

Proof: We prove that if limn→∞ ↑ Xn ≤ limm→∞ ↑ Ym, then
limn→∞ ↑ E (Xn) ≤ limm→∞ ↑ E (Ym).

Note that since limm→∞ Ym ≥ limn→∞ Xn ≥ X , E+ 3 Xn ∧ Ym ↑
Xn ∈ E+ as m → ∞. By monotonicity of expectation on E+,
E (Xn) = limm→∞ ↑ E (Xn ∧ Ym) ≤ limm→∞ E (Ym) holds for all n,
which completes the proof of limn→∞ ↑ E (Xn) ≤ limm→∞ ↑ E (Ym).
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5.2.3 Basic Properties of Expectation

For expectation on Ē+:
1. 0 ≤ E (X ) ≤ ∞ and if X ≤ Y ∈ Ē+, then E (X ) ≤ E (Y ).

Proof: Find approximating sequences in E+: Xn ↑ X , Ym ↑ Y .
Then X = limn→∞ ↑ Xn ≤ limm→∞ ↑ Ym = Y . We have
proved that
E (X ) = limn→∞ ↑ E (Xn) ≤ limm→∞ ↑ E (Ym) = E (Y ).

2. E is linear: For α > 0 and β > 0,
E (αX + βY ) = αE (X ) + βE (Y ).
Proof: E+ 3 Xn + Ym ↑ X + Y .
E (X +Y ) = limn→∞ E (Xn+Yn) = limn→∞(E (Xn)+E (Yn)) =
limn→∞ E (Xn) + limn→∞ E (Yn) = E (X ) + E (Y ).
For α > 0, αXn ↑ αX , thus
E (αX ) = limn→∞ E (αXn) = limn→∞ αE (Xn) = αE (X ).

3. Monotone Convergence Theorem (MCT) If 0 ≤ Xn ↑ X ,
then E (Xn) ↑ E (X ) (interchange of expectations and limits).
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5.2.3 Basic Properties of Expectation

Proof of MCT: For each Xn ∈ Ē+, find an approximating sequence
Y

(n)
m ∈ E+ such that Y (n)

m ↑ Xn asm→∞. Define Zm = ∨n≤mY (n)
m .

Note that {Zm} is non-decreasing. Next observe that for n ≤ m,
Y

(n)
m ≤

∨
j≤m Y

(j)
m = Zm ≤

∨
Xj = Xm. Thus, for all n

Xn = lim
m→∞

Y
(n)
m ≤ lim

m→∞
Zm ≤ lim

m→∞
Xm = X .

Therefore X = limn→∞ Xn = limm→∞ Zm. Thus, we have {Zm} as
an approximating sequence in E+ of X . Thus limm→∞ ↑ E (Zm) =

E (X ). Furthermore, we have E (Xn) = limm→∞ ↑ E (Y
(n)
m ) ≤

limm→∞ ↑ E (Zm) = E (X ) ≤ limm→∞ ↑ E (Xm) for each n. Taking
limit on n, we have limn→∞ E (Xn) ≤ E (X ) ≤ limm→∞ E (Xm).
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5.2.3 Basic Properties of Expectation on Ē+

We now further extend the definition of E (X ) beyond Ē+. For a
random variable X , define

X+ = X ∨ 0, X− = (−X ) ∨ 0.

We have X± ≥ 0, X = X+ − X−, |X | = X+ + X− and

X ∈ B/B(R) iff both X± ∈ B/B(R).

We call X quasi-integrable if at least one of E (X+) and E (X−)
is finite. In this case, define

E (X ) = E (X+)− E (X−).

If both E (X+) and E (X−) are finite, call X integrable. This is
the case of E |X | < ∞. The set of integrable random variables is
denoted by L1 or L1(P) = {X : E |X | < ∞}. If both E (X+) and
E (X−) are infinite, then E (X ) does not exist.
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5.2.3 Basic Properties of Expectation (Summary)

X ∈ E , E (X ) =
∑

i aiP(Ai )
↓

X ∈ Ē+: By E+ 3 Xn ↑ X , E (X ) = limn→∞ E (Xn)
↓

General X : E (X ) = E (X+)− E (X−).
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5.2.3 Basic Properties of Expectation

Example 5.2.1 (Heavy Tails)
Let X ’s density be f (x), then X ’s expectation, if exists, is
E (X ) =

∫
xf (x)dx .

If f (x) = x−1I (x > 1). Then E (X ) exists and E (X ) =∞.

If f (x) = 0.5|x |−2I (|x | > 1), then E (X+) = E (X−) =∞ and
E (X ) does not exist.

The same conclusion would hold if f were the Cauchy density; i.e.,
f (x) = 1/{π(1 + x2)} for x ∈ R.
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5.2.3 Basic Properties of Expectation

For expectation of any random variable:
1. If X is integrable, then P[X = ±∞] = 0.

Proof: if P[X =∞] > 0, then E (X+) =∞ and X is not
integrable.

2. If E (X ) exists, E (cX ) = cE (X ). If either E (X+) <∞ and
E (Y +) <∞ or E (X−) <∞ and E (Y−) <∞, then X + Y is
quasi-integrable and E (X + Y ) = E (X ) + E (Y ).
Proof: We only prove the last equation. It is based on
(X + Y )+ − (X + Y )− = X + Y = X+ − X− + Y + − Y−

which implies (X +Y )+ +X−+Y− = (X +Y )−+X+ +Y +.
Taking expectation, we have
E (X+Y )++E (X−)+E (Y−) = E (X+Y )−+E (X+)+E (Y +).
Rearranging completes the proof.
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5.2.3 Basic Properties of Expectation

For expectation of any random variable:
3. If X ≥ 0, then E (X ) ≥ 0. If X ,Y ∈ L1 and X ≤ Y , then

E (X ) ≤ E (Y ).
Proof: Y − X ≥ 0 =⇒ E (Y − X ) ≥ 0.
|Y − X | ≤ |Y |+ |X |, thus Y − X ∈ L1. Then by 2, we have
E (Y − X ) = E (Y )− E (X ).

4. Suppose {Xn} is a sequence of random variables such that
Xn ∈ L1 for some n, if either Xn ↑ X or Xn ↓ X , then
E (Xn) ↑ E (X ) or E (Xn) ↓ E (X ).
Proof: Focus on Xn ↑ X . Then X−n ↓ X− so E (X−) <∞.
Then 0 ≤ X+

n = Xn + X−n ≤ Xn + X−1 ↑ X + X−1 . By MCT,
0 ≤ E (Xn + X−1 ) ↑ E (X + X−1 ). Because Xn ∈ L1, we have
E (Xn + X−1 ) = E (Xn) + E (X )

1 Further because E (X−) <∞
and E (X−1 ) <∞, by 2, we have
E (X + X−1 ) = E (X ) + E (X−1 ). Thus
limn→∞{E (Xn) + E (X−1 )} = E (X ) + E (X−1 ); i.e.,
limn→∞ E (Xn) = E (X ). (HW 5-2: Prove it for Xn ↓ X )
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5.2.3 Basic Properties of Expectation

For expectation of any random variable:
5. Modulus Inequality. If X ∈ L1, |E (X )| ≤ E (|X |).

Proof:
|E (X )| = |E (X+)− E (X−)| ≤ E (X+) + E (X−) = E (|X |).

6. Variance and Covariance. Suppose X 2 ∈ L1 (or X ∈ L2),
then Var(X ) = E (X − E (X ))2 = E (X 2)− (E (X ))2. For
X ,Y ∈ L2,
Cov(X ,Y ) = E ((X − E (X ))(Y − E (Y ))) = E (XY )− E (X )E (Y ).
Cov(X ,Y ) = 0 defines that X and Y are uncorrelated If
X ⊥ Y and X ,Y ∈ L2, then Cov(X ,Y ) = 0.
If X1, . . . ,Xn ∈ L2 are uncorrelated, then
Var(

∑
i Xi ) =

∑
i Var(Xi ).

Also if Y1, . . . ,Ym ∈ L2, ai , bi ∈ R, we have
Cov(

∑
i aiXi ,

∑
j bjYj) =

∑
i

∑
j aibjCov(Xi ,Yj).
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5.2.3 Basic Properties of Expectation

For expectation of any random variable:
7. Markov inequality. Suppose X ∈ L1. For any λ > 0,

P[|X | ≥ λ] ≤ λ−1E (|X |).
Proof: observe 1× I[|X |≥λ] ≤

|X |
λ then take expectations.

8. Chebychev inequality. Suppose X ∈ L1. For any λ > 0,
P[|X − E (X )| ≥ λ] ≤ Var(X )/λ2.
Proof: follows from the Markov’s inequality.

9. WLLN. Let {Xn} be iid with finite mean µ and variance σ2.
Then for any ε > 0, limn→∞ P[|X̄n − µ| > ε] = 0, where
X̄n = n−1∑

i Xi .
Proof: using Chebyshev yields
P[|X̄n − µ| > ε] ≤ ε−2Var(X̄n) = Var(Xi ))

nε2
= σ2

nε2
→ 0.
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5.3 Limits and Integrals

Theorem 5.3.1 (MCT)
If 0 ≤ Xn ↑ X , then 0 ≤ E (Xn) ↑ E (X ).

Corollary 5.3.1 (Series versions of MCT)
if ξj ≥ 0 are non-negative random variables for n ≥ 1, then

E (
∞∑
j=1

ξj) =
∞∑
j=1

E (ξj).

Proof: Xn =
∑n

j=1 ξj and X =
∑∞

j=1 ξj . Apply MCT.
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5.3 Limits and Integrals

Theorem 5.3.2 (Fatou Lemma)
If 0 ≤ Xn, then

E (lim inf
n→∞

Xn) ≤ lim inf
n→∞

E (Xn).

More generally, if there exists Z ∈ L1 and Xn ≥ Z , then

E (lim inf
n→∞

Xn) ≤ lim inf
n→∞

E (Xn).

Proof: lim infn→∞ Xn = supn≥1 infk≥n Xk . Thus if Xn ≥ 0, then

E (lim inf
n→∞

Xn) = E ( lim
n→∞

↑ ( inf
k≥n

Xk)) = lim
n→∞

↑ E ( inf
k≥n

Xk) ≤ lim inf E (Xn).

For Xn ≥ Z , we consider Xn − Z ≥ 0.
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5.3 Limits and Integrals

Corollary 5.3.2 (More Fatou)
If Xn ≤ Z where Z ∈ L1, then

E (lim sup
n→∞

Xn) ≥ lim sup
n→∞

E (Xn).

Proof: We have −Xn ≥ −Z ∈ L1. Then

E (lim inf(−Xn)) ≤ lim inf
n→∞

E (−Xn),

so that
E (− lim inf

n→∞
(−Xn)) ≥ − lim inf

n→∞
(−E (Xn)).

It completes the proof because− lim infn→∞(−Xn) = lim supn→∞ Xn

and − lim infn→∞(−E (Xn)) = lim supn→∞ E (Xn).
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5.3 Limits and Integrals

Canonical Example
Nasty things could happened when interchanging limits and
integrals: Let (Ω,B,P) = ([0, 1],B([0, 1]), λ), where λ is Lebesgue
measure. Define

Xn = n2I(0,1/n)

For any ω ∈ [0, 1], I(0,1/n)(ω)→ 0, so Xn → 0. However,
EXn = n2(1/n) = n→∞. So

E (lim inf
n→∞

Xn) = 0 ≤ lim inf
n→∞

E (Xn) =∞,

and
E (lim sup

n→∞
Xn) = 0 � lim sup

n→∞
E (Xn) =∞.

Corollary 5.3.2 failed because there is no Z ∈ L1 such tat Xn ≤ Z .
(Dominating condition is important!)
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5.3 Limits and Integrals

Theorem 5.3.3 (Dominated Convergence Theorem (DCT)
If Xn → X and there exists a dominating random variable Z ∈ L1
such that

|Xn| ≤ Z ,

then
E (Xn)→ E (X ).

Proof: We have −Z ≤ X ≤ Z . Thus, we can apply Theorem 5.3.2
and Corollary 5.3.2.

E (X ) = E (lim inf
n→∞

Xn) ≤ lim inf
n→∞

E (Xn)

≤ lim sup
n→∞

E (Xn) ≤ E (lim sup
n→∞

Xn) = E (X ).
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5.4 Indefinite Integrals

Definition 5.4.1
If X ∈ L1, we define ∫

A
XdP = E (X · IA)

and call
∫
A XdP the integral of X over A. Call X the integrand.

Suppose X ≥ 0, we have (HW 5-3: prove these)
1. 0 ≤

∫
A XdP ≤ E (X ).

2.
∫
A XdP = 0 iff P(A ∩ [X > 0]) = 0.

3. If {An : n ≥ 1} is a sequence of disjoint events∫
∪nAn

Xdp =
∑∞

n=1
∫
An

Xdp.
4. If A1 ⊂ A2, then

∫
A1

Xdp ≤
∫
A2

Xdp.
5. Suppose X ∈ L1 and {An} is a monotone sequence of events.

If An ↑ A, then
∫
An

Xdp ↑
∫
A XdP ; while if If An ↓ A, then∫

An
Xdp ↓

∫
A XdP .
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5.5 The Transformation Theorem and Densities

Suppose T : (Ω,B) 7→ (Ω′,B′) is a measurable map. P is a proba-
bility measure on B. The induced probability measure on B′ is

P ′ = P ◦ T−1; i.e., P ′(A′) = P(T−1(A′)), A′ ∈ B′.

Example
Ω = {(a, b) : a, b = 1, . . . , 6}: tossing two dices.
T (a, b) = max(a, b) : Ω 7→ Ω′

Ω′ = {m : m = 1, . . . , 6}: the max of the two dices.
Let A′ = {m = 2}, then P ′({m = 2}) = P({(1, 2), (2, 1), (2, 2)}).

Suppose X ′ : (Ω′,B′) 7→ (R : B(R)) is a random variable, and the
induced probability by X ′ is PX ′ , where PX ′(B) = P ′(X ′−1(B)),B ∈
B(R).

(Ω,B,P)
T→ (Ω′,B′,P ′) X ′→ (R,B(R),F ′)

where F ′(A) = P ′ ◦ X ′−1(A) = P ◦ T−1 ◦ X ′−1(A) for A ∈ B(R).
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5.5 The Transformation Theorem and Densities

Theorem 5.5.1 (Transformation Theorem)
Suppose X ′ : (Ω′,B′) 7→ (R : B(R)) is a random variable. We know
X ′ ◦ T : Ω 7→ R is also a random variable by composition.
(i) If X ′ ≥ 0, then∫

Ω′
X ′(ω′)P ′(dω′) =

∫
Ω
X ′(T (ω))P(dω), or E ′(X ′) = E (X ′◦T ),

where E ′ is the expectation operator computed with respect
to P ′.

(ii) We have
X ′ ∈ L1(P ′) iff X ′ ◦ T ∈ L1(P)

in which case∫
T−1(A′)

X ′(T (ω))P(dω) =

∫
A′
X ′(ω′)P ′(dω′).
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5.5 The Transformation Theorem and Densities

Proof. (i) Start with X as an indicator function (a), proceeding to
X as a simple function (b) and concluding with X being general (c).

(a): Suppose X ′(ω′) = IA′(ω
′) for A′ ∈ B′. Then X ′(T (ω)) =

I (T (ω) ∈ A′) = I (ω ∈ T−1(A′)) = IT−1A′(ω). Thus∫
Ω
X ′(T (ω))P(dω) =

∫
Ω
IT−1A′(ω)P(dω) = P(T−1(A′))

= P ′(A′) =

∫
Ω′

IA′(ω
′)P ′(dω′) =

∫
Ω′

X ′(ω′)P ′(dω′).

(b) Let X ′ be simple: X ′(ω′) =
∑k

t=1 a
′
t IA′(ω

′). Then X ′(T (ω)) =∑k
t=1 a

′
t IA′t (T (ω)) =

∑k
t=1 a

′
t IT−1A′t

(ω). Then everything follows.
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5.5 The Transformation Theorem and Densities

Proof continued. (c) Let X ′ ≥ 0 which is measurable. There exists
an approximating sequence X ′n ↑ X ′. By MCT, E ′(X ′n) ↑ E ′(X ′).
Also X ′n ◦T ↑ X ′ ◦T . Then by MCT: E (X ′n ◦T ) ↑ E (X ′ ◦T ). Thus∫

Ω
X ′(T (ω))P(dω) = lim

n→∞
↑
∫

Ω
X ′n(T (ω))P(dω)

= lim
n→∞

↑
∫

Ω′
X ′n(ω′)P ′(dω′)

=

∫
Ω′

X ′(ω′)P ′(dω′).

THe proof of (ii) is similar by using X ′IA′ .
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5.5.1 Expectation is Always an Integral on R

Let X be a random variable on (Ω,B,P) and define the induced
probability measure on (R,B(R)) by

F = P ◦ X−1, or F (A) = P ◦ X−1(A) = P[X ∈ A].

The distribution function of X is F (x) = P[X ≤ x ]. Using the
Transformation Theorem allows us to compute the abstract integral

E (X ) =

∫
Ω
X (ω)P(dω)

as
E (X ) =

∫
R
xF (dx),

which is an integral on R.
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5.5.1 Expectation is Always an Integral on R

Corollary 5.5.1 HW 5-4: prove it

(i) If X is an integrable random variable with distribution F , then

E (X ) =

∫
R
xF (dx).

(ii) Suppose X : (Ω,B) 7→ (E, E) is a random element of E with
distribution F = P ◦ X−1 and suppose

g : (E, E) 7→ (R+,B(R+))

is a non-negative measurable function. The expectation of
g(X ) is

E (g(X )) =

∫
Ω
g(X (ω))P(dω) =

∫
E
g(x)F (dx).
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5.5.2 Densities

Let XXX : (Ω,B) 7→ (Rk ,B(Rk)) be a random vector on (Ω,B,P) with
distribution F . We say XXX or F is absolutely continuous (AC) if
there exists a non-negative function

f : (Rk ,B(Rk)) 7→ (R+,B(R+))

such that
F (A) =

∫
A
f (xxx)dxxx

where dxxx stands for Lebesgue measure and the integral is a Lebesgue-
Stieltjes integral.

Proposition 5.5.2
Let g : (Rk ,B(Rk)) 7→ (R+,B(R+)) be a non-negative measurable
function. Suppose XXX is a random vector with distribution F which
is AC with density f , then

E (g(XXX )) =

∫
R
g(xxx)f (xxx)dxxx .
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5.6 The Riemann vs Lebesgue Integral

We always use Riemann integrals to compute expectations using den-
sities. How does the Riemann integral compare with the Lebesgue
integral?

Theorem 5.6.1 (Riemann and Lebesgue)
Suppose f : (a, b] 7→ R and
(a) f is B((a, b])/B(R) measurable,
(b) f is Riemann-integrable on (a, b].
Let λ be the Lebesgue measure on (a, b]. Then
(i) f ∈ L1([a, b], λ). In fact f is bounded.
(ii) The Riemann integral of f equals the Lebesgue integral.

However, a function could have Lebesgue integral but not Riemann
integral. In fact, for a function to be Riemann-integrable, it is nec-
essary and sufficient that the function be bounded and continuous
almost everywhere.
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5.6 The Riemann vs Lebesgue Integral

Lemma 5.6.1 (Integral Comparison Lemma) HW 5-5: prove it
Suppose X and X ′ are random variables on (Ω,B,P) and suppose
X ∈ L1.
(a) If P[X = X ′] = 1, then X ′ ∈ L1 and E (X ) = E (X ′).
(b) P[X = X ′] = 1 iff

∫
A XdP =

∫
A X ′dP for all A ∈ B.

32 / 56



5.6 The Riemann vs Lebesgue Integral

Example 5.6.1 (Riemann and Lebesgue)
Set Ω = [0, 1] and P = λ =Lebesgue measure. Let X (s) = IQ(s)
for s ∈ Ω, where Q collects the rational real numbers. Then

λ(Q) = λ(∪r∈Q{r}) =
∑
r∈Q

λ({r}) = 0.

Thus λ([X = 1]) = 0 and λ([X = 0]) = 1− 0 = 1. Then by
Lemma 5.6.1, E (X ) = E (0) = 0. What about using Riemann
integral to calculate E (X ) =

∫
[0,1] X (s)ds? No matter how fine we

partition the [0, 1], there always exits rational number in a
sub-interval. Thus the upper Riemann approximating sum is always
1 while the lower one is always 0. Thus the Riemann integral does
not exist but the Lebesgue integral does and is equal to 0.
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5.7 Product Spaces, Independence, Fubini Theorem

Let Ω1,Ω2 be two sets. Define the product space

Ω1 × Ω2 = {(ω1, ω2) : ωi ∈ Ωi , i = 1, 2}

and define the coordinate or projection maps πi : Ω1 ×Ω2 7→ Ωi ,
i = 1, 2, by

πi (ω1, ω2) = ωi

If A ⊂ Ω1 × Ω2 define

Aω1 = {ω2 : (ω1, ω2) ∈ A} ⊂ Ω2

Aω2 = {ω1 : (ω1, ω2) ∈ A} ⊂ Ω1.

Aωi is called the section of A at ωi .
(i) If A ⊂ Ω1 × Ω2, then (Ac)ω1 = (Aω1)c .
(ii) If, for an index set T , we have Aα ⊂ Ω1 × Ω2, for all α ∈ T ,

then

(∪αAα)ω1 = ∪α(Aα)ω1 , (∩αAα)ω1 = ∩α(Aα)ω1 .
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5.7 Product Spaces, Independence, Fubini Theorem

Let X be a function with domain Ω1 × Ω2 and range S . Define the
section of X as

Xω1(ω2) = X (ω1, ω2)

so
Xω1 : Ω2 7→ S .

We think of ω1 as fixed and the section is a function of varying ω2.
Call Xω1 the section of X at ω1.
(i) (IA)ω1 = IAω1

(ii) If S = Rk for some k ≥ 1 and if for i = 1, 2 we have
Xi : Ω1 × Ω2 7→ S , then

(X1 + X2)ω1 = (X1)ω1 + (X2)ω1 .

(iii) Suppose S is a metric space, Xn : Ω1 × Ω2 7→ S and
limn→∞ Xn exists. Then

lim
n→∞

(Xn)ω1 = ( lim
n→∞

Xn)ω1 .
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5.7 Product Spaces, Independence, Fubini Theorem

A rectangle in Ω1×Ω2 is a subset of Ω1×Ω2 of the form A1×A2
where Ai ∈ Ωi , i = 1, 2. We call A1 and A2 the sides of the
rectangle. The rectangle is empty if at least one of the sides is
empty.

Suppose (Ωi ,Bi ) are two measurable spaces (i = 1, 2). A rectangle
is called measurable if it is of the form A1 × A2 where Ai ∈ Bi , for
i = 1, 2. An important fact: The class of measurable rectangles is
a semi-algebra which we call RECT.

We now define a σ-algebra on Ω1 ×Ω2 to be the smallest σ-algebra
containing RECT. We denote it by B1 × B2 and call it the product
σ-algebra. Thus

B1 × B2 = σ(RECT).

If Ω1 = Ω2 = R, then

B1 × B2 = σ(A1 × A2 : Ai ∈ B(R), i = 1, 2)

= σ({I1 × I2 : Ii is of form (a, b], i = 1, 2}).
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5.7 Product Spaces, Independence, Fubini Theorem

Lemma 5.7.1 (Sectioning Sets)
Sections of measurable sets are measurable. If A ∈ B1 × B2, then
for all ω ∈ Ω1,

Aω1 ∈ B2.

Proof: Define Cω1 = {A ⊂ Ω1 × Ω2 : Aω1 ∈ B2}. We prove
Cω1 ⊃ B1×B2 = σ(RECT). Known RECT is a π-system, by Dynkin’s
Theorem (2.2.2), it suffices to show that Cω1 is a Dynkin’s system
and RECT⊂ Cω1 .

If A ∈RECT and A = A1 × A2, Ai ∈ Bi for i = 1, 2, then Aω1 =
{ω2 : (ω1, ω2) ∈ A1 × A2} which equals to A2 ∈ B2 if ω1 ∈ A1 or
∅ ∈ B2 otherwise. Thus Aω1 ∈ Cω1 . It concludes RECT⊂ Cω1 .
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5.7 Product Spaces, Independence, Fubini Theorem

Proof continued: We now show Cω1 is a Dynkin’s system.
(i) Ω1 × Ω2 ∈ RECT ⊂ Cω1 .
(ii) If A ∈ Cω1 , then (Ac)ω1 = (Aω1)c ∈ B2 because Aω1 ∈ B2.

Thus, Ac ∈ Cω1 .
(iii) If An ∈ Cω1 (meaning (An)ω1 ∈ B) with {An} disjoint. Then

(∪nAn)ω1 = ∪n(An)ω1 ∈ B2, thus ∪nAn ∈ Cω1 .
This completes the proof.

38 / 56



5.7 Product Spaces, Independence, Fubini Theorem

Corollary 5.7.1 (Sectioning Sets)
Sections of measurable function are measurable. That is if

X : (Ω1 × Ω2,B1 × B2) 7→ (S ,S)

then
Xω1 ∈ B2.

Proof: Since X is B1 × B2/S measurable, we have for Λ ∈ S that
X−1(Λ) = {(ω1, ω2) : X (ω1, ω2) ∈ Λ} ∈ B1 × B2. Therefore, by
Lemma 5.7.1, (X−1(Λ))ω1 ∈ B2. we note

(X−1(Λ))ω1 = {ω2 : X (ω1, ω2) ∈ Λ}
= {ω2 : Xω1(ω2) ∈ Λ} = (Xω1)−1(Λ).
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5.8 Product Measures on Product Spaces

Transition Functions
Call a function

K (ω1,A2) : Ω1 × B2 7→ [0, 1]

a transition function (or transition kernel) if
(i) for each ω1, K (ω1, ·) is a probability measure on B2, and
(ii) for each A2 ∈ B2, K (·,A2) is B1/B([0, 1]) measurable.

We interpret K (ω1,A2) as the conditional probability given ω1, the
result transits to A2.
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5.8 Product Measures on Product Spaces

Theorem 5.8.1
Let P1 be a probability measure on B1, and suppose

K : Ω1 × B2 7→ [0, 1]

is a transition function. Then K and P1, uniquely determine a
probability on B1 × B2 via the formula

P(A1 × A2) =

∫
A1

K (ω1,A2)P1(dω1).

for all A1 × A2 ∈RECT.
Interpretation: P(A1 × A2) = P(A2|A1)P(A1).
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5.8 Product Measures on Product Spaces

Proof of Theorem 5.8.1: Again, we specified P on the semi-algebra
RECT. We need to show P is a valid probability measure on B1 ×
B2 = σ(RECT). This can be done by applying the Combo Extension
Theorem 2.4.3. It requires us to check P is a σ-additive set function
mapping RECT to [0, 1] such that P(Ω1 × Ω2) = 1.

Because, for each ω1, K (ω1, ·) is a probability measure on B2,

K (ω1,Ω2) = 1,∀ω1 ∈ Ω1.

Because P1 is probability measure on B1,

P(Ω1 × Ω2) =

∫
Ω1

K (ω1,Ω2)P1(dω1)

=

∫
Ω1

P1(dω1) = P1(Ω1) = 1.
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5.8 Product Measures on Product Spaces

Proof of Theorem 5.8.1 (continued): Now we show P is σ-
additive on RECT. Let {A(n) = A

(n)
1 × A

(n)
2 : n ≥ 1} be disjoint

elements of RECT whose union is in RECT (i.e., ∪∞n=1(A
(n)
1 ×A

(n)
2 ) =

A1 × A2). We need to show

P(A1 × A2) =
∞∑
n=1

P(A
(n)
1 × A

(n)
2 ).

Because K (ω1, ·) is a probability measure on B2, for any A2 ∈ B2,
K (ω1,A2) =

∫
Ω2

IA2(ω2)K (ω1, dω2).

P(A1 × A2) =

∫
Ω1

IA1(ω1)K (ω1,A2)P1(dω1)

=

∫
Ω1

IA1(ω1)

∫
Ω2

IA2(ω2)K (ω1, dω2)P1(dω1)

=

∫
Ω1

∫
Ω2

IA1(ω1)IA2(ω2)K (ω1, dω2)P1(dω1).
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5.8 Product Measures on Product Spaces

Proof of Theorem 5.8.1 (continued): Because ∪∞n=1(A
(n)
1 ×A

(n)
2 ) =

A1 × A2, IA1(ω1)IA2(ω2) = IA1×A2(ω1, ω2) =
∑

n IA(n)
1

(ω1)I
A

(n)
2

(ω2).
Continued, we have

P(A1 × A2) =

∫
Ω1

∫
Ω2

∑
n

I
A

(n)
1

(ω1)I
A

(n)
2

(ω2)K (ω1, dω2)P1(dω1)

by MTC =

∫
Ω1

∑
n

I
A

(n)
1

(ω1)

∫
Ω2

I
A

(n)
2

(ω2)K (ω1, dω2)P1(dω1)

by MTC =
∑
n

∫
Ω1

I
A

(n)
1

(ω1)K (ω1,A
(n)
2 )P1(dω1)

=
∑
n

∫
A

(n)
1

K (ω1,A
(n)
2 )P1(dω1)

=
∑
n

P(A
(n)
1 × A

(n)
2 ).
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5.8 Product Measures on Product Spaces

Special case. Suppose for some probability measure P2 on B2 that
K (ω1,A2) = P2(A2). Then the previously defined P satisfies

P(A1 × A2) = P1(A1)P2(A2).

We denote this P by P1×P2 and call P product measure. Define
σ-algebra ins Ω1 × Ω2 by B#

1 = {A1 × Ω2 : A1 ∈ B1} and B#
2 =

{Ω1 × A2 : A2 ∈ B2}. With respect to the product measure P , we
have

B#
1 ⊥ B

#
2

because P(A1 × Ω2 ∩ Ω1 × A2) = P(A1 × A2) = P1(A1)P2(A2) =
P(A1 × Ω2)P(Ω1 × A2).
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5.8 Product Measures on Product Spaces

Special case continued. Suppose Xi : (Ωi ,Bi ) 7→ (R,B(R)) is a
random variable on Ωt for i = 1, 2. Define on Ω1×Ω2 the functions

X#
1 (ω1, ω2) = X1(ω1), X#

2 (ω1, ω2) = X2(ω2)

with respect to P = P1 × P2. The variables X#
1 and X#

2 are
independent because

P[X#
1 ≤ x ,X#

2 ≤ y ]

= P1 × P2({(ω1, ω2) : X1(ω1) ≤ x ,X2(ω2) ≤ y})
= P1 × P2({ω1 : X1(ω1) ≤ x} × {ω2 : X2(ω2) ≤ y})
= P1[X1 ≤ x ]P2[X2 ≤ y ] = P1[X1 ≤ x ]P2(Ω2)P1(Ω1)P2[X2 ≤ y ]

= P([X1 ≤ x ]× Ω2)P(Ω1 × [X2 ≤ y ])

= P({(ω1, ω2) : X1(ω1) ≤ x})P({(ω1, ω2) : X2(ω2) ≤ y})

= P[X#
1 ≤ x ]P[X#

2 ≤ y ].

Independence is automatically built into the model by construction
when using product measure.
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5.9 Fubini’s theorem

Theorem 5.9.1
Let P1 be a probability measure on (Ω1,B1) and suppose
K : Ω1 × B1 7→ [0, 1] is a transition kernel. Define P on
(Ω1 × Ω2,B1 × B2) by P(A1 × A2) =

∫
A1

K (ω1,A2)P1(dω1).
Assume X : (Ω1 × Ω2,B1 × B2) 7→ (R,B(R)) and suppose X ≥ 0
(X is integrable). Then

Y (ω1) =

∫
Ω2

K (ω1, dω2)Xω1(ω2)

has the properties
(a) Y is well defined.
(b) Y ∈ B1

(c) Y ≥ 0 (Y ∈ L1(P1)).
and furthermore∫

Ω1×Ω2

XdP =

∫
Ω1

Y (ω1)P1(dω1)

=

∫
Ω1

[∫
Ω2

K (ω1, dω2)Xω1(ω2)

]
P1(dω1). (1)
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5.9 Fubini’s theorem

Interpretation: When calculating
∫ ∫

h(ω1, ω2)f (ω1, ω2)dω2dω1,
we can have f (ω1, ω2) = f2|1(ω2|ω1)f1(ω1) (joint equals conditional
times marginal). Then∫ ∫

h(ω1, ω2)f (ω1, ω2)dω2dω1

=

∫ ∫
h(ω1, ω2)f2|1(ω2|ω1)f1(ω1)dω2dω1

=

∫ ∫
h(ω1, ω2)f2|1(ω1|ω2)dω2︸ ︷︷ ︸

Y (ω1)

f2(ω2)dω1︸ ︷︷ ︸
P1(dω1)

.
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5.9 Fubini’s theorem

Proof of Theorem 5.9.1: We only show (1) under the assumption
X ≥ 0. Start with the indicator function X = IA1×A2 , where A1 ×
A2 ∈RECT. Then

∫
Ω1×Ω2

XdP =
∫
A1×A2

dP = P(A1 × A2). And∫
Ω1

Y (ω1)P1(dω1) =

∫
Ω1

[

∫
Ω2

K (ω1, dω2)IA1(ω1)IA2(ω2)]P1(dω1)

=

∫
A1

K (ω1,A2)P1(dω1) = P(A1 × A2).

Thus (1) holds for indicators of measurable rectangles. Let

C = {A ∈ B1 × B2 : (1) holds for X = IA},

and we know RECT⊂ C. We claim C is a Dynkin system.
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5.9 Fubini’s theorem

Proof of Theorem 5.9.1, continued: We check C is a Dynkin
system:
(i) Ω1 × Ω2 ∈ C.
(ii) If A ∈ C, Ac ∈ C. Because for X = IAc , we have∫

Ω1×Ω2

XdP = P(Ac) = 1− P(A)

= 1−
∫

Ω1

∫
Ω2

K (ω1, dω2)IAω1
(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K (ω1, dω2)(1− IAω1
(ω2))P1(dω1)

=

∫
Ω1

∫
Ω2

K (ω1, dω2)I(Aω1 )c (ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K (ω1, dω2)I(Ac )ω1
(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K (ω1, dω2)Xω1(ω2)P1(dω1).
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5.9 Fubini’s theorem

Proof of Theorem 5.9.1, continued: We check C is a Dynkin
system:
(iii) If An ∈ C, and {An : n ≥ 1} are disjoint events, then ∪nAn ∈ C.
Because if X = I∪nAn ,∫

Ω1×Ω2

XdP = P(∪nAn) =
∑
n

P(An)

=
∑
n

∫
Ω1

∫
Ω2

K (ω1, dω2)I(An)ω1
(ω2)P1(dω1)

by MCT =

∫
Ω1

∫
Ω2

K (ω1, dω2)
∑
n

I(An)ω1
(ω2)P1(dω1)

=

∫
Ω1

∫
Ω2

K (ω1, dω2)I(∪nAn)ω1
(ω2)P1(dω1).

Then we have show C is a Dynkin system and the π-system RECT⊂
C. Thus σ(RECT) = B1 × B2 ⊂ C; i.e., for any A ∈ B1 × B2, (1)
holds for X = IA.
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5.9 Fubini’s theorem

Proof of Theorem 5.9.1, continued: If X =
∑k

i=1 ai IAi
, where

Ai ∈ B1 × B2. It is easy to check (1) holds.

For arbitrary X ≥ 0, denoted its approximating sequence by Xn ↑ X .
By monotone convergence,

∫
Ω1×Ω2

XndP ↑
∫

Ω1×Ω2
XdP . We know

(1) holds for each Xn; i.e.,

lim
n→∞

↑
∫

Ω1×Ω2

XndP

= lim
n→∞

↑
∫

Ω1

∫
Ω2

K (ω1, dω2)(Xn)ω1(ω2)P1(dω1)

by MCT =

∫
Ω1

[ lim
n→∞

↑
∫

Ω2

K (ω1, dω2)(Xn)ω1(ω2)]P1(dω1)

by MCT =

∫
Ω1

[

∫
Ω2

K (ω1, dω2) lim
n→∞

↑ (Xn)ω1(ω2)]P1(dω1)

=

∫
Ω1

[

∫
Ω2

K (ω1, dω2)Xω1(ω2)]P1(dω1).
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5.9 Fubini’s theorem

Theorem 5.9.2 Fubini Theorem
Let P = P1 × P2 be the product measure. If X is B1 × B2
measurable and is either non-negative or integrable with respect to
P , then ∫

Ω1×Ω2

XdP =

∫
Ω1

[

∫
Ω2

Xω1(ω2)P2(dω2)]P1(dω1)

=

∫
Ω2

[

∫
Ω1

Xω2(ω1)P1(dω1)]P2(dω2).
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5.9 Fubini’s theorem

Proof: Let K (ω1,A2) = P2(A2). Then P1 and K determine P =
P1 × P2 on B1 × B2 and∫

Ω1×Ω2

XdP =

∫
Ω1

[

∫
Ω2

K (ω1, dω2)Xω1(ω2)]P1(dω1)

=

∫
Ω1

[

∫
Ω2

P2(dω2)Xω1(ω2)]P1(dω1).

Also let K̃ (ω2,A1) = P1(A1) be a transition kernel with K̃ : Ω2 ×
B1 7→ [0, 1]. Then K̃ and P2 also determine P = P1 × P2 and we
have ∫

Ω1×Ω2

XdP =

∫
Ω2

[

∫
Ω1

K̃ (ω2, dω1)Xω2(ω1)]P2(dω2)

=

∫
Ω2

[

∫
Ω1

P1(dω1)Xω2(ω1)]P2(dω2).

54 / 56



5.9 Fubini’s theorem

Example 5.9.2
Let Xi ≥ 0, i = 1, 2, be two independent random variables. Then

E (X1X2) = E (X1)E (X2).

Proof: Let XXX = (X1,X2), g(x1, x2) = x1x2, Fi the distribution of
Xi . Then P ◦ XXX−1(A1 × A2) = P[(X1,X2) ∈ A1 × A2] = P[X1 ∈
A1,X2 ∈ A2] = P1[X1 ∈ A1]P2[X2 ∈ A2] = F1(A1)F2(A2) = F1 ×
F2(A1 × A2). So P ◦ XXX−1 and F1 × F2 agree on RECT and hence
on B(RECT) = B1 × B2. From Corollary 5.5.1 we have

E (X1X2) = E (g(XXX )) =

∫
R2

+

g(xxx)P ◦ XXX−1(dxxx) =

∫
R2

+

gd(F1 × F2)

by Fubini =

∫
R+

x2[

∫
R+

x1F1(dx1)]F2(dx2)

= E (X1)

∫
x2F2(dx2) = E (X1)E (X2).
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5.9 Fubini’s theorem

Example 5.9.3 (Convolution)
Suppose X1 and X2 are two independent random variables with
distributions F1,F2. The distribution of X1 + X2 is given by
convolution F1 ∗ F2. For x ∈ R,

P[X1+X2 ≤ x ] = F1∗F2(x) =

∫
R
F1(x−u)F2(du) =

∫
R
F2(x−u)F1(du).

Let XXX = (X1,X2) which has distribution F1 × F2 and set

g(x1, x2) = I{(u,v):u+v≤x}(x1, x2), (x1, x2) ∈ R2

Then P[X1 + X2 ≤ x ] = E (g(XXX )) =

∫
R2

gd(F1 × F2)

Fubini =

∫
R

[

∫
R
I{(u,v):u+v≤x}(x1, x2)F1(dx1)]F2(dx2)

=

∫
R

[

∫
R
I{v :v≤x−x2}(x1)F1(dx1)]F2(dx2) =

∫
R
F1(x − x2)F2(dx2).

Other HW 5 problems: Section 5.10, Q5-7, Q9-12, Q14-Q16, Q18,
Q20, Q22, Q25, Q30-31, Q36. 56 / 56
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