STAT 810 Probability Theory I

Chapter 6: Convergence Concepts

Dr. Dewei Wang Associate Professor Department of Statistics University of South Carolina deweiwang@stat.sc.edu

6.1 Almost Sure Convergence

On (Ω, \mathcal{B}, P) , we say that a statement about random elements holds almost surely (a.s./a.e./a.c./a.a.) if there exists an event $N \in \mathcal{B}$ with P(N) = 0 such that the statement holds if $\omega \in N^c$:

- ► X = X' a.s. means P(X = X') = 1; i.e., there exists $N \in \mathcal{B}$, such that $X(\omega) = X'(\omega)$ for $\omega \in N^c$ and P(N) = 0.
- ▶ $X \le X'$ a.s. means there exists $N \in \mathcal{B}$, such that $X(\omega) \le X'(\omega)$ for $\omega \in N^c$ and P(N) = 0.
- ▶ $\lim_{n\to\infty} X_n$ exists a.s. means there exists $N \in \mathcal{B}$, such that $\lim_{n\to\infty} X_n(\omega)$ exists for $\omega \in N^c$ and P(N) = 0.

Most probabilistic properties of random variables are invariant under the relation almost sure equality. For example, if X = X' a.s. then $X \in L_1$ iff $X' \in L_1$ and in this case E(X) = E(X').

Example 6.1.1

Consider $([0,1], \mathcal{B}([0,1]), \lambda)$, where λ is Lebesgue measure. Define

$$X_n(s) = \begin{cases} n & \text{if } 0 \le s \le n^{-1}, \\ 0 & \text{if } n^{-1} < s \le 1. \end{cases}$$

Let $N = \{0\}$, we see that for $s \notin N$, $X_n(s) \to 0$ and $\lambda(N) = 0$. Thus X_n converges to 0 almost surely. Note that N is not empty.

6.1 Almost Sure Convergence

Proposition 6.1.1

Let $\{X_n\}$ be iid random variables with common distribution function F(x). Assume F(x) < 1 for all x. Set $M_n = \bigvee_{i=1}^n X_i$. Then $M_n \uparrow \infty$ a.s.

Proof: By definition, we know $\{M_n(\omega)\}$ is monotone increasing. Let

$$N^{c} = \{\omega : \lim_{n \to \infty} M_{n}(\omega) = \infty\}$$

= $\{\omega : \forall j, \exists k(\omega, j), \forall n \ge k(\omega, j), M_{n}(\omega) > j\}$
= $\cap_{j} (\bigcup_{k \ge 1} \bigcap_{n \ge k} [M_{n} \ge j]) = \cap_{j} \liminf_{n \to \infty} [M_{n} > j].$

Thus $N = \bigcup_j (\limsup_{n \to \infty} [M_n \le j])$. Because $\sum_n P[M_n \le j] = \sum_n F^n(j) < \infty$, by Borel-Cantelli lemma, $P(\limsup_{n \to \infty} [M_n \le j]) = 0$. Thus P(N) = 0.

6.2 Convergence in Probability

Suppose X_n , $n \ge 1$, and X are random variables. Then $\{X_n\}$ converges in probability (i.p.) to X, written $X_n \xrightarrow{P} X$, if for any $\epsilon > 0$,

 $\lim_{n\to\infty} P[|X_n-X|>\epsilon]=0.$

Example 6.2.1

Consider $([0,1], \mathcal{B}([0,1]), \lambda)$, where λ is Lebesgue measure. Define $X_1 = I_{[0,1]}, X_2 = I_{[0,1/2]}, X_3 = I_{[1/2,1]}, X_4 = I_{[0,1/3]}, X_5 = I_{[1/3,2/3]}, X_6 = I_{[2/3,1]}, \dots$

Then $P[|X_n - 0| > \epsilon] = 1, 1/2, 1/2, 1/3, 1/3, 1/3, 1/4, 1/4, \dots \to 0.$ Thus $X_n \xrightarrow{P} 0$. However, for any $s \in [0, 1]$, $X_n(s) = 1$ or 0 for infinitely many values of n. Thus $\lim_{n\to\infty} X_n$ does not exist almost surely.

6.2 Convergence in Probability

Theorem 6.2.1 (Convergence a.s. imples convergence i.p.) Suppose $\{X_n\}$ are random variables on (Ω, \mathcal{B}, P) . If $X_n \xrightarrow{a.s.} X$, then $X_n \xrightarrow{P} X$.

Proof: Let $N^c = \{\omega : \lim_{n \to \infty} |X_n(\omega) - X(\omega)| = 0\} = \{\omega : \forall j > 0, \exists N(\epsilon), \forall n \ge N, |X_n(\omega) - X(\omega)| \le 1/j\} = \cap_j \cup_{N \ge 1} \cap_{n \ge N} [|X_n - X| \le j^{-1}]$. Then $N = \cup_j \limsup_{n \to \infty} [|X_n - X| > j^{-1}]$. P(N) = 0 since $X_n \xrightarrow{a.s.} X$. Thus, for any j,

$$0 = P(\limsup_{n \to \infty} [|X_n - X| > j^{-1}])$$

=
$$\lim_{N \to \infty} P(\bigcup_{n \ge N} [|X_n - X| > j^{-1}])$$

$$\geq \lim_{n \to \infty} P[|X_n - X| > j^{-1}].$$

Pick j such that $\epsilon > j^{-1}$, then we have $\lim_{n\to\infty} P[|X_n - X| > \epsilon] = 0$.

In statistical estimation theory, almost sure and in probability convergence have analogues as **strong** or **weak consistency**.

Given a family of probability models (Ω, \mathcal{B}, P) . Suppose the statistician gets to observe random variables X_1, \ldots, X_n , defined on Ω and based on these observations must decide which is the correct model; that is, which is the correct value of θ . Statistical **estimation** means: select the correct model.

6.2.1 Statistical Terminology

Suppose $\Omega = \mathbb{R}^{\infty}$, $\mathcal{B} = \mathcal{B}(\mathbb{R}^{\infty})$. Let $\omega = (x_1, x_2, ...)$ and define $X_n(\omega) = x_n$. For each $\theta \in \mathbb{R}$, let P_{θ} be the product measure on \mathbb{R}^{∞} which makes $\{X_n\}$ iid with common $N(\theta, 1)$ distribution. Based on observing X_1, \ldots, X_n , one estimates θ with an appropriate function of the observations

 $\hat{\theta}_n = \hat{\theta}_n(X_1,\ldots,X_n).$

 $\hat{\theta}_n(X_1, \ldots, X_n)$ is called a **statistic** and is also an **estimator** (a random element). When one actually does the experiment and observes, $X_1 = x_1, \ldots, X_n = x_n$, then $\hat{\theta}_n(x_1, \ldots, x_n)$ is called the **estimate** (a number of a vector). In this example, we often take $\hat{\theta}_n = \sum_{i=1}^n X_i/n$. The estimator $\hat{\theta}_n$ is **weakly consistent** (denoted by $\hat{\theta}_n \stackrel{P_q}{\to} \theta$) if for all $\theta \in \Theta$,

 $P_{\theta}[|\hat{\theta}_n - \theta| > \epsilon] \to 0, n \to \infty.$

We say $\hat{\theta}_n$ is strongly consistent if for all $\theta \in \Theta$, $\hat{\theta}_n \to \theta$, $P_{\theta} - a.s.$

Theorem 6.3.1 Relations between i.p. and a.s. convergence Suppose that $\{X_n\}$ and X are real-valued random variables (a) **Cauchy criterion**: $\{X_n\}$ converges in probability to X iff $\{X_n\}$ is Cauchy in probability; i.e., $X_n - X_m \stackrel{P}{\rightarrow} 0$, as $n, m \rightarrow \infty$; i.e., for any $\epsilon > 0$, $\delta > 0$, there exists $n_0 = n_0(\epsilon, \delta)$, such that for all $r, s \ge n_0$, we have $P[|X_r - X_s| > \epsilon] < \delta$.

(b) $X_n \xrightarrow{P} X$ iff each subsequence $\{X_{n_k}\}$ contains a further subsequence $\{X_{n_{k(t)}}\}$ which converges almost surely to X.

6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1: We approach (a) with 2 steps: (i) We first show that if $X_n \xrightarrow{P} X$ then $\{X_n\}$ is Cauchy i.p. This can be done easily by using the inequality $P[|X_r - X_s| > \epsilon] \le P[|X_r - X| > \epsilon/2] + P[|X_s - X| > \epsilon/2]$, which comes from the use of the triangle inequality.

(ii) Next, we prove if $\{X_n\}$ is Cauchy i.p., then there exists a subsequence $\{X_{n_j}\}$ which converges almost surely. Call the almost sure limit X. Then it is also true that $X_n \xrightarrow{P} X$. To prove this, we define n_i by $n_1 = 1$ and

 $n_j = \inf\{N > n_{j-1} : P[|X_r - X_s| > 2^{-j}] < 2^{-j} \text{ for all } r, s \ge N\}.$

By Cauchy i.p, n_j always exists by setting $\epsilon = \delta = 2^{-j}$ and $n_j > n_{j-1}$. Consequently, we have $\sum_{j=1}^{\infty} P[|X_{n_{j+1}} - X_{n_j}| > 2^{-j}] < \infty$. By the Borel-Cantelli Lemma, let $N = limsup_{j\to\infty}[|X_{n_{j+1}} - X_{n_j}| > 2^{-j}]$, P(N) = 0.

6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1 continued: For $\omega \in N^c = \liminf_{j\to\infty} [|X_{n_{j+1}} - X_{n_j}| \le 2^{-j}]$, we know $|X_{n_{j+1}}(\omega) - X_{n_j}(\omega)| \le 2^{-j}$ for all large j. Thus $\{X_{n_j}(\omega)\}$ is a Cauchy sequence of real numbers and consequently, $\lim_{j\to\infty} X_{n_j}(\omega)$ exists. We proved $\{X_{n_j}\}$ converges a.s. and denote the limit by X.

To show $X_n \xrightarrow{P} X$, note $P[|X_n - X| > \epsilon] \le P[|X_n - X_{n_j}| > \epsilon/2] + P[|X_{n_j} - X| > \epsilon/2]$. By the Cauchy i.p. property, for any $\delta/2 > 0$, we can find $n_0(\epsilon/2, \delta/2)$ such that when $n, n_j > n_0(\epsilon/2, \delta/2)$, $P[|X_n - X_{n_j}| > \epsilon/2] < \delta/2$.

Because $X_{n_j} \xrightarrow{P} X$ as $j \to \infty$, we can find $n_1(\epsilon/2, \delta/2)$, such that for $n_j > n_1(\epsilon/2, \delta/2)$, $P[|X_{n_j} - X| > \epsilon/2] < \delta/2$. Thus, for any $\delta > 0$, we find $n_*(\epsilon, \delta) = \max\{n_0(\epsilon/2, \delta/2), n_1(\epsilon/2, \delta/2)\}$, for $n > n_*(\epsilon, \delta)$, $P[|X_n - X| > \epsilon] < \delta$. Done (a)!

Proof of Theorem 6.3.1 continued: For (b): Suppose $X_n \xrightarrow{P} X$. Pick any subsequence, the subsequence also $\xrightarrow{P} X$. From (ii) above, we find a further subsequence converging a.s.

Conversely, Suppose every subsequence has an a.s. convergence subsequence. If X_n does not converge to X in probability. Then there exists a subsequence $\{X_{n_k}\}$ and a $\delta > 0$ and $\epsilon > 0$ such that

 $P[|X_{n_k} - X| > \epsilon] \ge \delta.$

But we know there exists a further subsequence $\{X_{n_{k(t)}}\}$ converging a.s., hence i.p. to X. Contradiction!

Corollary 6.3.1

(i) $X_n \xrightarrow{a.s.} X$ and $g : \mathbb{R} \mapsto \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{a.s.} g(X)$. (ii) $X_n \xrightarrow{P} X$ and $g : \mathbb{R} \mapsto \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{P} g(X)$.

Proof: (i) There exists $N \in \mathcal{B}$ with P(N) = 0 such that if $\omega \in N^c$, $X_n(\omega) \to X(\omega)$. By continuity, $g(X_n(\omega)) \to g(X(\omega))$ holds. (ii) Using Theorem 6.3.1 (b).

Thus if $X_n \xrightarrow{P} X$, it is also true that $X_n^2 \xrightarrow{P} X^2$ and $\arctan X_n \xrightarrow{P} \arctan X$.

Corollary 6.3.2 (Lebesgue Dominated Convergence) If $X = \frac{P}{V} X$ and if there exists a dominating random variab

If $X_n \xrightarrow{P} X$ and if there exists a dominating random variable $\xi \in L_1$ such that $|X_n| \leq \xi$, then $E(X_n) \to E(X)$.

Proof: It suffices to show every convergent subsequence of $E(X_n)$ converges to E(X). Suppose $E(X_{n_k})$ converges. Then since convergence in probability is assumed, $\{X_{n_k}\}$ contains an a.s. convergent subsequence $\{X_{n_{k(t)}}\}$ such that $X_{n_{k(t)}} \stackrel{a.s.}{\to} X$. The Lebesgue Dominted COnvergence Theorem implies

 $E(X_{n_{k(t)}}) \rightarrow E(X).$

Thus $E(X_{n_k}) \rightarrow E(X)$.

6.3 Connections between a.s. and i.p. Convergence

We now list several easy results related to convergence in probability (HW 6-1: prove these).

- (1) If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$ and $X_n Y_n \xrightarrow{P} XY$.
- (2) This item is a reminder that Chebychev's inequality implies the Weak Law of Large Numbers (WLLN): If {X_n} are iid with EX_n = μ and Var(X_n) = σ², then ∑_{i=1}ⁿ X_i/n → μ.
 (3) Bernstein's version of the Weierstrass Approximation Theorem: Let f : [0, 1] → ℝ and define the Bernstein polynomial of

degree *n* by

$$B_n(x) = \sum_{k=0}^n f(\frac{k}{n}) C_k^n x^k (1-x)^{n-k}, 0 \le x \le 1$$

Then $B_n(x) \to f(x)$ uniformly for $x \in [0, 1]$.

Let F be a distribution function. For $0 , the pth order quantile of F is <math>F^{\leftarrow}(p) = \inf\{x : F(x) \ge p\}$. If F is unknown, we may wish to estimate a quantile.

We start with the estimation of F. Let X_1, \ldots, X_n be a random sample from F; that is, iid with common distribution function F. Define the empirical cumulative distribution function (cdf) by

$$F_n(x) = n^{-1} \sum_{i=1}^n I_{[X_i \le x]},$$

which is the percentage of the sample whose value is no greater than x. It is easy to see that

 $E(F_n(x)) = F(x), \operatorname{Var}(F_n(x)) = n^{-1}F(x)(1-F(x)), F_n(x) \xrightarrow{P} F(x),$
for each x.

To estimate a quantile $F^{\leftarrow}(p)$, one non-parametric method uses order statistics. Rearranging X_1, \ldots, X_n into $X_1^{(n)} \leq \cdots \leq X_n^{(n)}$, we define the empirical quantile function by

$$F_{n}^{\leftarrow}(p) = \inf\{x : F_{n}(x) \ge p\} \\ = \inf\{X_{j}^{(n)} : F_{n}(X_{j}^{(n)}) \ge p\} \\ = \inf\{X_{j}^{(n)} : \frac{j}{n} \ge p\} \\ = \inf\{X_{j}^{(n)} : j \ge np\} \\ = X_{\lceil np \rceil}^{(n)},$$

where $\lceil np \rceil$ is the ceiling of np.

Theorem 6.4.1 Suppose F is strictly increasing at $F^{\leftarrow}(p)$ which means that for all $\epsilon > 0$ $F(F^{\leftarrow}(p) + \epsilon) > p, F(F^{\leftarrow}(p) - \epsilon) < p.$

Then we have $X_{[nn]}^{(n)}$ be a weakly consistent quantile estimator, $X^{(n)}_{\lceil nn \rceil} \xrightarrow{P} F^{\leftarrow}(p).$

Proof: It suffices to show for all $\epsilon > 0$, $P[X_{\lceil nn \rceil}^{(n)} > F^{\leftarrow}(p) + \epsilon] \to 0$ and $P[X_{\lceil np \rceil}^{(n)} \leq F^{\leftarrow}(p) - \epsilon] \to 0$. We only show the latter one. Note that $X_{\alpha}^{(n)} < y$ iff $nF_n(y) > \alpha$. Thus $P[X_{\lceil np \rceil}^{(n)} \leq F^{\leftarrow}(p) - \epsilon] = P[nF_n(F^{\leftarrow}(p) - \epsilon) \geq \lceil np \rceil]$ $= P[F_n(F^{\leftarrow}(p) - \epsilon) \geq \frac{\lceil np \rceil}{2}]$ $= P[F_n(F^{\leftarrow}(p) - \epsilon) - F(F^{\leftarrow}(p) - \epsilon) \ge \frac{\lceil np \rceil}{n} - F(F^{\leftarrow}(p) - \epsilon)].$

Proof continued: We also know that $\frac{\lceil np \rceil}{n} \rightarrow p$ and $2\delta \doteq p - F(F^{\leftarrow}(p) - \epsilon) > 0$. Thus, we can find N > 0, such that for $n \ge N$, $\frac{\lceil np \rceil}{n} - F(F^{\leftarrow}(p) - \epsilon) > \delta > 0$. Then when $n \ge N$,

$$P[F_n(F^{\leftarrow}(p) - \epsilon) - F(F^{\leftarrow}(p) - \epsilon) \ge \frac{\lceil np \rceil}{n} - F(F^{\leftarrow}(p) - \epsilon)]$$

$$\le P[|F_n(F^{\leftarrow}(p) - \epsilon) - F(F^{\leftarrow}(p) - \epsilon)| \ge \delta] \to 0,$$

since by the WLLN, $F_n(F^{\leftarrow}(p) - \epsilon) \xrightarrow{P} F(F^{\leftarrow}(p) - \epsilon)$. Similarly, one can show $P[X^{(n)}_{\lceil np \rceil} > F^{\leftarrow}(p) + \epsilon] \to 0$.

6.5 L_p convergence

We say $X \in L_p$ if $E(|X|^p) < \infty$. For $X, Y \in L_p$, we define the L_p metric by

$$d(X, Y) = (E|X - Y|^p)^{1/p},$$

and the induced norm on the L_p space is

 $||X||_p = (E|X|^p)^{1/p}.$

A sequence $\{X_n\}$ of random variables converges in L_p to X, written

$$X_n \stackrel{L_p}{\to} X,$$

if

$$\|X_n - X\|_{
ho} o 0$$
, or $E(|X_n - X|^{
ho}) o 0$

as $n \to \infty$.

6.5 L_p convergence

The most important case is when p = 2, in which case L_2 is a Hilbert space with the inner product of X and Y defined by the correlation of X and Y. Here are two simple examples:

1. Define $\{X_n\}$ to be a (2nd order, weakly, covariance) stationary process if $EX_n = \mu$ independent of n and $\operatorname{Corr}(X_n, X_{n+k}) = \rho(k)$ for all n. No distributional structure is specified. The **best linear predictor** of X_{n+1} based on X_1, \ldots, X_n is the linear combination of X_1, \ldots, X_n which achieves **minimum mean square error** (MSE). Call this predictor \hat{X}_{n+1} , which is of the form $\hat{X}_{n+1} = \sum_{i=1}^n \alpha_i X_i$ and α_i 's are chosen so that

$$E(\hat{X}_{n+1}-X_{n+1})^2 = \min_{\alpha_1,...,\alpha_n} E(\sum_{i=1}^n \alpha_i X_i - X_{n+1})^2.$$

2. Suppose $\{X_n\}$ are iid with $E(X_n) = \mu$ and $Var(X_n) = \sigma^2$. Then

$$\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \stackrel{L_2}{\to} \mu,$$

since

$$E(\frac{\sum_{i=1}^n X_i}{n} - \mu)^2 = \frac{\operatorname{Var}(S_n)}{n^2} = \frac{\sigma^2}{n} \to 0.$$

Some basic facts:

(i). L_p convergence implies convergence in probability.

For p > 0, if $X_n \xrightarrow{L_p} X$, then $X_n \xrightarrow{P} X$.

This follows readily from Chebychev's inequality,

$$P[|X_n - X| \ge \epsilon] \le \frac{E|X_n - X|^p}{\epsilon^p} \to 0.$$

(ii). Convergence in probability does not imply L_p convergence.

Example: Consider $([0,1], \mathcal{B}([0,1]), \lambda)$ and set

 $X_n=2^nI_{(0,1/n)}.$

Then

$$P(|X_n| > \epsilon) = 1/n \to 0.$$

However

 $E(|X_n|^p)=2^{np}/n\to\infty.$

(iii). L_p convergence does not imply almost sure convergence.

Example: Consider $([0, 1], \mathcal{B}([0, 1]), \lambda)$ and define $X_1 = I_{[0,1]}, X_2 = I_{[0,1/2]}, X_3 = I_{[1/2,1]}, X_4 = I_{[0,1/3]}, X_5 = I_{[1/3,2/3]}, X_6 = I_{[2/3,1]}, \dots$

Then for any p > 0, $E(|X_n|^p) = 1/2, 1/2, 1/3, 1/3, 1/3, 1/4, ...$ converges to 0. Thus $X_n \xrightarrow{L_p} 0$. But $\{X_n\}$ does not coverge almost surely to 0.

Deeper and more useful connections between modes of convergence depend on the notion of uniform integrability (ui). It is a property of a family of random variables which says that the first absolute moments are uniformly bounded and the distribution tails of the random variables in the family converge to 0 at a uniform rate. We give the formal definition.

Definition

A family $\{X_t : t \in T\}$ of L_1 random variables indexed by T is **uniformly integrable** (ui) if

$$\sup_{t\in T} E\left(|X_t|I_{[|X_t|>a]}\right) = \sup_{t\in T} \int_{[|X_t|>a]} |X_t|dP \to 0$$

as $a o \infty$; that is

$$\int_{[|X_t|>a]} |X_t| dP \to 0$$

as $a \to \infty$, uniformly in $t \in T$.

Some criteria:

(1) Singleton. If $T = \{1\}$ consists of one element, then

$$\int_{[|X_1|>a]} |X_1| dP \to 0, a \to \infty$$

as a consequence of $X_1 \in L_1$.

(2) Dominated families. If there exists a dominating random variables $Y \in L_1$, such that $|X_t| \leq Y$ for all $t \in T$. Then $\{X_t\}$ is ui.

$$\sup_{t\in T} \int_{[|X_t|>a]} |X_t| dP \le \int_{[|Y|>a]} |Y| dp \to 0, a \to \infty$$

Some criteria:

(3) Finite family. Suppose $T = \{1, 2, ..., n\}$ is finite. Then $\{X_t : t \in T\}$ is ui. This is because

$$|X_t| \leq \sum_{i=1}^n |X_i| \in L_1,$$

then apply (2).

(4) More domination. Suppose for each $t \in T$, $X_t \in L_1$ and $Y_t \in L_1$,

 $|X_t| \leq |Y_t|$

for all $t \in T$. Then if $\{Y_t\}$ is u so is $\{X_t\}$ u.

Some criteria:

(5) Crystal Ball Condition. For p > 0, the family $\{|X_n|^p\}$ is ui, if

 $\sup_{n} E(|X_n|^{p+\delta}) < \infty,$

for some $\delta > 0$.

$$\sup_{n} \int_{[|X_{n}|^{p} > a]} |X_{n}|^{p} dP = \sup_{n} \int_{[|X_{n}|/a^{1/p} > 1]} |X_{n}|^{p} dP$$

$$\leq \int_{[|X_{n}|^{\delta}/a^{\delta/p} > 1]} |X_{n}|^{p} dP$$

$$\leq \int_{n} |X_{n}|^{p} \frac{|X_{n}|^{\delta}}{a^{\delta/p}} dP$$

$$\leq a^{-\delta/p} \sup_{n} E(|X_{n}|^{p+\delta}) \to 0.$$

Theorem 6.5.1 Let $\{X_t : t \in T\}$ be L_1 random variables. This family is ui iff (A) Uniform absolute continuity: For all $\epsilon > 0$, there exists $\delta = \delta(\epsilon)$, such that

$$\forall A \in \mathcal{B} : \sup_{t \in \mathcal{T}} \int_{\mathcal{A}} |X_t| dP < \epsilon \text{ if } P(A) < \delta,$$

and

(B) Uniform bounded first absolute moments:

 $\sup_{t\in T} E(|X_t|) < \infty.$

Proof: Suppose $\{X_t\}$ is ui. For any $X \in L_1$, $A \in \mathcal{B}$, a > 0,

$$\int_{A} |X|dP = \int_{A \cap [|X| \le a]} |X|dP + \int_{A \cap [|X| > a]} |X|dP$$
$$\leq aP(A) + \int_{[|X| > a]} |X|dP$$

Thus

$$\sup_{t\in T}\int_{A}|X_t|dP\leq aP(A)+\sup_{t\in T}\int_{[|X_t|>a]}|X_t|dP.$$

Letting $A = \Omega$ proves (B). To prove (A), we know $\sup_{t \in T} \int_{[|X_t| > a]} |X_t| dP \rightarrow 0$ as $a \rightarrow \infty$. Thus, for $\epsilon > 0$, we can find large a such that $\sup_{t \in T} \int_{[|X_t| > a]} |X_t| dP \le \epsilon/2$. Then picking $\delta = \epsilon/(2a)$ completes (A).

Proof continued: Conversely, Suppose (A) and (B) holds, by Chebychev's inequality and (B),

$$\sup_{t \in T} P[|X_t| > a] \le \frac{\sup_{t \in T} E(|X_t|)}{a} = \frac{\text{a finite constant}}{a}$$

Using (A), for $\epsilon > 0$, there exists δ such that whenever $P(A) < \delta$, $\int_A |X_t| dP < \epsilon$ for all t. We then pick large a such that $P[|X_t| > a] \le \sup_{t \in T} P[|X_t| > a] \le \delta$. Then for all t,

$$\sup_{t\in T}\int_{[|X_t|>a]}|X_t|dp\leq \epsilon,$$

which is the ui property.

Example 6.5.1

Let $\{X_n\}$ be a sequence of random variables with

$$P[X_n = 0] = 1 - 1/n, P[X_n = n] = 1/n$$

Then $E(|X_n|) = 1$ for all *n*. Thus $\{X_n\}$ has uniform bounded first absolute moments. However it is not a ui family, because

$$\int_{[|X_n|>a]} |X_n| dP = I(a \le n); i.e., \sup_n \int_{[|X_n|>a]} |X_n| dp = 1.$$

6.5.2 Interlude: A Review of Inequalities

Schwartz Ineq: Suppose $X, Y \in L_2$, then

 $|E(XY)| \leq E(|XY|) \leq \sqrt{E(X^2)E(Y^2)}.$

Hölder's ineq: Suppose $X \in L_p$ and $Y \in L_q$, where p, q satisfy

$$p > 1, q > 1, \frac{1}{p} + \frac{1}{q} = 1$$

Then

 $|E(XY)| \le E(|XY|) \le (E|X|^p)^{1/p} (E|X|^q)^{1/q}.$

Or $||XY||_1 \le ||X||_p ||Y||_q$. Schwartz ineq is a special case when p = q = 2.

6.5.2 Interlude: A Review of Inequalities

Minkowski Ineq: For $1 \le p < \infty$, suppose $X, Y \in L_p$. Then $X + Y \in L_p$ and

 $||X + Y||_{p} \le ||X||_{p} + ||Y||_{p}.$

Jensen's ineq: Suppose $u : \mathbb{R} \mapsto \mathbb{R}$ is convex and $E(|X|) < \infty$ and $E(|u(X)|) < \infty$. Then

 $E(u(X)) \geq u(E(X)).$

6.5.2 Interlude: A Review of Inequalities

Example 6.5.2 If $X \in L_{\beta}$, then $X \in L_{\alpha}$ provided $0 < \alpha < \beta$. Furthermore $\|X\|_{t} = (E|X_{t}|^{t})^{1/t}$

is non-decreasing in t. Consequently, if $X_n \xrightarrow{L_p} X$ and p' < p, then

 $X_n \stackrel{L_{p'}}{\to} X.$

Proof: Set $p = \beta/\alpha > 1$ and then let $q = \beta/(\beta - \alpha) > 1$. We have 1/r + 1/s = 1. Then let $Z = |X|^{\alpha}$, Y = 1. Using Hölder's ineq, $E(|X|^{\alpha}) = E(|ZY|) \le ||Z||_p ||Y||_q = ||Z|_p = E(|Z|^p)^{1/p}$ $= E(|X|^{\alpha p})^{\alpha/\beta} = E(|X|^{\beta})^{\alpha/\beta}$.

Thus $||X||_{\alpha} \leq ||X||_{\beta}$.

We work up to an answer to the question: If random variables converge, when do their moments converge? Assume $\{X_n\}$ and X are defined on (Ω, \mathcal{B}, P) .

(1) A form of Scheffé's lemma:

$$X_n \xrightarrow{L_1} X \iff \sup_{A \in \mathcal{B}} \left| \int_A X_n dP - \int_A X dP \right| \to 0.$$

Letting $A = \Omega$, then L_1 convergence implies $E(X_n) \to E(X)$. (2) If $X_n \xrightarrow{L_p} X$, then $E(|X_n|^p) \to E(|X|^p)$, or $||X_n||_p \to ||X||_p$ **Proof:** First show (2): $|||X_n||_p - ||X||_p| \le ||X_n - X||_p$. Now for the \Leftarrow of (1):

$$E|X_n - X| = \int_{[X_n > X]} (X_n - X)dP + \int_{[X_n \le X]} (X - X_n)dP$$

$$\leq 2 \sup_A |\int_A X_n dP - \int_A X dP|.$$

Proof: Now for the \Rightarrow of (1):

$$\sup_{A} \left| \int_{A} X_{n} dP - \int_{A} X dP \right| \leq \sup_{A} \int_{A} |X_{n} - X| dP$$
$$\leq \int |X_{n} - X| dP$$
$$= E(|X_{n} - X|) \to 0.$$

Theorem 6.6.1

Suppose $X_n \in L_1$ for $n \ge 1$. The following statements are equivalent:

(a) {X_n} is L₁-convergent.
(b) {X_n} is L₁-Cauchy; that is, E|X_n - X_m| → 0 as n, m → ∞.
(c) {X_n} is ui and {X_n} converges in probability.
So if X_n ^{a.s} X or X_n ^P X (later, or X_n ^D X) and {X_n} is ui, then X_n ^{L₁} X and E(X_n) → E(X).

Proof: (a) to (b): If $X_n \xrightarrow{L_1} X$, then $E|X_n - X_m| \le E|X_n - X| + E|X_m - X| \to 0$ as $n, m \to \infty$.

Proof continued: (b) to (c): We first show ui using Theorem 6.5.1. Because of (b), for $\epsilon > 0$, there exists N_{ϵ} such that for $n, m \ge N_{\epsilon}$, then

$$\int |X_n - X_m| dP < \epsilon/2.$$

For any $A \in \mathcal{B}$ and $n \geq N_{\epsilon}$,

$$\begin{split} &\int_{A} |X_{n}| dP \leq \int_{A} |X_{N_{\epsilon}}| dP + \int |X_{n} - X_{N_{\epsilon}}| dP \leq \int_{A} |X_{N_{\epsilon}}| dP + \epsilon/2. \\ &\text{That is } \sup_{n \geq N_{\epsilon}} \int_{A} |X_{n}| dP \leq \int_{A} |X_{N_{\epsilon}}| dP + \epsilon/2 \text{ and thus} \\ &\sup_{n} \int_{A} |X_{n}| dP \leq \max(\sup_{m < N_{\epsilon}} \int_{A} |X_{m}| dP, \int_{A} |X_{N_{\epsilon}}| dP + \epsilon/2) \\ &\leq \sup_{m \leq N_{\epsilon}} \int_{A} |X_{m}| dP + \epsilon/2. \end{split}$$

Take $A = \Omega$, $\sup_{n} E(|X_n|) \leq \sup_{m \leq N_{\epsilon}} E(|X_m|) + \epsilon/2 < \infty$.

Proof continued: (b) to (c) continued: Further more, since $\{X_m : m \le N_{\epsilon}\}$ is a finite family which is ui. We can find a $\delta > 0$, such that if $P(A) \le \delta$, then

$$\sup_{m\leq N_{\epsilon}}\int_{A}|X_{m}|dP<\epsilon/2.$$

Finally, we conclude that for $\epsilon > 0$, we find a δ , such that if $P(A) \le \delta$, then

$$\sup_n \int_A |X_n| dP < \epsilon/2 + \epsilon/2 = \epsilon.$$

Hence $\{X_n\}$ is ui. To check $\{X_n\}$ converges in probability, we have $P[|X_n - X_m| > \epsilon] \le E(|X_n - X_m|)/\epsilon \to \infty$. Thus $\{X_n\}$ is Cauchy i.p.

Proof continued: (c) to (a): If $X_n \xrightarrow{P} X$, then there exists a subsequence $\{n_k\}$ such that $X_{n_k} \xrightarrow{a.s.} X$. By Fatou's lemma

 $E(|X|) = E(\liminf_{n_k \to \infty} |X_{n_k}|) \le \liminf_{n_k \to \infty} E(|X_{n_k}|) \le \sup_{n \in \mathbb{Z}} E(|X_n|) < \infty$

since $\{X_n\}$ is ui. So $X \in L_1$. Also, for any $\epsilon > 0$,

$$\int |X_n - X| dP \leq \int_{[|X_n - X| \leq \epsilon]} |X_n - X| dP + \int_{[|X_n - X| > \epsilon]} |X_n - X| dP$$
$$\leq \epsilon + \int_{[|X_n - X| > \epsilon]} |X_n| dP + \int_{[|X_n - X| > \epsilon]} |X| dP \doteq \epsilon + A_n + B_n.$$

Because $P[|X_n - X| > \epsilon] \to 0$ and $X \in L_1$ and $\{X_n\}$ is ui, we have $A_n, B_n \to 0$.

Example

Suppose X_1 and X_2 are iid N(0, 1) and define $Y = X_1/|X_2|$ which has a Cauchy distribution with density $f(y) = 1/{\pi(1+y^2)}$, for $y \in \mathbb{R}$. Define $Y_n = X_1/(|X_2| + n^{-1})$.

Then $Y_n \to Y$. But $\{Y_n\}$ is NOT ui.

Because if it is, then $E(Y_n) = 0 \rightarrow E(Y)$ in which E(Y) does not exist (contradiction).

Theorem 6.6.2

Suppose $p \ge 1$, $X_n \in L_p$ for $n \ge 1$. The following statements are equivalent:

- (a) $\{X_n\}$ is L_p -convergent.
- (b) $\{X_n\}$ is L_p -Cauchy; that is, $E|X_n X_m|_p \to 0$ as $n, m \to \infty$.
- (c) $\{|X_n|^p\}$ is ui and $\{X_n\}$ converges in probability.

This also states that L_p is a complete metric space; that is every Cauchy sequence has a limit.

Proof is similar and left as HW 6-2. Other HW 6 problems: Section 6.7, Q1-Q2, Q4-6, Q9, Q13, Q15-16, Q19-Q20, Q23-26, Q31, Q33