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6.1 Almost Sure Convergence

On (€, B, P), we say that a statement about random elements holds
almost surely (a.s./a.e./a.c./a.a.) if there exists an event N € B
with P(N) = 0 such that the statement holds if w € N¢:

» X =X’ as. means P(X = X') =1, i.e., there exists N € B,
such that X(w) = X'(w) for w € N€ and P(N) = 0.

» X < X’ a.s. means there exists N € B, such that
X(w) < X'(w) for w € N€ and P(N) = 0.

P> lim,_ X, exists a.s. means there exists N € B, such that
limp—s00 Xn(w) exists for w € N€ and P(N) = 0.

Most probabilistic properties of random variables are invariant under
the relation almost sure equality. For example, if X = X’ a.s. then
X € Ly iff X’ € Ly and in this case E(X) = E(X).
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6.1 Almost Sure Convergence

Example 6.1.1
Consider ([0, 1], B([0,1]), A), where X is Lebesgue measure. Define

n if0<s<nt
X"(S)_{ 0 ifnl<s<l.

Let N = {0}, we see that for s ¢ N, X,(s) — 0 and A\(N) = 0.
Thus X,, converges to 0 almost surely. Note that N is not empty.
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6.1 Almost Sure Convergence

Proposition 6.1.1

Let {X,} be iid random variables with common distribution
function F(x). Assume F(x) < 1 for all x. Set M, = \/7_; X;.
Then M, 1 oo a.s.

Proof: By definition, we know {M,(w)} is monotone increasing. Let

N ={w: lim M,(w)= oo}

n—oo
= {w : V), 3k(w,j),Vn > k(w,j), Mp(w) > j}
= Nj (Ukz1 Nk [Mp = j]) = 0 lim inf[My, > j].

Thus N = U (im sup, . [Mn < J]). Because 3, P[M, <
>, F"(j) < oo, by Borel-Cantelli lemma, P(limsup,_,.[Mx
j]) = 0. Thus P(N) = 0.

Il
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6.2 Convergence in Probability

Suppose X,, n > 1, and X are random variables. Then {X,} con-
verges in probability (i.p.) to X, written X, LA X, if for any € > 0,

lim P[|X,— X| > ¢ =0.
n—oo

Example 6.2.1

Consider ([0, 1], B([0,1]), A), where X is Lebesgue measure. Define

X1 = oy X2 = loay2p X3 = Iyeap Xa = lpa/3), Xs = I1yz 23

Xo = 42/3,”, e

Then P[|X,—0| > €] = 1,1/2,1/2,1/3,1/3,1/3,1/4,1/4, - — 0.
Thus X, = 0. However, for any s € [0,1], X,(s) =1 or 0 for

infinitely many values of n. Thus lim, .o, X, does not exist almost
surely.
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6.2 Convergence in Probability

Theorem 6.2.1 (Convergence a.s. imples convergence i.p.)

Suppose {X,} are random variables on (Q, B, P). If X, 23 X, then
P

X, — X.

Proof: Let N¢ = {w : limpo [ Xn(w) — X(w)| =0} = {w : Vj >

O,EN(E),VH > Na ’Xn(w) - X(w)’ < 1/./} = mj UN21 ngN[‘Xn -

X| <j71. Then N = Ujlimsup,_,o[|Xn — X| > j71]. P(N) =0

since X, 2% X. Thus, for any j,

0= P(limsup[|X, — X| > 1]
n—oo
= lim P(Unsn[IXo— X| > 7))
N—oo -

> lim P[|X, — X|>j7'].
n—oo

Pick j such that € > j =1, then we have lim,_,o P[|X,—X| > €] = 0.
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6.2.1 Statistical Terminology

In statistical estimation theory, almost sure and in probability con-
vergence have analogues as strong or weak consistency.

Given a family of probability models (2, B, P). Suppose the statisti-
cian gets to observe random variables X1, ..., X}, defined on Q and
based on these observations must decide which is the correct model;
that is, which is the correct value of 8. Statistical estimation means:
select the correct model.
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6.2.1 Statistical Terminology

Suppose Q = R, B = B(R*). Let w = (x1,x2,...) and define
Xn(w) = x,. For each 6 € R, let Py be the product measure on R>
which makes {X,} iid with common N(6, 1) distribution. Based on
observing Xi, ..., X,, one estimates # with an appropriate function
of the observations

0n = 0,(X1,..., Xp,).

~

On(X1,...,Xy) is called a statistic and is also an estimator (a ran-
dom element). When one actually does the experiment and observes,
X1 =x1,...,Xn = Xp, then O,(x1,...,x,) is called the estimate (a

number of a vector). In this example, we often take 8, = S°7_, X;/n.

The estimator @, is weakly consistent (denoted by 0, l 0) if for
all g € ©,
Po[|0n — 0] > €] = 0,n — oo.

We say 0, is strongly consistent if for all @ € ©, 8, — 0, Py—a.s.
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6.3 Connections between a.s. and i.p. Convergence

Theorem 6.3.1 Relations between i.p. and a.s. convergence
Suppose that {X,} and X are real-valued random variables
(a) Cauchy criterion: {X,} converges in probability to X iff {X,}

is Cauchy in probability; i.e., X, — X, LA 0,as n,m — oo; i.e.,
for any € > 0, § > 0, there exists np = ng(€,d), such that for
all r,s > ng, we have P[| X, — X;| > €] < .

(b) X, £ X iff each subsequence { X, } contains a further
subsequence { Xy, } which converges almost surely to X.
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6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1: We approach (a) with 2 steps: (i) We
first show that if X, = X then {Xn} is Cauchy i.p. This can be
done easily by using the inequality P[| X, — Xs| > €] < P[| X, — X| >
€/2] + P[|Xs — X| > €/2], which comes from the use of the triangle
inequality.

(i) Next, we prove if {X,} is Cauchy i.p., then there exists a sub-
sequence { Xy, } which converges almost surely. Call the almost sure

limit X. Then it is also true that X, £ x.
To prove this, we define n; by ny =1 and

nj =inf{N >nj_1:P[|X, — Xs| >277] <27 forall r,s > N}.

By Cauchy i.p, n; always exists by setting ¢ = § = 27 and n; >
nj-1. Consequently, we have 322, P[| X, , — Xp,| > 27] < cc. By
the Borel-Cantelli Lemma, let N = limsupj_,oo[| X, — Xn;| > 277],
P(N) = 0.

10/44



6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1 continued: Forw € N = liminf;_, o [[ Xy, ,—
Xn;| < 2771, we know [ Xp, ., (w) — Xy, (w)| < 277 for all large j. Thus
{Xn;(w)} is a Cauchy sequence of real numbers and consequently,
limj o0 X,,J,(w) exists. We proved {X,,j} converges a.s. and denote
the limit by X.

To show X, 5 X, note P[|X, — X| > €] < P[|X, — Xy, | > /2] +
P[|Xn; — X| > €/2]. By the Cauchy i.p. property, for any §/2 >
0, we can find no(e/2,8/2) such that when n,n; > ng(e/2,6/2),
P[|Xn — Xi,| > €/2] < 6/2.

Because X, A x as j — oo, we can find n1(e/2,6/2), such that for
nj > ni(e/2,0/2), P[|Xn, — X| > ¢/2] < 6/2. Thus, for any § > 0,
we find n.(e,d) = max{no(€e/2,d/2), n1(e/2,6/2)}, for n > n.(e,9),
P[|Xn — X| > €] < 6. Done (a)!
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6.3 Connections between a.s. and i.p. Convergence

Proof of Theorem 6.3.1 continued: For (b): Suppose X, A x.

Pick any subsequence, the subsequence also £ X. From (i) above,
we find a further subsequence converging a.s.

Conversely, Suppose every subsequence has an a.s. convergence sub-
sequence. If X, does not converge to X in probability. Then there
exists a subsequence {X,, } and a 6 > 0 and € > 0 such that

P[|Xn, — X]| > €] > 0.

But we know there exists a further subsequence {Xj, , } converging
a.s., hence i.p. to X. Contradiction!
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6.3 Connections between a.s. and i.p. Convergence

Corollary 6.3.1
(i) X, 23 X and g : R — R is continuous, then g(X,) 2% g(X).
(i) Xn £ X and g : R — R is continuous, then g(X,) 5 g(X).

Proof: (i) There exists N € B with P(N) = 0 such that if w € N°¢,
Xn(w) = X(w). By continuity, g(Xs(w)) — g(X(w)) holds.
(i) Using Theorem 6.3.1 (b).

. P _ P P
Thus if X, — X, it is also true that X3 - X2 and arctan X, —
arctan X.
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6.3 Connections between a.s. and i.p. Convergence

Corollary 6.3.2 (Lebesgue Dominated Convergence)

If X, £ X and if there exists a dominating random variable £ € L,
such that | X,| <&, then E(X,) — E(X).

Proof: It suffices to show every convergent subsequence of E(X),)
converges to E(X). Suppose E(X,,) converges. Then since conver-
gence in probability is assumed, {X,, } contains an a.s. convergent
subsequence {Xnk(r)} such that X,,k(t) 2% X. The Lebesgue Dominted
COnvergence Theorem implies

E(Xny)) = E(X).

Thus E(X,,) — E(X).
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6.3 Connections between a.s. and i.p. Convergence

We now list several easy results related to convergence in probability
(HW 6-1: prove these).

(1) £ X, 5 X and Y, 5 Y, then X, + Y, 5 X + Y and
X, Y, 5 XY.

(2) This item is a reminder that Chebychev's inequality implies the
Weak Law of Large Numbers (WLLN): If {X,} are iid with

EX, = p and Var(X,) = 02, then 37 X;/n A 78
(3) Bernstein's version of the Weierstrass Approximation Theorem:

Let :[0,1] — R and define the Bernstein polynomial of
degree n by

n
Ba() =3 f(%)C,ka(l ko< x<1
k=0

Then B,(x) — f(x) uniformly for x € [0, 1].
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6.4 Quantile Estimation

Let F be a distribution function. For 0 < p < 1, the pth order
quantile of F is F<(p) = inf{x : F(x) > p}. If F is unknown, we
may wish to estimate a quantile.

We start with the estimation of F. Let Xi,...,X, be a random
sample from F ; that is, iid with common distribution function F.
Define the empirical cumulative distribution function (cdf) by

n

Fn(X) = n_l Z I[)(JSX]’

i=1

which is the percentage of the sample whose value is no greater
than x. It is easy to see that

E(Fn(x)) = F(x), Var(Fn(x)) = nle(x)(l—F(x)), Fn(x) L F(x),

for each x.
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6.4 Quantile Estimation

To estimate a quantile F<(p), one non-parametric method uses or-
der statistics. Rearranging Xi,..., X, into Xl(") <o X e
define the empirical quantile function by

Fy (p) = inf{x: Fy(x) = p}
= inf{X\"” : Fo(X(") > p}
_ e S
= inf{X;": o2 p}
= inf{Xj(”) :j > np}
_ x(n)
- aniﬂ’

where [np] is the ceiling of np.
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6.4 Quantile Estimation

Theorem 6.4.1
Suppose F is strictly increasing at F< (p) which means that for all

e>0
F(F~(p)+¢€) > p. F(F™(p) —€) < p.

Then we have X[(:I)ﬂ be a weakly consistent quantile estimator,

x5 F(p).

Proof: It suffices to show for all € > 0, P[X((:[)ﬂ > F<(p)+¢€¢ —0
and P[X[(r?;)ﬂ < F(p) — €] — 0. We only show the latter one. Note
that Xo([") <y iff nFy(y) > a. Thus

PIX( < F=(p) — €] = P[nFa(F=(p) — €) > [np]]

i GROREESLS

= PIFA(F(p) — )~ F(F(p) — ) = Pl _ F(F(p) — o).



6.4 Quantile Estimation

Proof continued: We also know that @ — pand 26 = p —
F(F<(p) —€) > 0. Thus, we can find N > 0, such that for n > N,

@_F(FF(P)—€)>5>O. Then when n> N,

PIFA(F(p) — ) — F(F=(p) — ) = Pl F(F(p) — )]

< PlIFa(F™(p) =€) = F(F(p) =€) = 0] = 0,

since by the WLLN, F,(F*(p) —¢) A F(F<(p) —€).

Similarly, one can show P[XF:;] > F~(p) + ¢ — 0.
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6.5 L, convergence

We say X € L, if E(]X|P) < oco. For X,Y € L,, we define the L,
metric by
d(X,Y) = (E|X = Y[P)1/?,

and the induced norm on the L, space is
IXIlp = (E[X[P)MP.
A sequence {X,} of random variables converges in L, to X, written

L
X, 8 X,

| Xn — X||p = 0, or E(|X, — X|P) =0

as n — oQ.
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6.5 L, convergence

The most important case is when p = 2, in which case L, is a Hilbert

space with the inner product of X and Y defined by the correlation

of X and Y. Here are two simple examples:

1. Define {X,} to be a (2nd order, weakly, covariance) stationary

process if EX,, = y independent of n and
Corr(Xn, Xn+-k) = p(k) for all n. No distributional structure is
specified. The best linear predictor of X1 based on
Xi,..., X, is the linear combination of Xi,..., X, which
achieves minimum mean square error (MSE). Call this
predictor )A<,,+1, which is of the form )A<,,+1 =7 aiX;and
aj's are chosen so that

n
E(Xpi1 — Xns1)? = min EQ aiXi — Xnp1)*.
PARES) n i:l
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6.5 L, convergence

2. Supoose {X,} are iid with E(X,) = p and Var(X,) = 2.
Then " x
X, = > i1 Xi L 1,
n

X \Y 2
E(L'Zl — )= ar(QS") -Z 5o
n n n
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6.5 L, convergence

Some basic facts:

(i). Lp convergence implies convergence in probability.
v L P

For p > 0, if X, — X, then X, — X.

This follows readily from Chebychev's inequality,

E|X, — X|P
— %

0.
eP

Pl X, — X| > €] <
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6.5 L, convergence

(ii). Convergence in probability does not imply L, convergence.

Example: Consider ([0, 1], B([0,1]), A) and set
Xn - 2"/(0,1/,7).

Then
P(|Xn| >€)=1/n—0.

However
E(|Xn|P) =2"P/n — .

24 /44



6.5 L, convergence

(iii). Lp convergence does not imply almost sure convergence.

Example: Consider ([0, 1], B([0,1]),A) and define X1 = /jg 4}, Xo =
ho,1/21 X3 = l1y2,1) Xa = lo1/3) X5 = 13,2731 X6 = Ipy3a)s - - - -

Then for any p > 0, E(|X,|?) = 1/2,1/2,1/3,1/3,1/3,1/4,...
converges to 0. Thus X, % 0. But {Xh} does not coverge almost
surely to 0.
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6.5.1 Uniform Integrability

Deeper and more useful connections between modes of convergence
depend on the notion of uniform integrability (ui). It is a property
of a family of random variables which says that the first absolute
moments are uniformly bounded and the distribution tails of the
random variables in the family converge to 0 at a uniform rate. We
give the formal definition.

Definition

A family {X; : t € T} of L; random variables indexed by T is
uniformly integrable (ui) if

sup E (|Xt|l[|Xt|>a]) = Up/ ’Xt|dP —0
teT teT J[| Xt|>a]

as a — oo; that is

| X¢|dP — 0
[[Xe[>a]

as a — oo, uniformly in t € T.
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6.5.1 Uniform Integrability

Some criteria:

(1) Singleton. If T = {1} consists of one element, then
/ | X1|dP — 0,2 — oo
[1X1]>2]
as a consequence of Xj € L.

(2) Dominated families. If there exists a dominating random vari-
ables Y € Ly, such that |[X;| < Y forall t € T. Then {X;} is ui.

sup/ Xt]dP</ Y |dp = 0,2 — oo
teT J[|X¢|>a] [1Y[>a]
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6.5.1 Uniform Integrability

Some criteria:

(3) Finite family. Suppose T = {1,2,...,n} is finite. Then {X; :
t € T} is ui. This is because

X < 31Xl € L,
i=1

then apply (2).

(4) More domination. Suppose for each t € T, X; € L; and
Y: € Ly,
[ Xe| < [Vl

forall t € T. Then if {Y;} is ui so is {X;} ui.
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6.5.1 Uniform Integrability

Some criteria:

(5) Crystal Ball Condition. For p > 0, the family {|X,|P} is ui, if

sup E(|X,|P*?) < oo,

for some § > 0.

sup/ | Xn|PdP = sup/ | X, |PdP
n J[|Xa|P>a] n J[|Xal/at/P>1]

/ | Xn|PdP
[1Xa]®/a%/P>1]

| Xa°
/’XHP 30/p dP

a~ %P sup E(|X,|PT) — 0.

IN

IN

N
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6.5.1 Uniform Integrability

Theorem 6.5.1
Let {X;:t € T} be Ly random variables. This family is ui iff

(A) Uniform absolute continuity: For all € > 0, there exists
d = 0(e), such that

VAEB: sup/ X,|dP < ¢ if P(A) < 6,
teT JA
and

(B) Uniform bounded first absolute moments:

sup E(|X¢|) < o0.
teT
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6.5.1 Uniform Integrability

Proof: Suppose {X;} is ui. For any X € L1, A€ B, a> 0,

/|X|dP: / |X|dP+/ |X|dP
A AN[|X|<La] AN[|X|>a]

< aP(A) +/ |X|dP
[1X|>a]

Thus

sup/ X,|dP < aP(A)—i—sup/ IX,|dP.
teT JA teT J[|X:|>a]

Letting A = € proves (B). To prove (A), we know sup,c 1 f[|Xt|>a] | X¢|dP —
0 as a -+ oo. Thus, for € > 0, we can find large a such that
supteTf“tha] |X¢|dP < €/2. Then picking § = €¢/(2a) completes
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6.5.1 Uniform Integrability

Proof continued: Conversely, Suppose (A) and (B) holds, by Cheby-
chev's inequality and (B),
sup,e7 E(|X¢])  a finite constant

sup P[|Xe| > 3] < -
teT a a

Using (A), for € > 0, there exists ¢ such that whenever P(A) < ¢,
S| Xe|dP < € for all t. We then pick large a such that P[|X;| >
a] <sup,ct P[|X¢| > a] < 6. Then for all t,

SUP/ |Xt|dp < ¢,
teT J[|Xe|>a]

which is the ui property.
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6.5.1 Uniform Integrability

Example 6.5.1

Let {X,} be a sequence of random variables with
P[Xn=0=1-1/n,P[X,=n]=1/n

Then E(|X,|) =1 for all n. Thus {X,} has uniform bounded first
absolute moments. However it is not a ui family, because

/ | Xn|dP = I(a < n); i.e.,sup/ | Xnldp = 1.
[[Xn[>2] nJXl>3]
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6.5.2 Interlude: A Review of Inequalities

Schwartz Ineq: Suppose X, Y € Ly, then
[E(XY)| < E(IXY]) </ E(X?)E(Y?).

Holder's ineq: Suppose X € L, and Y € Lg, where p, g satisfy

1 1
p>lg>1—-—+—-—=1
p q

Then
|E(XY)| < E(IXY]) < (EIX|P)Y/P(E|X|9)!/9.

Or [[XY1 < |IX]lpl|Y]lq- Schwartz ineq is a special
case when p = g = 2.
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6.5.2 Interlude: A Review of Inequalities

Minkowski Ineq: For 1 < p < oo, suppose X, Y € L,. Then
X+Yel,and

X+ Yo < [IX[[o +Ylp-

Jensen's ineq: Suppose u: R — R is convex and E(|X|) < oo and
E(|u(X)|) < co. Then

E(u(X)) = u(E(X)).
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6.5.2 Interlude: A Review of Inequalities

Example 6.5.2
If X € Lg, then X € L, provided 0 < o < /3. Furthermore

X1l = (EIXe)Y*
L
is non-decreasing in t. Consequently, if X, % X and p’ < p, then

Lp/
X, = X.

Proof: Set p=3/a > 1 and then let g = 3/(5 —«) > 1. We have
1/r+1/s=1. Then let Z = |X|% Y = 1. Using Holder's ineq,

E(IX|*) = E(1ZY]) < |1 ZIlpl Yllq = 12]o = E(1ZIP)*/?
= E(IX|*P)*/" = E(|X|?)*/7.
Thus [[Xla < [IX][s-
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6.6 More on L, Convergence

We work up to an answer to the question: If random variables con-
verge, when do their moments converge? Assume {X,} and X are
defined on (2, B, P).

(1) A form of Scheffé's lemma:
Xn SX < sup

/X,,dP—/XdP‘ — 0.
AeB|JA A

Letting A = Q, then L; convergence implies E(X,) — E(X).
L
(2) If X, =% X, then E(|X|P) = E(IX|P), or [ Xallp = [ XIlp

Proof: First show (2):[| Xallp — I X]Ip] < || Xn — X]|p-
Now for the <= of (1):

E[X, — X| = / (X, — X)dP+/ (X — X,)dP
[Xo>X] [X,<X]

<2sup|/XdP /XdPy
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6.6 More on L, Convergence

Proof: Now for the = of (1):

sup /XndP—/XdP‘ < sup/]X,,—XdP
A A A JA

A

= E(|X, — X|) — 0.
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6.6 More on L, Convergence

Theorem 6.6.1
Suppose X, € Ly for n > 1. The following statements are
equivalent:

(a) {Xa} is Li-convergent.

(b) {Xn} is Li-Cauchy; that is, E|X, — Xm| — 0 as n,m — oo.
(c) {Xn} is ui and {X,} converges in probability.

So if X, 25 X or X, 5 X (later, or X, 2 X) and {X,} is ui, then
X, B X and E(X,) — E(X).

Proof: (a) to (b): If X, 5 X, then E|X, — Xm| < E|X, — X| +
E|Xm — X| — 0as n,m— oo.
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6.6 More on L, Convergence

Proof continued: (b) to (c): We first show ui using Theorem 6.5.1.
Because of (b), for € > 0, there exists N, such that for n,m > N,

then
/]X,, — Xm|dP < €/2.

For any A€ B and n > N,
/X,,|dP§/|XNE|dP—|—/|X,,—XNEdPg/XNEdP—l—e/2.
A A A

That is sup,>p, [ [XaldP < [ |Xn,|dP + €/2 and thus
sup/\X,,\dPgmax sup /\X |dP/X,VdP+e/2)
n JA m<Ne

< sup /|Xm]dP—|—e/2

Take A = Q, sup, E(|Xy|) < supp<p, E(\Xm|) +€/2 < 0.
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6.6 More on L, Convergence

Proof continued: (b) to (c) continued: Further more, since {X, :
m < N} is a finite family which is ui. We can find a § > 0, such
that if P(A) <, then

sup /Xm|dP<e/2.
m<N¢JA

Finally, we conclude that for € > 0, we find a J, such that if P(A) <
0, then
sup/ X,|dP < /24 ¢/2 = e
n JA
Hence {X,} is ui. To check {X,} converges in probability, we have

P[|Xn — Xm| > €] < E(| Xy — Xm|)/e = oo. Thus {X,} is Cauchy
i.p.
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6.6 More on L, Convergence

Proof continued: (c) to (a): If X, £ X, then there exists a subse-
quence {n} such that X,, 3 X. By Fatou's lemma

E(|X|) = E(IimJnf\Xnk]) < IimJnf E(|Xn,|) < supnE(|Xn|) < o0
ny—00 nK— 00

since {Xp} is ui. So X € L;. Also, for any € > 0,

/]Xn—X\dPg/ ]Xn—X\dP—i—/ X, — X|dP
(X~ X|<e] X0~ X|>¢]

§e+/ Xn\dP+/ IX|dP = ¢ + A, + B
[[Xn—X]|>¢] [[Xn—X]|>¢]

Because P[|X, — X| > €] — 0 and X € L; and {X,} is ui, we have
An, B, — 0.
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6.6 More on L, Convergence

Example

Suppose Xi and Xz are iid N(0, 1) and define Y = Xi/|Xz| which
has a Cauchy distribution with density f(y) = 1/{m(1 + y?)}, for
y € R. Define Y, = X1 /(| Xa| +n71).

Then Y, — Y. But {Y,} is NOT ui.

Because if it is, then E(Y,) =0 — E(Y) in which E(Y) does not
exist (contradiction).
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6.6 More on L, Convergence

Theorem 6.6.2
Suppose p > 1, X, € L, for n > 1. The following statements are
equivalent:

(a) {Xa} is Lp-convergent.

(b) {Xn} is Lp-Cauchy; that is, E|X, — Xm|p — 0 as n,m — oc.
(c) {|Xn|P} is ui and {X,} converges in probability.

This also states that L, is a complete metric space; that is every
Cauchy sequence has a limit.

Proof is similar and left as HW 6-2.
Other HW 6 problems: Section 6.7, Q1-Q2, Q4-6, Q9, Q13, Q15-16,
Q19-Q20, Q23-26, Q31, Q33
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