STAT 810 Probability Theory I

Chapter 6: Convergence Concepts

Dr. Dewei Wang
Associate Professor
Department of Statistics
University of South Carolina
deweiwang@stat.sc.edu

6.1 Almost Sure Convergence

On (Ω, \mathcal{B}, P), we say that a statement about random elements holds almost surely (a.s./a.e./a.c./a.a.) if there exists an event $N \in \mathcal{B}$ with $P(N)=0$ such that the statement holds if $\omega \in N^{c}$:

- $X=X^{\prime}$ a.s. means $P\left(X=X^{\prime}\right)=1$; i.e., there exists $N \in \mathcal{B}$, such that $X(\omega)=X^{\prime}(\omega)$ for $\omega \in N^{c}$ and $P(N)=0$.
- $X \leq X^{\prime}$ a.s. means there exists $N \in \mathcal{B}$, such that $X(\omega) \leq X^{\prime}(\omega)$ for $\omega \in N^{c}$ and $P(N)=0$.
- $\lim _{n \rightarrow \infty} X_{n}$ exists a.s. means there exists $N \in \mathcal{B}$, such that $\lim _{n \rightarrow \infty} X_{n}(\omega)$ exists for $\omega \in N^{c}$ and $P(N)=0$.
Most probabilistic properties of random variables are invariant under the relation almost sure equality. For example, if $X=X^{\prime}$ a.s. then $X \in L_{1}$ iff $X^{\prime} \in L_{1}$ and in this case $E(X)=E\left(X^{\prime}\right)$.

6.1 Almost Sure Convergence

Example 6.1.1
Consider $([0,1], \mathcal{B}([0,1]), \lambda)$, where λ is Lebesgue measure. Define

$$
X_{n}(s)= \begin{cases}n & \text { if } 0 \leq s \leq n^{-1}, \\ 0 & \text { if } n^{-1}<s \leq 1 .\end{cases}
$$

Let $N=\{0\}$, we see that for $s \notin N, X_{n}(s) \rightarrow 0$ and $\lambda(N)=0$.
Thus X_{n} converges to 0 almost surely. Note that N is not empty.

6.1 Almost Sure Convergence

Proposition 6.1.1

Let $\left\{X_{n}\right\}$ be iid random variables with common distribution function $F(x)$. Assume $F(x)<1$ for all x. Set $M_{n}=\bigvee_{i=1}^{n} X_{i}$.
Then $M_{n} \uparrow \infty$ a.s.
Proof: By definition, we know $\left\{M_{n}(\omega)\right\}$ is monotone increasing. Let

$$
\begin{aligned}
N^{c} & =\left\{\omega: \lim _{n \rightarrow \infty} M_{n}(\omega)=\infty\right\} \\
& =\left\{\omega: \forall j, \exists k(\omega, j), \forall n \geq k(\omega, j), M_{n}(\omega)>j\right\} \\
& =\cap_{j}\left(\cup_{k \geq 1} \cap_{n \geq k}\left[M_{n} \geq j\right]\right)=\cap_{j} \liminf _{n \rightarrow \infty}\left[M_{n}>j\right] .
\end{aligned}
$$

Thus $N=\cup_{j}\left(\lim \sup _{n \rightarrow \infty}\left[M_{n} \leq j\right]\right)$. Because $\sum_{n} P\left[M_{n} \leq j\right]=$ $\sum_{n} F^{n}(j)<\infty$, by Borel-Cantelli lemma, $P\left(\lim \sup _{n \rightarrow \infty}\left[M_{n} \leq\right.\right.$ $j])=0$. Thus $P(N)=0$.

6.2 Convergence in Probability

Suppose $X_{n}, n \geq 1$, and X are random variables. Then $\left\{X_{n}\right\}$ converges in probability (i.p.) to X, written $X_{n} \xrightarrow{P} X$, if for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left[\left|X_{n}-X\right|>\epsilon\right]=0
$$

Example 6.2.1
Consider $([0,1], \mathcal{B}([0,1]), \lambda)$, where λ is Lebesgue measure. Define $X_{1}=I_{[0,1]}, X_{2}=I_{[0,1 / 2]}, X_{3}=I_{[1 / 2,1]}, X_{4}=I_{[0,1 / 3]}, X_{5}=I_{[1 / 3,2 / 3]}$, $X_{6}=I_{[2 / 3,1]}, \ldots$.

Then $P\left[\left|X_{n}-0\right|>\epsilon\right]=1,1 / 2,1 / 2,1 / 3,1 / 3,1 / 3,1 / 4,1 / 4, \cdots \rightarrow 0$.
Thus $X_{n} \xrightarrow{P} 0$. However, for any $s \in[0,1], X_{n}(s)=1$ or 0 for infinitely many values of n. Thus $\lim _{n \rightarrow \infty} X_{n}$ does not exist almost surely.

6.2 Convergence in Probability

Theorem 6.2.1 (Convergence a.s. imples convergence i.p.)
Suppose $\left\{X_{n}\right\}$ are random variables on (Ω, \mathcal{B}, P). If $X_{n} \xrightarrow{\text { a.s. }} X$, then $X_{n} \xrightarrow{P} X$.
Proof: Let $N^{c}=\left\{\omega: \lim _{n \rightarrow \infty}\left|X_{n}(\omega)-X(\omega)\right|=0\right\}=\{\omega: \forall j>$ $\left.0, \exists N(\epsilon), \forall n \geq N,\left|X_{n}(\omega)-X(\omega)\right| \leq 1 / j\right\}=\cap_{j} \cup_{N \geq 1} \cap_{n \geq N}\left[\mid X_{n}-\right.$ $\left.X \mid \leq j^{-1}\right]$. Then $N=\cup_{j} \lim \sup _{n \rightarrow \infty}\left[\left|X_{n}-X\right|>j^{-1}\right] . \quad P(N)=0$ since $X_{n} \xrightarrow{\text { a.s. }} X$. Thus, for any j,

$$
\begin{aligned}
0 & =P\left(\limsup _{n \rightarrow \infty}\left[\left|X_{n}-X\right|>j^{-1}\right]\right) \\
& =\lim _{N \rightarrow \infty} P\left(\cup_{n \geq N}\left[\left|X_{n}-X\right|>j^{-1}\right]\right) \\
& \geq \lim _{n \rightarrow \infty} P\left[\left|X_{n}-X\right|>j^{-1}\right] .
\end{aligned}
$$

Pick j such that $\epsilon>j^{-1}$, then we have $\lim _{n \rightarrow \infty} P\left[\left|X_{n}-X\right|>\epsilon\right]=0$.

6.2.1 Statistical Terminology

In statistical estimation theory, almost sure and in probability convergence have analogues as strong or weak consistency.

Given a family of probability models (Ω, \mathcal{B}, P). Suppose the statistician gets to observe random variables X_{1}, \ldots, X_{n}, defined on Ω and based on these observations must decide which is the correct model; that is, which is the correct value of θ. Statistical estimation means: select the correct model.

6.2.1 Statistical Terminology

Suppose $\Omega=\mathbb{R}^{\infty}, \mathcal{B}=\mathcal{B}\left(\mathbb{R}^{\infty}\right)$. Let $\omega=\left(x_{1}, x_{2}, \ldots\right)$ and define $X_{n}(\omega)=x_{n}$. For each $\theta \in \mathbb{R}$, let P_{θ} be the product measure on \mathbb{R}^{∞} which makes $\left\{X_{n}\right\}$ iid with common $N(\theta, 1)$ distribution. Based on observing X_{1}, \ldots, X_{n}, one estimates θ with an appropriate function of the observations

$$
\hat{\theta}_{n}=\hat{\theta}_{n}\left(X_{1}, \ldots, X_{n}\right)
$$

$\hat{\theta}_{n}\left(X_{1}, \ldots, X_{n}\right)$ is called a statistic and is also an estimator (a random element). When one actually does the experiment and observes, $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$, then $\hat{\theta}_{n}\left(x_{1}, \ldots, x_{n}\right)$ is called the estimate (a number of a vector). In this example, we often take $\hat{\theta}_{n}=\sum_{i=1}^{n} X_{i} / n$. The estimator $\hat{\theta}_{n}$ is weakly consistent (denoted by $\hat{\theta}_{n} \xrightarrow{P_{\theta}} \theta$) if for all $\theta \in \Theta$,

$$
P_{\theta}\left[\left|\hat{\theta}_{n}-\theta\right|>\epsilon\right] \rightarrow 0, n \rightarrow \infty
$$

We say $\hat{\theta}_{n}$ is strongly consistent if for all $\theta \in \Theta, \hat{\theta}_{n} \rightarrow \theta, P_{\theta}$ - a.s.

6.3 Connections between a.s. and i.p. Convergence

Theorem 6.3.1 Relations between i.p. and a.s. convergence Suppose that $\left\{X_{n}\right\}$ and X are real-valued random variables
(a) Cauchy criterion: $\left\{X_{n}\right\}$ converges in probability to X iff $\left\{X_{n}\right\}$ is Cauchy in probability; i.e., $X_{n}-X_{m} \xrightarrow{P} 0$, as $n, m \rightarrow \infty$; i.e., for any $\epsilon>0, \delta>0$, there exists $n_{0}=n_{0}(\epsilon, \delta)$, such that for all $r, s \geq n_{0}$, we have $P\left[\left|X_{r}-X_{s}\right|>\epsilon\right]<\delta$.
(b) $X_{n} \xrightarrow{P} X$ iff each subsequence $\left\{X_{n_{k}}\right\}$ contains a further subsequence $\left\{X_{n_{k(t)}}\right\}$ which converges almost surely to X.

6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1: We approach (a) with 2 steps: (i) We first show that if $X_{n} \xrightarrow{P} X$ then $\left\{X_{n}\right\}$ is Cauchy i.p. This can be done easily by using the inequality $P\left[\left|X_{r}-X_{s}\right|>\epsilon\right] \leq P\left[\left|X_{r}-X\right|>\right.$ $\epsilon / 2]+P\left[\left|X_{s}-X\right|>\epsilon / 2\right]$, which comes from the use of the triangle inequality.
(ii) Next, we prove if $\left\{X_{n}\right\}$ is Cauchy i.p., then there exists a subsequence $\left\{X_{n_{j}}\right\}$ which converges almost surely. Call the almost sure limit X. Then it is also true that $X_{n} \xrightarrow{P} X$.
To prove this, we define n_{j} by $n_{1}=1$ and

$$
n_{j}=\inf \left\{N>n_{j-1}: P\left[\left|X_{r}-X_{s}\right|>2^{-j}\right]<2^{-j} \text { for all } r, s \geq N\right\}
$$

By Cauchy i.p, n_{j} always exists by setting $\epsilon=\delta=2^{-j}$ and $n_{j}>$ n_{j-1}. Consequently, we have $\sum_{j=1}^{\infty} P\left[\left|X_{n_{j+1}}-X_{n_{j}}\right|>2^{-j}\right]<\infty$. By the Borel-Cantelli Lemma, let $N=\limsup _{j \rightarrow \infty}\left[\left|X_{n_{j+1}}-X_{n_{j}}\right|>2^{-j}\right]$, $P(N)=0$.

6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1 continued: For $\omega \in N^{c}=\liminf _{j \rightarrow \infty}\left[\mid X_{n_{j+1}}-\right.$ $\left.X_{n_{j}} \mid \leq 2^{-j}\right]$, we know $\left|X_{n_{j+1}}(\omega)-X_{n_{j}}(\omega)\right| \leq 2^{-j}$ for all large j. Thus $\left\{X_{n_{j}}(\omega)\right\}$ is a Cauchy sequence of real numbers and consequently, $\lim _{j \rightarrow \infty} X_{n_{j}}(\omega)$ exists. We proved $\left\{X_{n_{j}}\right\}$ converges a.s. and denote the limit by X.

To show $X_{n} \xrightarrow{P} X$, note $P\left[\left|X_{n}-X\right|>\epsilon\right] \leq P\left[\left|X_{n}-X_{n_{j}}\right|>\epsilon / 2\right]+$ $P\left[\left|X_{n_{j}}-X\right|>\epsilon / 2\right]$. By the Cauchy i.p. property, for any $\delta / 2>$ 0 , we can find $n_{0}(\epsilon / 2, \delta / 2)$ such that when $n, n_{j}>n_{0}(\epsilon / 2, \delta / 2)$, $P\left[\left|X_{n}-X_{n_{j}}\right|>\epsilon / 2\right]<\delta / 2$.

Because $X_{n_{j}} \xrightarrow{P} X$ as $j \rightarrow \infty$, we can find $n_{1}(\epsilon / 2, \delta / 2)$, such that for $n_{j}>n_{1}(\epsilon / 2, \delta / 2), P\left[\left|X_{n_{j}}-X\right|>\epsilon / 2\right]<\delta / 2$. Thus, for any $\delta>0$, we find $n_{*}(\epsilon, \delta)=\max \left\{n_{0}(\epsilon / 2, \delta / 2), n_{1}(\epsilon / 2, \delta / 2)\right\}$, for $n>n_{*}(\epsilon, \delta)$, $P\left[\left|X_{n}-X\right|>\epsilon\right]<\delta$. Done (a)!

6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1 continued: For (b): Suppose $X_{n} \xrightarrow{P} X$. Pick any subsequence, the subsequence also $\xrightarrow{P} X$. From (ii) above, we find a further subsequence converging a.s.

Conversely, Suppose every subsequence has an a.s. convergence subsequence. If X_{n} does not converge to X in probability. Then there exists a subsequence $\left\{X_{n_{k}}\right\}$ and a $\delta>0$ and $\epsilon>0$ such that

$$
P\left[\left|X_{n_{k}}-X\right|>\epsilon\right] \geq \delta .
$$

But we know there exists a further subsequence $\left\{X_{n_{k(t)}}\right\}$ converging a.s., hence i.p. to X. Contradiction!

6.3 Connections between a.s. and i.p. Convergence

Corollary 6.3.1
(i) $X_{n} \xrightarrow{\text { a.s. }} X$ and $g: \mathbb{R} \mapsto \mathbb{R}$ is continuous, then $g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X)$.
(ii) $X_{n} \xrightarrow{P} X$ and $g: \mathbb{R} \mapsto \mathbb{R}$ is continuous, then $g\left(X_{n}\right) \xrightarrow{P} g(X)$.

Proof: (i) There exists $N \in \mathcal{B}$ with $P(N)=0$ such that if $\omega \in N^{c}$, $X_{n}(\omega) \rightarrow X(\omega)$. By continuity, $g\left(X_{n}(\omega)\right) \rightarrow g(X(\omega))$ holds.
(ii) Using Theorem 6.3.1 (b).

Thus if $X_{n} \xrightarrow{P} X$, it is also true that $X_{n}^{2} \xrightarrow{P} X^{2}$ and $\arctan X_{n} \xrightarrow{P}$ $\arctan X$.

6.3 Connections between a.s. and i.p. Convergence

Corollary 6.3.2 (Lebesgue Dominated Convergence)
If $X_{n} \xrightarrow{P} X$ and if there exists a dominating random variable $\xi \in L_{1}$ such that $\left|X_{n}\right| \leq \xi$, then $E\left(X_{n}\right) \rightarrow E(X)$.
Proof: It suffices to show every convergent subsequence of $E\left(X_{n}\right)$ converges to $E(X)$. Suppose $E\left(X_{n_{k}}\right)$ converges. Then since convergence in probability is assumed, $\left\{X_{n_{k}}\right\}$ contains an a.s. convergent subsequence $\left\{X_{n_{k(t)}}\right\}$ such that $X_{n_{k(t)}} \xrightarrow{\text { a.s. }} X$. The Lebesgue Dominted COnvergence Theorem implies

$$
E\left(X_{n_{k(t)}}\right) \rightarrow E(X) .
$$

Thus $E\left(X_{n_{k}}\right) \rightarrow E(X)$.

6.3 Connections between a.s. and i.p. Convergence

We now list several easy results related to convergence in probability (HW 6-1: prove these).
(1) If $X_{n} \xrightarrow{P} X$ and $Y_{n} \xrightarrow{P} Y$, then $X_{n}+Y_{n} \xrightarrow{P} X+Y$ and $X_{n} Y_{n} \xrightarrow{P} X Y$.
(2) This item is a reminder that Chebychev's inequality implies the Weak Law of Large Numbers (WLLN): If $\left\{X_{n}\right\}$ are iid with $E X_{n}=\mu$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$, then $\sum_{i=1}^{n} X_{i} / n \xrightarrow{P} \mu$.
(3) Bernstein's version of the Weierstrass Approximation Theorem: Let $f:[0,1] \mapsto \mathbb{R}$ and define the Bernstein polynomial of degree n by

$$
B_{n}(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) C_{k}^{n} x^{k}(1-x)^{n-k}, 0 \leq x \leq 1
$$

Then $B_{n}(x) \rightarrow f(x)$ uniformly for $x \in[0,1]$.

6.4 Quantile Estimation

Let F be a distribution function. For $0<p<1$, the p th order quantile of F is $F^{\leftarrow}(p)=\inf \{x: F(x) \geq p\}$. If F is unknown, we may wish to estimate a quantile.

We start with the estimation of F. Let X_{1}, \ldots, X_{n} be a random sample from F; that is, iid with common distribution function F. Define the empirical cumulative distribution function (cdf) by

$$
F_{n}(x)=n^{-1} \sum_{i=1}^{n} I_{\left[X_{j} \leq x\right]}
$$

which is the percentage of the sample whose value is no greater than x. It is easy to see that
$E\left(F_{n}(x)\right)=F(x), \operatorname{Var}\left(F_{n}(x)\right)=n^{-1} F(x)(1-F(x)), F_{n}(x) \xrightarrow{P} F(x)$,
for each x.

6.4 Quantile Estimation

To estimate a quantile $F^{\leftarrow}(p)$, one non-parametric method uses order statistics. Rearranging X_{1}, \ldots, X_{n} into $X_{1}^{(n)} \leq \cdots \leq X_{n}^{(n)}$, we define the empirical quantile function by

$$
\begin{aligned}
F_{n}^{\leftarrow}(p) & =\inf \left\{x: F_{n}(x) \geq p\right\} \\
& =\inf \left\{X_{j}^{(n)}: F_{n}\left(X_{j}^{(n)}\right) \geq p\right\} \\
& =\inf \left\{X_{j}^{(n)}: \frac{j}{n} \geq p\right\} \\
& =\inf \left\{X_{j}^{(n)}: j \geq n p\right\} \\
& =X_{\lceil n p\rceil}^{(n)},
\end{aligned}
$$

where $\lceil n p\rceil$ is the ceiling of $n p$.

6.4 Quantile Estimation

Theorem 6.4.1
Suppose F is strictly increasing at $F^{\leftarrow}(p)$ which means that for all $\epsilon>0$

$$
F\left(F^{\leftarrow}(p)+\epsilon\right)>p, F\left(F^{\leftarrow}(p)-\epsilon\right)<p
$$

Then we have $X_{\lceil n p\rceil}^{(n)}$ be a weakly consistent quantile estimator,

$$
X_{\lceil n p\rceil}^{(n)} \xrightarrow{P} F^{\leftarrow}(p) .
$$

Proof: It suffices to show for all $\epsilon>0, P\left[X_{[n p\rceil}^{(n)}>F^{\leftarrow}(p)+\epsilon\right] \rightarrow 0$ and $P\left[X_{[n p\rceil}^{(n)} \leq F^{\leftarrow}(p)-\epsilon\right] \rightarrow 0$. We only show the latter one. Note that $X_{\alpha}^{(n)} \leq y$ iff $n F_{n}(y) \geq \alpha$. Thus

$$
\begin{aligned}
& P\left[X_{\lceil n p\rceil}^{(n)} \leq F^{\leftarrow}(p)-\epsilon\right]=P\left[n F_{n}\left(F^{\leftarrow}(p)-\epsilon\right) \geq\lceil n p\rceil\right] \\
= & P\left[F_{n}\left(F^{\leftarrow}(p)-\epsilon\right) \geq \frac{\lceil n p\rceil}{n}\right] \\
= & P\left[F_{n}\left(F^{\leftarrow}(p)-\epsilon\right)-F\left(F^{\leftarrow}(p)-\epsilon\right) \geq \frac{\lceil n p\rceil}{n}-F\left(F^{\leftarrow}(p)-\epsilon\right)\right] .
\end{aligned}
$$

6.4 Quantile Estimation

Proof continued: We also know that $\frac{\lceil n p\rceil}{n} \rightarrow p$ and $2 \delta \doteq p-$ $F\left(F^{\leftarrow}(p)-\epsilon\right)>0$. Thus, we can find $N>0$, such that for $n \geq N$, $\frac{\lceil n p\rceil}{n}-F\left(F^{\leftarrow}(p)-\epsilon\right)>\delta>0$. Then when $n \geq N$,

$$
\begin{array}{r}
P\left[F_{n}\left(F^{\leftarrow}(p)-\epsilon\right)-F\left(F^{\leftarrow}(p)-\epsilon\right) \geq \frac{\lceil n p\rceil}{n}-F\left(F^{\leftarrow}(p)-\epsilon\right)\right] \\
\leq P\left[\left|F_{n}\left(F^{\leftarrow}(p)-\epsilon\right)-F\left(F^{\leftarrow}(p)-\epsilon\right)\right| \geq \delta\right] \rightarrow 0,
\end{array}
$$

since by the WLLN, $F_{n}\left(F^{\leftarrow}(p)-\epsilon\right) \xrightarrow{P} F\left(F^{\leftarrow}(p)-\epsilon\right)$. Similarly, one can show $P\left[X_{\lceil n p\rceil}^{(n)}>F^{\leftarrow}(p)+\epsilon\right] \rightarrow 0$.

6.5 L_{p} convergence

We say $X \in L_{p}$ if $E\left(|X|^{p}\right)<\infty$. For $X, Y \in L_{p}$, we define the L_{p} metric by

$$
d(X, Y)=\left(E|X-Y|^{p}\right)^{1 / p}
$$

and the induced norm on the L_{p} space is

$$
\|X\|_{p}=\left(E|X|^{p}\right)^{1 / p} .
$$

A sequence $\left\{X_{n}\right\}$ of random variables converges in L_{p} to X, written

$$
X_{n} \xrightarrow{L_{p}} X
$$

if

$$
\left\|X_{n}-X\right\|_{p} \rightarrow 0, \text { or } E\left(\left|X_{n}-X\right|^{p}\right) \rightarrow 0
$$

as $n \rightarrow \infty$.

$6.5 L_{p}$ convergence

The most important case is when $p=2$, in which case L_{2} is a Hilbert space with the inner product of X and Y defined by the correlation of X and Y. Here are two simple examples:

1. Define $\left\{X_{n}\right\}$ to be a (2nd order, weakly, covariance) stationary process if $E X_{n}=\mu$ independent of n and
$\operatorname{Corr}\left(X_{n}, X_{n+k}\right)=\rho(k)$ for all n. No distributional structure is specified. The best linear predictor of X_{n+1} based on X_{1}, \ldots, X_{n} is the linear combination of X_{1}, \ldots, X_{n} which achieves minimum mean square error (MSE). Call this predictor \hat{X}_{n+1}, which is of the form $\hat{X}_{n+1}=\sum_{i=1}^{n} \alpha_{i} X_{i}$ and α_{i} 's are chosen so that

$$
E\left(\hat{X}_{n+1}-X_{n+1}\right)^{2}=\min _{\alpha_{1}, \ldots, \alpha_{n}} E\left(\sum_{i=1}^{n} \alpha_{i} X_{i}-X_{n+1}\right)^{2}
$$

$6.5 L_{p}$ convergence

2. Supoose $\left\{X_{n}\right\}$ are iid with $E\left(X_{n}\right)=\mu$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}$. Then

$$
\bar{X}_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n} \xrightarrow{L_{2}} \mu
$$

since

$$
E\left(\frac{\sum_{i=1}^{n} X_{i}}{n}-\mu\right)^{2}=\frac{\operatorname{Var}\left(S_{n}\right)}{n^{2}}=\frac{\sigma^{2}}{n} \rightarrow 0
$$

6.5 L_{p} convergence

Some basic facts:
(i). L_{p} convergence implies convergence in probability.

For $p>0$, if $X_{n} \xrightarrow{L_{p}} X$, then $X_{n} \xrightarrow{P} X$.
This follows readily from Chebychev's inequality,

$$
P\left[\left|X_{n}-X\right| \geq \epsilon\right] \leq \frac{E\left|X_{n}-X\right|^{P}}{\epsilon^{P}} \rightarrow 0 .
$$

$6.5 L_{p}$ convergence

(ii). Convergence in probability does not imply L_{p} convergence.

Example: Consider $([0,1], \mathcal{B}([0,1]), \lambda)$ and set

$$
X_{n}=2^{n} I_{(0,1 / n)}
$$

Then

$$
P\left(\left|X_{n}\right|>\epsilon\right)=1 / n \rightarrow 0
$$

However

$$
E\left(\left|X_{n}\right|^{p}\right)=2^{n p} / n \rightarrow \infty .
$$

6.5 L_{p} convergence

(iii). L_{p} convergence does not imply almost sure convergence.

Example: Consider $([0,1], \mathcal{B}([0,1]), \lambda)$ and define $X_{1}=I_{[0,1]}, X_{2}=$ $I_{[0,1 / 2]}, X_{3}=I_{[1 / 2,1]}, X_{4}=I_{[0,1 / 3]}, X_{5}=I_{[1 / 3,2 / 3]}, X_{6}=I_{[2 / 3,1]}, \ldots$.

Then for any $p>0, E\left(\left|X_{n}\right|^{p}\right)=1 / 2,1 / 2,1 / 3,1 / 3,1 / 3,1 / 4, \ldots$ converges to 0 . Thus $X_{n} \xrightarrow{L_{p}} 0$. But $\left\{X_{n}\right\}$ does not coverge almost surely to 0 .

6.5.1 Uniform Integrability

Deeper and more useful connections between modes of convergence depend on the notion of uniform integrability (ui). It is a property of a family of random variables which says that the first absolute moments are uniformly bounded and the distribution tails of the random variables in the family converge to 0 at a uniform rate. We give the formal definition.

Definition

A family $\left\{X_{t}: t \in T\right\}$ of L_{1} random variables indexed by T is uniformly integrable (ui) if

$$
\sup _{t \in T} E\left(\left.\left|X_{t}\right|\right|_{\left[\left|X_{t}\right|>a\right]}\right)=\sup _{t \in T} \int_{\left[\left|X_{t}\right|>a\right]}\left|X_{t}\right| d P \rightarrow 0
$$

as $a \rightarrow \infty$; that is

$$
\int_{\left[\left|X_{t}\right|>a\right]}\left|X_{t}\right| d P \rightarrow 0
$$

as $a \rightarrow \infty$, uniformly in $t \in T$.

6.5.1 Uniform Integrability

Some criteria:
(1) Singleton. If $T=\{1\}$ consists of one element, then

$$
\int_{\left[\left|X_{1}\right|>a\right]}\left|X_{1}\right| d P \rightarrow 0, a \rightarrow \infty
$$

as a consequence of $X_{1} \in L_{1}$.
(2) Dominated families. If there exists a dominating random variables $Y \in L_{1}$, such that $\left|X_{t}\right| \leq Y$ for all $t \in T$. Then $\left\{X_{t}\right\}$ is ui.

$$
\sup _{t \in T} \int_{\left[\left|X_{t}\right|>a\right]}\left|X_{t}\right| d P \leq \int_{[|Y|>a]}|Y| d p \rightarrow 0, a \rightarrow \infty
$$

6.5.1 Uniform Integrability

Some criteria:
(3) Finite family. Suppose $T=\{1,2, \ldots, n\}$ is finite. Then $\left\{X_{t}\right.$: $t \in T\}$ is ui. This is because

$$
\left|X_{t}\right| \leq \sum_{i=1}^{n}\left|X_{i}\right| \in L_{1}
$$

then apply (2).
(4) More domination. Suppose for each $t \in T, X_{t} \in L_{1}$ and $Y_{t} \in L_{1}$,

$$
\left|X_{t}\right| \leq\left|Y_{t}\right|
$$

for all $t \in T$. Then if $\left\{Y_{t}\right\}$ is ui so is $\left\{X_{t}\right\}$ ui.

6.5.1 Uniform Integrability

Some criteria:
(5) Crystal Ball Condition. For $p>0$, the family $\left\{\left|X_{n}\right|^{p}\right\}$ is ui, if

$$
\sup _{n} E\left(\left|X_{n}\right|^{p+\delta}\right)<\infty
$$

for some $\delta>0$.

$$
\begin{aligned}
\sup _{n} \int_{\left[\left|X_{n}\right|^{p}>a\right]}\left|X_{n}\right|^{p} d P & =\sup _{n} \int_{\left[\left|X_{n}\right| / a^{1 / p}>1\right]}\left|X_{n}\right|^{p} d P \\
& \leq \int_{\left[\left|X_{n}\right|^{\left.\delta / a^{\delta / p}>1\right]}\right.}\left|X_{n}\right|^{p} d P \\
& \leq \int\left|X_{n}\right|^{p} \frac{\left|X_{n}\right|^{\delta}}{a^{\delta / p}} d P \\
& \leq a^{-\delta / p} \sup _{n} E\left(\left|X_{n}\right|^{p+\delta}\right) \rightarrow 0
\end{aligned}
$$

6.5.1 Uniform Integrability

Theorem 6.5.1
Let $\left\{X_{t}: t \in T\right\}$ be L_{1} random variables. This family is ui iff
(A) Uniform absolute continuity: For all $\epsilon>0$, there exists
$\delta=\delta(\epsilon)$, such that

$$
\forall A \in \mathcal{B}: \sup _{t \in T} \int_{A}\left|X_{t}\right| d P<\epsilon \text { if } P(A)<\delta,
$$

and
(B) Uniform bounded first absolute moments:

$$
\sup _{t \in T} E\left(\left|X_{t}\right|\right)<\infty
$$

6.5.1 Uniform Integrability

Proof: Suppose $\left\{X_{t}\right\}$ is ui. For any $X \in L_{1}, A \in \mathcal{B}, a>0$,

$$
\begin{aligned}
\int_{A}|X| d P & =\int_{A \cap[|X| \leq a]}|X| d P+\int_{A \cap[|X|>a]}|X| d P \\
& \leq a P(A)+\int_{[|X|>a]}|X| d P
\end{aligned}
$$

Thus

$$
\sup _{t \in T} \int_{A}\left|X_{t}\right| d P \leq a P(A)+\sup _{t \in T} \int_{\left[\left|X_{t}\right|>a\right]}\left|X_{t}\right| d P
$$

Letting $A=\Omega$ proves (B). To prove (A), we know $\sup _{t \in T} \int_{\left[\left|X_{t}\right|>a\right]}\left|X_{t}\right| d P \rightarrow$ 0 as $a \rightarrow \infty$. Thus, for $\epsilon>0$, we can find large a such that $\sup _{t \in T} \int_{\left[\left|X_{t}\right|>a\right]}\left|X_{t}\right| d P \leq \epsilon / 2$. Then picking $\delta=\epsilon /(2 a)$ completes (A).

6.5.1 Uniform Integrability

Proof continued: Conversely, Suppose (A) and (B) holds, by Chebychev's inequality and (B),

$$
\sup _{t \in T} P\left[\left|X_{t}\right|>a\right] \leq \frac{\sup _{t \in T} E\left(\left|X_{t}\right|\right)}{a}=\frac{a \text { finite constant }}{a}
$$

Using (A), for $\epsilon>0$, there exists δ such that whenever $P(A)<\delta$, $\int_{A}\left|X_{t}\right| d P<\epsilon$ for all t. We then pick large a such that $P\left[\left|X_{t}\right|>\right.$ $a] \leq \sup _{t \in T} P\left[\left|X_{t}\right|>a\right] \leq \delta$. Then for all t,

$$
\sup _{t \in T} \int_{\left[\left|X_{t}\right|>a\right]}\left|X_{t}\right| d p \leq \epsilon
$$

which is the ui property.

6.5.1 Uniform Integrability

Example 6.5.1
Let $\left\{X_{n}\right\}$ be a sequence of random variables with

$$
P\left[X_{n}=0\right]=1-1 / n, P\left[X_{n}=n\right]=1 / n
$$

Then $E\left(\left|X_{n}\right|\right)=1$ for all n. Thus $\left\{X_{n}\right\}$ has uniform bounded first absolute moments. However it is not a ui family, because

$$
\int_{\left[\left|X_{n}\right|>a\right]}\left|X_{n}\right| d P=I(a \leq n) ; i . e ., \sup _{n} \int_{\left[\left|X_{n}\right|>a\right]}\left|X_{n}\right| d p=1 .
$$

6.5.2 Interlude: A Review of Inequalities

Schwartz Ineq: Suppose $X, Y \in L_{2}$, then

$$
|E(X Y)| \leq E(|X Y|) \leq \sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}
$$

Hölder's ineq: Suppose $X \in L_{p}$ and $Y \in L_{q}$, where p, q satisfy

$$
p>1, q>1, \frac{1}{p}+\frac{1}{q}=1
$$

Then

$$
|E(X Y)| \leq E(|X Y|) \leq\left(E|X|^{p}\right)^{1 / p}\left(E|X|^{q}\right)^{1 / q} .
$$

Or $\|X Y\|_{1} \leq\|X\|_{p}\|Y\|_{q}$. Schwartz ineq is a special case when $p=q=2$.

6.5.2 Interlude: A Review of Inequalities

Minkowski Ineq: For $1 \leq p<\infty$, suppose $X, Y \in L_{p}$. Then

$$
X+Y \in L_{p} \text { and }
$$

$$
\|X+Y\|_{p} \leq\|X\|_{p}+\|Y\|_{p} .
$$

Jensen's ineq: Suppose $u: \mathbb{R} \mapsto \mathbb{R}$ is convex and $E(|X|)<\infty$ and $E(|u(X)|)<\infty$. Then

$$
E(u(X)) \geq u(E(X))
$$

6.5.2 Interlude: A Review of Inequalities

Example 6.5.2
If $X \in L_{\beta}$, then $X \in L_{\alpha}$ provided $0<\alpha<\beta$. Furthermore

$$
\|X\|_{t}=\left(E\left|X_{t}\right|^{t}\right)^{1 / t}
$$

is non-decreasing in t. Consequently, if $X_{n} \xrightarrow{L_{p}} X$ and $p^{\prime}<p$, then

$$
X_{n} \xrightarrow{L_{p^{\prime}}} X .
$$

Proof: Set $p=\beta / \alpha>1$ and then let $q=\beta /(\beta-\alpha)>1$. We have $1 / r+1 / s=1$. Then let $Z=|X|^{\alpha}, Y=1$. Using Hölder's ineq,

$$
\begin{aligned}
E\left(|X|^{\alpha}\right) & =E(|Z Y|) \leq\|Z\|_{p}\|Y\|_{q}=\|\left. Z\right|_{p}=E\left(|Z|^{p}\right)^{1 / p} \\
& =E\left(|X|^{\alpha p}\right)^{\alpha / \beta}=E\left(|X|^{\beta}\right)^{\alpha / \beta}
\end{aligned}
$$

Thus $\|X\|_{\alpha} \leq\|X\|_{\beta}$.

6.6 More on L_{p} Convergence

We work up to an answer to the question: If random variables converge, when do their moments converge? Assume $\left\{X_{n}\right\}$ and X are defined on (Ω, \mathcal{B}, P).
(1) A form of Scheffé's lemma:

$$
X_{n} \xrightarrow{L_{1}} X \Longleftrightarrow \sup _{A \in \mathcal{B}}\left|\int_{A} X_{n} d P-\int_{A} X d P\right| \rightarrow 0
$$

Letting $A=\Omega$, then L_{1} convergence implies $E\left(X_{n}\right) \rightarrow E(X)$.
(2) If $X_{n} \xrightarrow{L_{p}} X$, then $E\left(\left|X_{n}\right|^{p}\right) \rightarrow E\left(|X|^{p}\right)$, or $\left\|X_{n}\right\|_{p} \rightarrow\|X\|_{p}$ Proof: First show (2): $\left\|\left\|X_{n}\right\|_{p}-\right\| X\left\|_{p} \mid \leq\right\| X_{n}-X \|_{p}$. Now for the \Leftarrow of (1):

$$
\begin{aligned}
E\left|X_{n}-X\right| & =\int_{\left[X_{n}>X\right]}\left(X_{n}-X\right) d P+\int_{\left[X_{n} \leq X\right]}\left(X-X_{n}\right) d P \\
& \leq 2 \sup _{A}\left|\int_{A} X_{n} d P-\int_{A} X d P\right|
\end{aligned}
$$

6.6 More on L_{p} Convergence

Proof: Now for the \Rightarrow of (1):

$$
\begin{aligned}
\sup _{A}\left|\int_{A} X_{n} d P-\int_{A} X d P\right| & \leq \sup _{A} \int_{A}\left|X_{n}-X\right| d P \\
& \leq \int\left|X_{n}-X\right| d P \\
& =E\left(\left|X_{n}-X\right|\right) \rightarrow 0
\end{aligned}
$$

6.6 More on L_{p} Convergence

Theorem 6.6.1
Suppose $X_{n} \in L_{1}$ for $n \geq 1$. The following statements are equivalent:
(a) $\left\{X_{n}\right\}$ is L_{1}-convergent.
(b) $\left\{X_{n}\right\}$ is L_{1}-Cauchy; that is, $E\left|X_{n}-X_{m}\right| \rightarrow 0$ as $n, m \rightarrow \infty$.
(c) $\left\{X_{n}\right\}$ is ui and $\left\{X_{n}\right\}$ converges in probability.

So if $X_{n} \xrightarrow{\text { a.s }} X$ or $X_{n} \xrightarrow{P} X$ (later, or $X_{n} \xrightarrow{D} X$) and $\left\{X_{n}\right\}$ is ui, then $X_{n} \xrightarrow{L_{7}} X$ and $E\left(X_{n}\right) \rightarrow E(X)$.
Proof: (a) to (b): If $X_{n} \xrightarrow{L_{7}} X$, then $E\left|X_{n}-X_{m}\right| \leq E\left|X_{n}-X\right|+$ $E\left|X_{m}-X\right| \rightarrow 0$ as $n, m \rightarrow \infty$.

6.6 More on L_{p} Convergence

Proof continued: (b) to (c): We first show ui using Theorem 6.5.1. Because of (b), for $\epsilon>0$, there exists N_{ϵ} such that for $n, m \geq N_{\epsilon}$, then

$$
\int\left|X_{n}-X_{m}\right| d P<\epsilon / 2
$$

For any $A \in \mathcal{B}$ and $n \geq N_{\epsilon}$,

$$
\int_{A}\left|X_{n}\right| d P \leq \int_{A}\left|X_{N_{\epsilon}}\right| d P+\int\left|X_{n}-X_{N_{\epsilon}}\right| d P \leq \int_{A}\left|X_{N_{\epsilon}}\right| d P+\epsilon / 2
$$

That is $\sup _{n \geq N_{\epsilon}} \int_{A}\left|X_{n}\right| d P \leq \int_{A}\left|X_{N_{\epsilon}}\right| d P+\epsilon / 2$ and thus

$$
\begin{array}{r}
\sup _{n} \int_{A}\left|X_{n}\right| d P \leq \max \left(\sup _{m<N_{\epsilon}} \int_{A}\left|X_{m}\right| d P, \int_{A}\left|X_{N_{\epsilon}}\right| d P+\epsilon / 2\right) \\
\leq \sup _{m \leq N_{\epsilon}} \int_{A}\left|X_{m}\right| d P+\epsilon / 2
\end{array}
$$

Take $A=\Omega, \sup _{n} E\left(\left|X_{n}\right|\right) \leq \sup _{m \leq N_{\epsilon}} E\left(\left|X_{m}\right|\right)+\epsilon / 2<\infty$.

6.6 More on L_{p} Convergence

Proof continued: (b) to (c) continued: Further more, since $\left\{X_{m}\right.$: $\left.m \leq N_{\epsilon}\right\}$ is a finite family which is ui. We can find a $\delta>0$, such that if $P(A) \leq \delta$, then

$$
\sup _{m \leq N_{\epsilon}} \int_{A}\left|X_{m}\right| d P<\epsilon / 2
$$

Finally, we conclude that for $\epsilon>0$, we find a δ, such that if $P(A) \leq$ δ, then

$$
\sup _{n} \int_{A}\left|X_{n}\right| d P<\epsilon / 2+\epsilon / 2=\epsilon
$$

Hence $\left\{X_{n}\right\}$ is ui. To check $\left\{X_{n}\right\}$ converges in probability, we have $P\left[\left|X_{n}-X_{m}\right|>\epsilon\right] \leq E\left(\left|X_{n}-X_{m}\right|\right) / \epsilon \rightarrow \infty$. Thus $\left\{X_{n}\right\}$ is Cauchy i.p.

6.6 More on L_{p} Convergence

Proof continued: (c) to (a): If $X_{n} \xrightarrow{P} X$, then there exists a subsequence $\left\{n_{k}\right\}$ such that $X_{n_{k}} \xrightarrow{\text { a.s. }} X$. By Fatou's lemma

$$
E(|X|)=E\left(\liminf _{n_{k} \rightarrow \infty}\left|X_{n_{k}}\right|\right) \leq \liminf _{n_{k} \rightarrow \infty} E\left(\left|X_{n_{k}}\right|\right) \leq \sup _{n} E\left(\left|X_{n}\right|\right)<\infty
$$

since $\left\{X_{n}\right\}$ is ui. So $X \in L_{1}$. Also, for any $\epsilon>0$,

$$
\begin{aligned}
& \int\left|X_{n}-X\right| d P \leq \int_{\left[\left|X_{n}-X\right| \leq \epsilon\right]}\left|X_{n}-X\right| d P+\int_{\left[\left|X_{n}-X\right|>\epsilon\right]}\left|X_{n}-X\right| d P \\
& \leq \epsilon+\int_{\left[\left|X_{n}-X\right|>\epsilon\right]}\left|X_{n}\right| d P+\int_{\left[\left|X_{n}-X\right|>\epsilon\right]}|X| d P \doteq \epsilon+A_{n}+B_{n} .
\end{aligned}
$$

Because $P\left[\left|X_{n}-X\right|>\epsilon\right] \rightarrow 0$ and $X \in L_{1}$ and $\left\{X_{n}\right\}$ is ui, we have $A_{n}, B_{n} \rightarrow 0$.

6.6 More on L_{p} Convergence

Example

Suppose X_{1} and X_{2} are iid $N(0,1)$ and define $Y=X_{1} /\left|X_{2}\right|$ which has a Cauchy distribution with density $f(y)=1 /\left\{\pi\left(1+y^{2}\right)\right\}$, for $y \in \mathbb{R}$. Define $Y_{n}=X_{1} /\left(\left|X_{2}\right|+n^{-1}\right)$.

Then $Y_{n} \rightarrow Y$. But $\left\{Y_{n}\right\}$ is NOT ui.
Because if it is, then $E\left(Y_{n}\right)=0 \rightarrow E(Y)$ in which $E(Y)$ does not exist (contradiction).

6.6 More on L_{p} Convergence

Theorem 6.6.2
Suppose $p \geq 1, X_{n} \in L_{p}$ for $n \geq 1$. The following statements are equivalent:
(a) $\left\{X_{n}\right\}$ is L_{p}-convergent.
(b) $\left\{X_{n}\right\}$ is L_{p}-Cauchy; that is, $E\left|X_{n}-X_{m}\right|_{p} \rightarrow 0$ as $n, m \rightarrow \infty$.
(c) $\left\{\left|X_{n}\right|^{p}\right\}$ is ui and $\left\{X_{n}\right\}$ converges in probability.

This also states that L_{p} is a complete metric space; that is every
Cauchy sequence has a limit.
Proof is similar and left as HW 6-2.
Other HW 6 problems: Section 6.7, Q1-Q2, Q4-6, Q9, Q13, Q15-16, Q19-Q20, Q23-26, Q31, Q33

