
STAT 810 Probability Theory I

Chapter 6: Convergence Concepts

Dr. Dewei Wang
Associate Professor

Department of Statistics
University of South Carolina

deweiwang@stat.sc.edu

1 / 44



6.1 Almost Sure Convergence

On (Ω,B,P), we say that a statement about random elements holds
almost surely (a.s./a.e./a.c./a.a.) if there exists an event N ∈ B
with P(N) = 0 such that the statement holds if ω ∈ Nc :
I X = X ′ a.s. means P(X = X ′) = 1; i.e., there exists N ∈ B,

such that X (ω) = X ′(ω) for ω ∈ Nc and P(N) = 0.
I X ≤ X ′ a.s. means there exists N ∈ B, such that

X (ω) ≤ X ′(ω) for ω ∈ Nc and P(N) = 0.
I limn→∞ Xn exists a.s. means there exists N ∈ B, such that

limn→∞ Xn(ω) exists for ω ∈ Nc and P(N) = 0.
Most probabilistic properties of random variables are invariant under
the relation almost sure equality. For example, if X = X ′ a.s. then
X ∈ L1 iff X ′ ∈ L1 and in this case E (X ) = E (X ′).
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6.1 Almost Sure Convergence

Example 6.1.1
Consider ([0, 1],B([0, 1]), λ), where λ is Lebesgue measure. Define

Xn(s) =

{
n if 0 ≤ s ≤ n−1,
0 if n−1 < s ≤ 1.

Let N = {0}, we see that for s /∈ N, Xn(s)→ 0 and λ(N) = 0.
Thus Xn converges to 0 almost surely. Note that N is not empty.
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6.1 Almost Sure Convergence

Proposition 6.1.1
Let {Xn} be iid random variables with common distribution
function F (x). Assume F (x) < 1 for all x . Set Mn =

∨n
i=1 Xi .

Then Mn ↑ ∞ a.s.
Proof: By definition, we know {Mn(ω)} is monotone increasing. Let

Nc = {ω : lim
n→∞

Mn(ω) =∞}

= {ω : ∀j , ∃k(ω, j),∀n ≥ k(ω, j),Mn(ω) > j}
= ∩j (∪k≥1 ∩n≥k [Mn ≥ j ]) = ∩j lim inf

n→∞
[Mn > j ].

Thus N = ∪j (lim supn→∞[Mn ≤ j ]). Because
∑

n P[Mn ≤ j ] =∑
n F

n(j) < ∞, by Borel-Cantelli lemma, P(lim supn→∞[Mn ≤
j ]) = 0. Thus P(N) = 0.

4 / 44



6.2 Convergence in Probability

Suppose Xn, n ≥ 1, and X are random variables. Then {Xn} con-
verges in probability (i.p.) to X , written Xn

P→ X , if for any ε > 0,

lim
n→∞

P[|Xn − X | > ε] = 0.

Example 6.2.1
Consider ([0, 1],B([0, 1]), λ), where λ is Lebesgue measure. Define
X1 = I[0,1], X2 = I[0,1/2], X3 = I[1/2,1], X4 = I[0,1/3], X5 = I[1/3,2/3],
X6 = I[2/3,1], . . . .

Then P[|Xn−0| > ε] = 1, 1/2, 1/2, 1/3, 1/3, 1/3, 1/4, 1/4, · · · → 0.
Thus Xn

P→ 0. However, for any s ∈ [0, 1], Xn(s) = 1 or 0 for
infinitely many values of n. Thus limn→∞ Xn does not exist almost
surely.
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6.2 Convergence in Probability

Theorem 6.2.1 (Convergence a.s. imples convergence i.p.)
Suppose {Xn} are random variables on (Ω,B,P). If Xn

a.s.→ X , then
Xn

P→ X .
Proof: Let Nc = {ω : limn→∞ |Xn(ω) − X (ω)| = 0} = {ω : ∀j >
0, ∃N(ε), ∀n ≥ N, |Xn(ω) − X (ω)| ≤ 1/j} = ∩j ∪N≥1 ∩n≥N [|Xn −
X | ≤ j−1]. Then N = ∪j lim supn→∞[|Xn − X | > j−1]. P(N) = 0
since Xn

a.s.→ X . Thus, for any j ,

0 = P(lim sup
n→∞

[|Xn − X | > j−1])

= lim
N→∞

P(∪n≥N [|Xn − X | > j−1])

≥ lim
n→∞

P[|Xn − X | > j−1].

Pick j such that ε > j−1, then we have limn→∞ P[|Xn−X | > ε] = 0.
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6.2.1 Statistical Terminology

In statistical estimation theory, almost sure and in probability con-
vergence have analogues as strong or weak consistency.

Given a family of probability models (Ω,B,P). Suppose the statisti-
cian gets to observe random variables X1, . . . ,Xn, defined on Ω and
based on these observations must decide which is the correct model;
that is, which is the correct value of θ. Statistical estimation means:
select the correct model.
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6.2.1 Statistical Terminology

Suppose Ω = R∞, B = B(R∞). Let ω = (x1, x2, . . . ) and define
Xn(ω) = xn. For each θ ∈ R, let Pθ be the product measure on R∞
which makes {Xn} iid with common N(θ, 1) distribution. Based on
observing X1, . . . ,Xn, one estimates θ with an appropriate function
of the observations

θ̂n = θ̂n(X1, . . . ,Xn).

θ̂n(X1, . . . ,Xn) is called a statistic and is also an estimator (a ran-
dom element). When one actually does the experiment and observes,
X1 = x1, . . . ,Xn = xn, then θ̂n(x1, . . . , xn) is called the estimate (a
number of a vector). In this example, we often take θ̂n =

∑n
i=1 Xi/n.

The estimator θ̂n is weakly consistent (denoted by θ̂n
Pθ→ θ) if for

all θ ∈ Θ,
Pθ[|θ̂n − θ| > ε]→ 0, n→∞.

We say θ̂n is strongly consistent if for all θ ∈ Θ, θ̂n → θ, Pθ−a.s.
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6.3 Connections between a.s. and i.p. Convergence

Theorem 6.3.1 Relations between i.p. and a.s. convergence
Suppose that {Xn} and X are real-valued random variables
(a) Cauchy criterion: {Xn} converges in probability to X iff {Xn}

is Cauchy in probability; i.e., Xn − Xm
P→ 0, as n,m→∞; i.e.,

for any ε > 0, δ > 0, there exists n0 = n0(ε, δ), such that for
all r , s ≥ n0, we have P[|Xr − Xs | > ε] < δ.

(b) Xn
P→ X iff each subsequence {Xnk} contains a further

subsequence {Xnk(t)} which converges almost surely to X .
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6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1: We approach (a) with 2 steps: (i) We
first show that if Xn

P→ X then {Xn} is Cauchy i.p. This can be
done easily by using the inequality P[|Xr −Xs | > ε] ≤ P[|Xr −X | >
ε/2] + P[|Xs − X | > ε/2], which comes from the use of the triangle
inequality.

(ii) Next, we prove if {Xn} is Cauchy i.p., then there exists a sub-
sequence {Xnj} which converges almost surely. Call the almost sure

limit X . Then it is also true that Xn
P→ X .

To prove this, we define nj by n1 = 1 and

nj = inf{N > nj−1 : P[|Xr − Xs | > 2−j ] < 2−j for all r , s ≥ N}.

By Cauchy i.p, nj always exists by setting ε = δ = 2−j and nj >
nj−1. Consequently, we have

∑∞
j=1 P[|Xnj+1 −Xnj | > 2−j ] <∞. By

the Borel-Cantelli Lemma, let N = limsupj→∞[|Xnj+1 − Xnj | > 2−j ],
P(N) = 0.
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6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1 continued: For ω ∈ Nc = lim inf j→∞[|Xnj+1−
Xnj | ≤ 2−j ], we know |Xnj+1(ω)−Xnj (ω)| ≤ 2−j for all large j . Thus
{Xnj (ω)} is a Cauchy sequence of real numbers and consequently,
limj→∞ Xnj (ω) exists. We proved {Xnj} converges a.s. and denote
the limit by X .

To show Xn
P→ X , note P[|Xn − X | > ε] ≤ P[|Xn − Xnj | > ε/2] +

P[|Xnj − X | > ε/2]. By the Cauchy i.p. property, for any δ/2 >
0, we can find n0(ε/2, δ/2) such that when n, nj > n0(ε/2, δ/2),
P[|Xn − Xnj | > ε/2] < δ/2.

Because Xnj
P→ X as j →∞, we can find n1(ε/2, δ/2), such that for

nj > n1(ε/2, δ/2), P[|Xnj − X | > ε/2] < δ/2. Thus, for any δ > 0,
we find n∗(ε, δ) = max{n0(ε/2, δ/2), n1(ε/2, δ/2)}, for n > n∗(ε, δ),
P[|Xn − X | > ε] < δ. Done (a)!
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6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1 continued: For (b): Suppose Xn
P→ X .

Pick any subsequence, the subsequence also P→ X . From (ii) above,
we find a further subsequence converging a.s.

Conversely, Suppose every subsequence has an a.s. convergence sub-
sequence. If Xn does not converge to X in probability. Then there
exists a subsequence {Xnk} and a δ > 0 and ε > 0 such that

P[|Xnk − X | > ε] ≥ δ.

But we know there exists a further subsequence {Xnk(t)} converging
a.s., hence i.p. to X . Contradiction!
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6.3 Connections between a.s. and i.p. Convergence

Corollary 6.3.1

(i) Xn
a.s.→ X and g : R 7→ R is continuous, then g(Xn)

a.s.→ g(X ).

(ii) Xn
P→ X and g : R 7→ R is continuous, then g(Xn)

P→ g(X ).

Proof: (i) There exists N ∈ B with P(N) = 0 such that if ω ∈ Nc ,
Xn(ω)→ X (ω). By continuity, g(Xn(ω))→ g(X (ω)) holds.
(ii) Using Theorem 6.3.1 (b).

Thus if Xn
P→ X , it is also true that X 2

n
P→ X 2 and arctanXn

P→
arctanX .
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6.3 Connections between a.s. and i.p. Convergence

Corollary 6.3.2 (Lebesgue Dominated Convergence)
If Xn

P→ X and if there exists a dominating random variable ξ ∈ L1
such that |Xn| ≤ ξ, then E (Xn)→ E (X ).
Proof: It suffices to show every convergent subsequence of E (Xn)
converges to E (X ). Suppose E (Xnk ) converges. Then since conver-
gence in probability is assumed, {Xnk} contains an a.s. convergent
subsequence {Xnk(t)} such that Xnk(t)

a.s.→ X . The Lebesgue Dominted
COnvergence Theorem implies

E (Xnk(t))→ E (X ).

Thus E (Xnk )→ E (X ).
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6.3 Connections between a.s. and i.p. Convergence

We now list several easy results related to convergence in probability
(HW 6-1: prove these).

(1) If Xn
P→ X and Yn

P→ Y , then Xn + Yn
P→ X + Y and

XnYn
P→ XY .

(2) This item is a reminder that Chebychev’s inequality implies the
Weak Law of Large Numbers (WLLN): If {Xn} are iid with
EXn = µ and Var(Xn) = σ2, then

∑n
i=1 Xi/n

P→ µ.
(3) Bernstein’s version of the Weierstrass Approximation Theorem:

Let f : [0, 1] 7→ R and define the Bernstein polynomial of
degree n by

Bn(x) =
n∑

k=0

f (
k

n
)Cn

k x
k(1− x)n−k , 0 ≤ x ≤ 1

Then Bn(x)→ f (x) uniformly for x ∈ [0, 1].
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6.4 Quantile Estimation

Let F be a distribution function. For 0 < p < 1, the pth order
quantile of F is F←(p) = inf{x : F (x) ≥ p}. If F is unknown, we
may wish to estimate a quantile.

We start with the estimation of F . Let X1, . . . ,Xn be a random
sample from F ; that is, iid with common distribution function F .
Define the empirical cumulative distribution function (cdf) by

Fn(x) = n−1
n∑

i=1

I[Xj≤x],

which is the percentage of the sample whose value is no greater
than x . It is easy to see that

E (Fn(x)) = F (x),Var(Fn(x)) = n−1F (x)(1−F (x)),Fn(x)
P→ F (x),

for each x .
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6.4 Quantile Estimation

To estimate a quantile F←(p), one non-parametric method uses or-
der statistics. Rearranging X1, . . . ,Xn into X

(n)
1 ≤ · · · ≤ X

(n)
n , we

define the empirical quantile function by

F←n (p) = inf{x : Fn(x) ≥ p}

= inf{X (n)
j : Fn(X

(n)
j ) ≥ p}

= inf{X (n)
j :

j

n
≥ p}

= inf{X (n)
j : j ≥ np}

= X
(n)
dnpe,

where dnpe is the ceiling of np.
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6.4 Quantile Estimation

Theorem 6.4.1
Suppose F is strictly increasing at F←(p) which means that for all
ε > 0

F (F←(p) + ε) > p,F (F←(p)− ε) < p.

Then we have X
(n)
dnpe be a weakly consistent quantile estimator,

X
(n)
dnpe

P→ F←(p).

Proof: It suffices to show for all ε > 0, P[X
(n)
dnpe > F←(p) + ε]→ 0

and P[X
(n)
dnpe ≤ F←(p)− ε]→ 0. We only show the latter one. Note

that X (n)
α ≤ y iff nFn(y) ≥ α. Thus

P[X
(n)
dnpe ≤ F←(p)− ε] = P[nFn(F←(p)− ε) ≥ dnpe]

= P[Fn(F←(p)− ε) ≥ dnpe
n

]

= P[Fn(F←(p)− ε)− F (F←(p)− ε) ≥ dnpe
n
− F (F←(p)− ε)].
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6.4 Quantile Estimation

Proof continued: We also know that dnpen → p and 2δ .
= p −

F (F←(p)− ε) > 0. Thus, we can find N > 0, such that for n ≥ N,
dnpe
n − F (F←(p)− ε) > δ > 0. Then when n ≥ N,

P[Fn(F←(p)− ε)− F (F←(p)− ε) ≥ dnpe
n
− F (F←(p)− ε)]

≤ P[|Fn(F←(p)− ε)− F (F←(p)− ε)| ≥ δ]→ 0,

since by the WLLN, Fn(F←(p)− ε) P→ F (F←(p)− ε).
Similarly, one can show P[X

(n)
dnpe > F←(p) + ε]→ 0.
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6.5 Lp convergence

We say X ∈ Lp if E (|X |p) < ∞. For X ,Y ∈ Lp, we define the Lp
metric by

d(X ,Y ) = (E |X − Y |p)1/p,

and the induced norm on the Lp space is

‖X‖p = (E |X |p)1/p.

A sequence {Xn} of random variables converges in Lp to X , written

Xn
Lp→ X ,

if
‖Xn − X‖p → 0, or E (|Xn − X |p)→ 0

as n→∞.
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6.5 Lp convergence

The most important case is when p = 2, in which case L2 is a Hilbert
space with the inner product of X and Y defined by the correlation
of X and Y . Here are two simple examples:
1. Define {Xn} to be a (2nd order, weakly, covariance) stationary

process if EXn = µ independent of n and
Corr(Xn,Xn+k) = ρ(k) for all n. No distributional structure is
specified. The best linear predictor of Xn+1 based on
X1, . . . ,Xn is the linear combination of X1, . . . ,Xn which
achieves minimum mean square error (MSE). Call this
predictor X̂n+1, which is of the form X̂n+1 =

∑n
i=1 αiXi and

αi ’s are chosen so that

E (X̂n+1 − Xn+1)2 = min
α1,...,αn

E (
n∑

i=1

αiXi − Xn+1)2.
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6.5 Lp convergence

2. Supoose {Xn} are iid with E (Xn) = µ and Var(Xn) = σ2.
Then

X̄n =

∑n
i=1 Xi

n

L2→ µ,

since

E (

∑n
i=1 Xi

n
− µ)2 =

Var(Sn)

n2 =
σ2

n
→ 0.
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6.5 Lp convergence

Some basic facts:

(i). Lp convergence implies convergence in probability.

For p > 0, if Xn
Lp→ X , then Xn

P→ X .

This follows readily from Chebychev’s inequality,

P[|Xn − X | ≥ ε] ≤ E |Xn − X |p

εp
→ 0.
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6.5 Lp convergence

(ii). Convergence in probability does not imply Lp convergence.

Example: Consider ([0, 1],B([0, 1]), λ) and set

Xn = 2nI(0,1/n).

Then
P(|Xn| > ε) = 1/n→ 0.

However
E (|Xn|p) = 2np/n→∞.
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6.5 Lp convergence

(iii). Lp convergence does not imply almost sure convergence.

Example: Consider ([0, 1],B([0, 1]), λ) and define X1 = I[0,1], X2 =
I[0,1/2], X3 = I[1/2,1], X4 = I[0,1/3], X5 = I[1/3,2/3], X6 = I[2/3,1], . . . .

Then for any p > 0, E (|Xn|p) = 1/2, 1/2, 1/3, 1/3, 1/3, 1/4, . . .

converges to 0. Thus Xn
Lp→ 0. But {Xn} does not coverge almost

surely to 0.
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6.5.1 Uniform Integrability

Deeper and more useful connections between modes of convergence
depend on the notion of uniform integrability (ui). It is a property
of a family of random variables which says that the first absolute
moments are uniformly bounded and the distribution tails of the
random variables in the family converge to 0 at a uniform rate. We
give the formal definition.

Definition
A family {Xt : t ∈ T} of L1 random variables indexed by T is
uniformly integrable (ui) if

sup
t∈T

E
(
|Xt |I[|Xt |>a]

)
= sup

t∈T

∫
[|Xt |>a]

|Xt |dP → 0

as a→∞; that is ∫
[|Xt |>a]

|Xt |dP → 0

as a→∞, uniformly in t ∈ T .
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6.5.1 Uniform Integrability

Some criteria:

(1) Singleton. If T = {1} consists of one element, then∫
[|X1|>a]

|X1|dP → 0, a→∞

as a consequence of X1 ∈ L1.

(2) Dominated families. If there exists a dominating random vari-
ables Y ∈ L1, such that |Xt | ≤ Y for all t ∈ T . Then {Xt} is ui.

sup
t∈T

∫
[|Xt |>a]

|Xt |dP ≤
∫
[|Y |>a]

|Y |dp → 0, a→∞
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6.5.1 Uniform Integrability

Some criteria:

(3) Finite family. Suppose T = {1, 2, . . . , n} is finite. Then {Xt :
t ∈ T} is ui. This is because

|Xt | ≤
n∑

i=1

|Xi | ∈ L1,

then apply (2).

(4) More domination. Suppose for each t ∈ T , Xt ∈ L1 and
Yt ∈ L1,

|Xt | ≤ |Yt |

for all t ∈ T . Then if {Yt} is ui so is {Xt} ui.
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6.5.1 Uniform Integrability

Some criteria:

(5) Crystal Ball Condition. For p > 0, the family {|Xn|p} is ui, if

sup
n

E (|Xn|p+δ) <∞,

for some δ > 0.

sup
n

∫
[|Xn|p>a]

|Xn|pdP = sup
n

∫
[|Xn|/a1/p>1]

|Xn|pdP

≤
∫
[|Xn|δ/aδ/p>1]

|Xn|pdP

≤
∫
|Xn|p

|Xn|δ

aδ/p
dP

≤ a−δ/p sup
n

E (|Xn|p+δ)→ 0.
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6.5.1 Uniform Integrability

Theorem 6.5.1
Let {Xt : t ∈ T} be L1 random variables. This family is ui iff
(A) Uniform absolute continuity: For all ε > 0, there exists

δ = δ(ε), such that

∀A ∈ B : sup
t∈T

∫
A
|Xt |dP < ε if P(A) < δ,

and
(B) Uniform bounded first absolute moments:

sup
t∈T

E (|Xt |) <∞.
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6.5.1 Uniform Integrability

Proof: Suppose {Xt} is ui. For any X ∈ L1, A ∈ B, a > 0,∫
A
|X |dP =

∫
A∩[|X |≤a]

|X |dP +

∫
A∩[|X |>a]

|X |dP

≤ aP(A) +

∫
[|X |>a]

|X |dP

Thus

sup
t∈T

∫
A
|Xt |dP ≤ aP(A) + sup

t∈T

∫
[|Xt |>a]

|Xt |dP.

Letting A = Ω proves (B). To prove (A), we know supt∈T
∫
[|Xt |>a] |Xt |dP →

0 as a → ∞. Thus, for ε > 0, we can find large a such that
supt∈T

∫
[|Xt |>a] |Xt |dP ≤ ε/2. Then picking δ = ε/(2a) completes

(A).
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6.5.1 Uniform Integrability

Proof continued: Conversely, Suppose (A) and (B) holds, by Cheby-
chev’s inequality and (B),

sup
t∈T

P[|Xt | > a] ≤ supt∈T E (|Xt |)
a

=
a finite constant

a
.

Using (A), for ε > 0, there exists δ such that whenever P(A) < δ,∫
A |Xt |dP < ε for all t. We then pick large a such that P[|Xt | >
a] ≤ supt∈T P[|Xt | > a] ≤ δ. Then for all t,

sup
t∈T

∫
[|Xt |>a]

|Xt |dp ≤ ε,

which is the ui property.
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6.5.1 Uniform Integrability

Example 6.5.1
Let {Xn} be a sequence of random variables with

P[Xn = 0] = 1− 1/n,P[Xn = n] = 1/n

Then E (|Xn|) = 1 for all n. Thus {Xn} has uniform bounded first
absolute moments. However it is not a ui family, because∫

[|Xn|>a]
|Xn|dP = I (a ≤ n); i .e., sup

n

∫
[|Xn|>a]

|Xn|dp = 1.
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6.5.2 Interlude: A Review of Inequalities

Schwartz Ineq: Suppose X ,Y ∈ L2, then

|E (XY )| ≤ E (|XY |) ≤
√

E (X 2)E (Y 2).

Hölder’s ineq: Suppose X ∈ Lp and Y ∈ Lq, where p, q satisfy

p > 1, q > 1,
1
p

+
1
q

= 1

Then

|E (XY )| ≤ E (|XY |) ≤ (E |X |p)1/p(E |X |q)1/q.

Or ‖XY ‖1 ≤ ‖X‖p‖Y ‖q. Schwartz ineq is a special
case when p = q = 2.
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6.5.2 Interlude: A Review of Inequalities

Minkowski Ineq: For 1 ≤ p <∞, suppose X ,Y ∈ Lp. Then
X + Y ∈ Lp and

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

Jensen’s ineq: Suppose u : R 7→ R is convex and E (|X |) <∞ and
E (|u(X )|) <∞. Then

E (u(X )) ≥ u(E (X )).

35 / 44



6.5.2 Interlude: A Review of Inequalities

Example 6.5.2
If X ∈ Lβ , then X ∈ Lα provided 0 < α < β. Furthermore

‖X‖t = (E |Xt |t)1/t

is non-decreasing in t. Consequently, if Xn
Lp→ X and p′ < p, then

Xn

Lp′→ X .

Proof: Set p = β/α > 1 and then let q = β/(β−α) > 1. We have
1/r + 1/s = 1. Then let Z = |X |α,Y = 1. Using Hölder’s ineq,

E (|X |α) = E (|ZY |) ≤ ‖Z‖p‖Y ‖q = ‖Z |p = E (|Z |p)1/p

= E (|X |αp)α/β = E (|X |β)α/β.

Thus ‖X‖α ≤ ‖X‖β .
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6.6 More on Lp Convergence

We work up to an answer to the question: If random variables con-
verge, when do their moments converge? Assume {Xn} and X are
defined on (Ω,B,P).

(1) A form of Scheffé’s lemma:

Xn
L1→ X ⇐⇒ sup

A∈B

∣∣∣∣∫
A
XndP −

∫
A
XdP

∣∣∣∣→ 0.

Letting A = Ω, then L1 convergence implies E (Xn)→ E (X ).

(2) If Xn
Lp→ X , then E (|Xn|p)→ E (|X |p), or ‖Xn‖p → ‖X‖p

Proof: First show (2):|‖Xn‖p − ‖X‖p| ≤ ‖Xn − X‖p.
Now for the ⇐ of (1):

E |Xn − X | =

∫
[Xn>X ]

(Xn − X )dP +

∫
[Xn≤X ]

(X − Xn)dP

≤ 2 sup
A
|
∫
A
XndP −

∫
A
XdP|.
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6.6 More on Lp Convergence

Proof: Now for the ⇒ of (1):

sup
A

∣∣∣∣∫
A
XndP −

∫
A
XdP

∣∣∣∣ ≤ sup
A

∫
A
|Xn − X |dP

≤
∫
|Xn − X |dP

= E (|Xn − X |)→ 0.

38 / 44



6.6 More on Lp Convergence

Theorem 6.6.1
Suppose Xn ∈ L1 for n ≥ 1. The following statements are
equivalent:
(a) {Xn} is L1-convergent.
(b) {Xn} is L1-Cauchy; that is, E |Xn − Xm| → 0 as n,m→∞.
(c) {Xn} is ui and {Xn} converges in probability.

So if Xn
a.s→ X or Xn

P→ X (later, or Xn
D→ X ) and {Xn} is ui, then

Xn
L1→ X and E (Xn)→ E (X ).

Proof: (a) to (b): If Xn
L1→ X , then E |Xn − Xm| ≤ E |Xn − X | +

E |Xm − X | → 0 as n,m→∞.
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Proof continued: (b) to (c): We first show ui using Theorem 6.5.1.
Because of (b), for ε > 0, there exists Nε such that for n,m ≥ Nε,
then ∫

|Xn − Xm|dP < ε/2.

For any A ∈ B and n ≥ Nε,∫
A
|Xn|dP ≤

∫
A
|XNε |dP +

∫
|Xn − XNε |dP ≤

∫
A
|XNε |dP + ε/2.

That is supn≥Nε
∫
A |Xn|dP ≤

∫
A |XNε |dP + ε/2 and thus

sup
n

∫
A
|Xn|dP ≤ max( sup

m<Nε

∫
A
|Xm|dP,

∫
A
|XNε |dP + ε/2)

≤ sup
m≤Nε

∫
A
|Xm|dP + ε/2.

Take A = Ω, supn E (|Xn|) ≤ supm≤Nε E (|Xm|) + ε/2 <∞.
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Proof continued: (b) to (c) continued: Further more, since {Xm :
m ≤ Nε} is a finite family which is ui. We can find a δ > 0, such
that if P(A) ≤ δ, then

sup
m≤Nε

∫
A
|Xm|dP < ε/2.

Finally, we conclude that for ε > 0, we find a δ, such that if P(A) ≤
δ, then

sup
n

∫
A
|Xn|dP < ε/2 + ε/2 = ε.

Hence {Xn} is ui. To check {Xn} converges in probability, we have
P[|Xn − Xm| > ε] ≤ E (|Xn − Xm|)/ε → ∞. Thus {Xn} is Cauchy
i.p.
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Proof continued: (c) to (a): If Xn
P→ X , then there exists a subse-

quence {nk} such that Xnk
a.s.→ X . By Fatou’s lemma

E (|X |) = E (lim inf
nk→∞

|Xnk |) ≤ lim inf
nk→∞

E (|Xnk |) ≤ supnE (|Xn|) <∞

since {Xn} is ui. So X ∈ L1. Also, for any ε > 0,∫
|Xn − X |dP ≤

∫
[|Xn−X |≤ε]

|Xn − X |dP +

∫
[|Xn−X |>ε]

|Xn − X |dP

≤ ε+

∫
[|Xn−X |>ε]

|Xn|dP +

∫
[|Xn−X |>ε]

|X |dP .
= ε+ An + Bn.

Because P[|Xn − X | > ε]→ 0 and X ∈ L1 and {Xn} is ui, we have
An,Bn → 0.

42 / 44



6.6 More on Lp Convergence

Example
Suppose X1 and X2 are iid N(0, 1) and define Y = X1/|X2| which
has a Cauchy distribution with density f (y) = 1/{π(1 + y2)}, for
y ∈ R. Define Yn = X1/(|X2|+ n−1).

Then Yn → Y . But {Yn} is NOT ui.

Because if it is, then E (Yn) = 0→ E (Y ) in which E (Y ) does not
exist (contradiction).
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Theorem 6.6.2
Suppose p ≥ 1, Xn ∈ Lp for n ≥ 1. The following statements are
equivalent:
(a) {Xn} is Lp-convergent.
(b) {Xn} is Lp-Cauchy; that is, E |Xn − Xm|p → 0 as n,m→∞.
(c) {|Xn|p} is ui and {Xn} converges in probability.
This also states that Lp is a complete metric space; that is every
Cauchy sequence has a limit.
Proof is similar and left as HW 6-2.
Other HW 6 problems: Section 6.7, Q1-Q2, Q4-6, Q9, Q13, Q15-16,
Q19-Q20, Q23-26, Q31, Q33
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