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7.1 Truncation and Equivalence

From the definition of ui, we see that dealing with random variables
that are uniformly bounded or that have moments are often easier.
When these desirable properties are absent, we often use truncation
to induce their presence and then see whether the truncation makes
any equivalence. For example, we often compare

{Xn} with {X ′n} = {XnI|Xn|≤n}

where the second one is a truncated version of the first.
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7.1 Truncation and Equivalence

Definition.
Two sequences {Xn} and {X ′n} are tail equivalent if∑

n

P[Xn 6= X ′n] <∞.

Remark: From the Borel-Cantelli Lemma, we have that the above
tail equivalence implies

P
([
Xn 6= X ′n

]
i.o.

)
= 0

or equivalently
P
(

lim inf
n→∞

[
Xn = X ′n

])
= 1

Let N = lim infn→∞ [Xn = X ′n] = ∪n ∩k≥n [Xk = X ′k ], we have
P(N) = 1. For ω ∈ N, it means when k ≥ K (ω) , Xk(ω) = X ′k(ω).
Thus for ω ∈ N,

∑
n(Xn(ω)− X ′n(ω)) converges; i.e.,∑

n(Xn − X ′n) converges a.s.
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7.1 Truncation and Equivalence

In addition, we have
∑∞

n=K(ω) Xn(ω) =
∑∞

n=K(ω) X
′
n(ω). And if an ↑

∞ and when n ≥ K (ω),

a−1
n

n∑
j=1

(Xj(ω)− X ′j (ω)) = a−1
n

K(ω)∑
j=1

(Xj(ω)− X ′j (ω))→ 0.

Proposition 7.1.1 (Equivalence)
Suppose the two sequences {Xn} and {X ′n} are tail equivalent.
Then
1.
∑

n(Xn − X ′n) converges a.s.
2.
∑

n Xn conveges a.s. iff
∑

n X
′
n converge a.s.

3. If an ↑ ∞ and if there exits a random variable X such that

a−1
n

n∑
j=1

Xj
a.s.→ X , then also a−1

n

n∑
j=1

X ′j
a.s.→ X .
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7.2 A General Weak Law of Large Numbers

Theorem 7.2.1 (General weak law of large numbers)
Suppose {Xn} are independent random variables and define
Sn =

∑n
j=1 Xj . If

1.
∑n

j=1 P[|Xj | > n]→ 0,

2. n−2∑n
j=1 E

(
X 2
j I[|Xj≤n]

)
→ 0,

then if we define

an =
n∑

j=1

E
(
Xj I[|Xj≤n]

)
,

we get
Sn − an

n
= X̄n − an/n

P→ 0.

Remark: No assumptions about moments of Xn’s need to be made.
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7.2 A General Weak Law of Large Numbers (Special Cases)

Case (a) WLLN with variances.
Suppose {Xn} are iid with E (Xn) = µ and E (X 2

n ) <∞. Then as
n→∞, Sn/n

P→ µ.
Proof.

By Chebychev’s inequality
n∑

j=1

P[|Xj | > n] = nP [|X1| > n] ≤ nE
(
X 2

1
)
/n2 → 0

and

n−2
n∑

j=1

E
(
X 2
j I[|Xj≤n]

)
=

1
n2 nE

(
X 2

1 I[|X1|≤n]

)
≤ 1

n
E
(
X 2

1
)
→ 0

Finally, we observe, as n→∞,
an
n

= E
(
X1I[|X1|≤n]

)
→ E (X1) = µ

6 / 56



7.2 A General Weak Law of Large Numbers (Special Cases)

Case (b) Khintchin’s WLLN under the first moment
hypothesis.
Suppose {Xn} are iid with E (|Xn|) <∞ and E (Xn) = µ. Then as
n→∞, Sn/n

P→ µ.
Proof.

We first have, since E (|X1|) <∞,

n∑
j=1

P[|Xj | > n] = nP [|X1| > n] = E
(
nI[|X1|>n]

)
≤ E

(
|X1| I[|X1|>n]

)
→ 0.
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7.2 A General Weak Law of Large Numbers (Special Cases)

Next, for any ε > 0,

n−2
n∑

j=1

E
(
X 2
j I[|Xj≤n]

)
=

1
n
EX 2

1 I[|X1|≤n]

≤ 1
n

(
E
(
X 2

1 I[|X1|≤ε
√
n]

)
+ E

(
X 2

1 I[ε
√
n≤|X1|≤n]

))
≤ ε2n

n
+

1
n
E
(
n |X1| I[ε√n≤|X1|≤n]

)
≤ ε2 + E

(
|X1| Iε√n≤|X1|

)
→ ε2.

Moreover, since∣∣∣∣∣nE
(
X1I[|X1|≤n]

)
n

− E (X1)

∣∣∣∣∣ ≤ E
(
|X1| I[|X1|>n]

)
→ 0,

we have X̄n
P→ µ.
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7.2 A General Weak Law of Large Numbers (Special Cases)

Case (c) Feller’s WLLN without a first moment assumption.
Suppose {Xn} are iid with limx→∞ xP[|X1| > x ] = 0, then
Sn/n − E (X1I[|X1|≤n])

P→ 0.
Proof.

It suffices to show that (1), obviously,

n∑
j=1

P[|Xj | > n] = nP [|X1| > n]→ 0,

and (2)

n−2
n∑

j=1

E
(
X 2
j I[|Xj≤n]

)
=

1
n
E
(
X 2

1 I[|X1|≤n]

)
→ 0
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7.2 A General Weak Law of Large Numbers (Special Cases)

We define τ(x) := xP [|X1| > x ] and let F (x) be the cdf. Then
1
n

∫
Ω
|X1|2 I[|X1|≤n]dP =

1
n

∫
|x |≤n

x2F (dx)

=
1
n

∫
|x |≤n

(∫ |x |
s=0

2sds

)
F (dx)

=
1
n

∫ n

0
2s

[∫
s<|x |≤n

F (dx)

]
ds (by Fubini)

=
1
n

∫ n

0
2s (P [|X1| > s]− P [|X1| > n]) ds

=
1
n

∫ n

0
2τ(s)ds − 1

n

∫ n

0
2sdsP [|X1| > n]

=
2
n

∫ n

0
τ(s)ds − nP [|X1| > n]︸ ︷︷ ︸

τ(n)

→ 0

since if τ(s)→ 0 so does its average.
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7.2 A General Weak Law of Large Numbers (Proof)

Proof of Theorem 7.2.1.

Define

X ′nj = Xj I[|Xj |≤n] and S ′n =
n∑

j=1

X ′nj

Then
n∑

j=1

P
[
X ′nj 6= Xj

]
=

n∑
j=1

P [|Xj | > n]→ 0

So

P
[∣∣Sn − S ′n

∣∣ > ε
]
≤ P

[
Sn 6= S ′n

]
≤ P

⋃
j=1

[
X ′nj 6= Xj

]
≤

n∑
j=1

P
[
X ′nj 6= Xj

]
→ 0

and therefore
Sn − S ′n

P→ 0.
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7.2 A General Weak Law of Large Numbers (Proof)

Now look at S ′n. By Chebychev’s inequality

P

[∣∣∣∣S ′n − ES ′n
n

∣∣∣∣ > ε

]
≤ var (S ′n)

n2ε2
≤ 1

n2ε2

n∑
j=1

E
(
X ′nj
)2

=
1

n2ε2

n∑
j=1

E
(
X 2
j I[|Xj |≤n]

)
→ 0

Note an = ES ′n =
∑n

j=1 EXj I[|Xj |≤n], and thus

S ′n − an
n

P→ 0

We therefore get

Sn − an
n

=
Sn − S ′n

n
+

S ′n − an
n

P→ 0.
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7.2 A General Weak Law of Large Numbers (Example)

Example
Let us consider a CDF: F (x) = 1− e

2x log x , x ≥ e. Suppose we
have from it an iid sequence {Xn}. What is the mean of X? What
does Sn/n converges in probability to?
Solution.

Note that

EX+ =

∫ ∞
e

e

2x log x
dx =

e

2

∫ ∞
1

dy

y
=∞,

because the distribution is symmetric E (X+) = E (X−) = ∞ and
E (X ) does not exist. However,

τ(x) = xP [|X1| > x ] = x · e

x log x
=

e

log x
→ 0

and an = 0 because F is symmetric, so without a mean existing,

Sn
n

P→ 0.
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7.2 A General Weak Law of Large Numbers (Example)

Example
How about (standard) Cauchy? We have

F (x) = 0.5 + π−1 arctan x .

Solution.

Note that E (X ) neither exists. Now

τ(x) = xP [|X1| > x ] = x · (1− 2π−1 arctan x).

But

lim
x→∞

τ(x) = lim
x→∞

1− 2π−1 arctan x

x−1 = lim
x→∞

−2π−1(1 + x2)−1

−x−2

= lim
x→∞

2x2

π(1 + x2)
=

2
π
6= 0. (Oops!)
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7.3 Almost Sure Convergence of Sums of Independent
Random Variables

Proposition 7.3.0 (Komogorov’s inequality: about tail
probabilities of maxima of sums)
Suppose {Xn} is an independent sequence of random variables and
suppose E (Xn) = 0 and var(Xn) <∞. Then for each α > 0,

P

[
sup
j≤N
|Sj | > α

]
≤ 1
α2 var(SN) =

1
α2

N∑
j=1

E (X 2
j ).

Proof.

When N = 1, it is trivial. For any N > 1, we define
A = {supj≤N |Sj | > α} =

∑N
k=1 Ak where Ak = {|Sk | > α, |Sj | ≤

α, j < k}, k = 1, . . . ,N, are disjoint events. Note that

P(Ak) = E (IAk
) ≤ E (S2

k/α
2IAk

)

≤ α−2E ((S2
k + (SN − Sk)2)IAk

) = α−2E (S2
n IAk

).

Summing over k yields

P(A) = P(sup
j≤N
|Sj | > α) ≤ α−2E (S2

N IA) ≤ α−2E (S2
N).
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7.3 Almost Sure Convergence of Sums of Independent
Random Variables

Proposition 7.3.1 (Skorohod’s inequality: about tail
probabilities of maxima of sums)
Suppose {Xn} is an independent sequence of random variables and
suppose α > 0 is fixed. For n ≥ 1, set

c = sup
j≤N

P[|SN − Sj | > α]
if iid

= sup
j≤N

P[|Sj | > α].

Suppose c < 1, then

P

[
sup
j≤N
|Sj | > 2α

]
≤ 1

1− c
P[|SN | > α].

Remark. Compared to the famous Kolmogorov’s inequality, one
advantage of Skorohod’s inequality is that it does not require moment
assumptions. 16 / 56



7.3 Almost Sure Convergence of Sums of Independent
Random Variables

Proof of Skorohod’s inequality.

Define J := inf {j : |Sj | > 2α}
with the convention that inf ∅ =∞. Note that[

sup
j≤N
|Sj | > 2α

]
= [J ≤ N] =

N∑
j=1

[J = j ]

where the last union is a union of disjoint sets. Now we write

P [|SN | > α] ≥ P [|SN | > α, J ≤ N]

=
N∑
j=1

P [|SN | > α, J = j ] ≥
N∑
j=1

P [|SN − Sj | ≤ α, J = j ]

where, the last inequality is because if |SN −Sj | ≤ α and |Sj | > 2α,
then |SN | > α.
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7.3 Almost Sure Convergence of Sums of Independent
Random Variables

It is also true that SN − Sj =
∑N

i=j+1 Xj ∈ B (Xj+1, . . . ,XN) and
[J = j ] =

[
supi<j |Si | ≤ 2α, |Sj | > 2α

]
∈ B (X1 . . .Xj). Noting

B (Xj+1, . . . ,XN) ⊥ B (X1 . . .Xj) , we have

P [|SN | > α] ≥
N∑
j=1

P [|SN − Sj | ≤ α]P[J = j ]

≥
N∑
j=1

(1− c)P[J = j ]

= (1− c)P[J ≤ N]

= (1− c)P

[
sup
j≤N
|Sj | > 2α

]
.
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7.3 Almost Sure Convergence of Sums of Independent
Random Variables

Based on Skorohod’s inequality, we may now present a remarkable
result which shows the equivalence of convergence in probability to
almost sure convergence for sums of independent random variables.

Theorem 7.3.2 (Lévy’s theorem)
If {Xn} are independent, then∑

n

Xn converges i.p. iff
∑
n

Xn converges a.s.;

i.e., letting Sn =
∑n

i=1 Xi , then the following are equivalent
1. {Sn} is Cauchy in probability.
2. {Sn} converges in probability.
3. {Sn} converges almost surely.
4. {Sn} is almost surely Cauchy.
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7.3 Almost Sure Convergence of Sums of Independent
Random Variables

Proof of Lévy’s theorem.

Assume {Sn} is convergent in probabil-
ity, so that {Sn} is Cauchy in probability. We show {Sn} is almost
surely convergent by showing {Sn} is almost surely Cauchy. To show
that {Sn} is almost surely Cauchy, we need to show

ξN = sup
m,n≥N

|Sm − Sn|
a.s.→ 0,

as N →∞. Note that {ξN ,N ≥ 1} is a decreasing sequence. Known
that if ξN

P→ 0, then ξN
a.s.→ 0. To show ξN

P→ 0, we see

ξN = sup
m,n≥N

|Sm − SN + SN − Sn|

≤ sup
m≥N

|Sm − SN |+ sup
n≥N
|Sn − SN |

= 2 sup
n≥N
|Sn − SN |

= 2 sup
j≥0
|SN+j − SN |
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7.3 Almost Sure Convergence of Sums of Independent
Random Variables

It suffices to show that supj≥0 |SN+j − SN |
P→ 0. For any ε > 0, and

0 < δ < 1
2 , the assumption that {Sn} is Cauchy i.p. implies that

there exists Nε,δ such that

P
[
|Sm − Sm′ | >

ε

2

]
≤ δ

if m,m′ ≥ Nε,δ, and hence, if N ≥ Nε,δ,

P
[
|SN+j − SN | >

ε

2

]
≤ δ, ∀j ≥ 0.

Now write

P

[
sup
j≥0
|SN+j − SN | > ε

]
= P

{
lim

N′→∞

[
sup

N′≥j≥0
|SN+j − SN | > ε

]}

= lim
N′→∞

P

[
sup

N′≥j≥0
|SN+j − SN | > ε

]
.
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7.3 Almost Sure Convergence of Sums of Independent
Random Variables

Now we seek to apply Skorohod’s inequality. Let X ′i = XN+i and

S ′j =

j∑
i=1

X ′i =

j∑
i=1

XN+i = SN+j − SN .

With this notation we have

P

[
sup

N′≥j≥0
| SN+j −SN |> ε] = P

[
sup

N′≥j≥0

∣∣S ′j ∣∣ > ε

]

≤

 1

1− supj≤N′ P
[∣∣∣S ′N′ − S ′j

∣∣∣ > ε
2

]
P

[∣∣S ′N′∣∣ > ε

2

]

=

(
1

1− supj≤N′ P
[
|SN+N′ − SN+j | > ε

2

])P
[∣∣S ′N′∣∣ > ε

2

]
≤ (1− δ)−1δ ≤ 2δ which can be chosen arbitrarily small.
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7.3 Almost Sure Convergence of Sums of Independent
Random Variables

Theorem 7.3.3 (Kolmogorov convergence criterion)
If {Xn} are independent, and

∞∑
j=1

var(Xj) <∞,

then ∞∑
j=1

(Xj − E (Xj)) converges almost surely.

Proof.

WLOG, assume E (Xj) = 0. Then
∑∞

j=1 EX
2
j < ∞, which

implies that {Sn} is L2–Cauchy since (m < n)

‖Sn − Sm‖22 = var (Sn − Sm) =
n∑

j=m+1

EX 2
j → 0

as m, n→∞. So {Sn} , being L2− Cauchy, is also Cauchy in proba-
bility. P [|Sn − Sm| > ε] ≤ ε−2var (Sn − Sm) = ε−2∑n

j=m var (Xj)→
0 as n,m→∞. By Lévy’s theorem {Sn} is almost surely convergent.
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7.4 Strong Laws of Large Numbers

This section considers the problem of when sums of independent ran-
dom variables properly scaled and centered converge almost surely.
We will prove that sample averages converge to mathematical ex-
pectations when the sequence is iid and a mean exists.
We begin with a number theory result which is traditionally used in
the development of the theory.

Lemma 7.4.1 (Kronecker’s lemma)
Suppose we have two sequences {xk} and {ak} such that xk ∈ R
and 0 < an ↑ ∞. If ∑

k

xk
ak

converges,

then

lim
n→∞

a−1
n

n∑
k=1

xk = 0.
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7.4 Strong Laws of Large Numbers

Proof of Kronecker’s lemma.

Let rn =
∑∞

k=n+1 xk/ak so that
rn → 0 as n → ∞. Given ε > 0, there exists N0 = N0(ε) such that
for n ≥ N0, we have |rn| ≤ ε. Now

xn
an

= rn−1 − rn

so
xn = an (rn−1 − rn) , n ≥ 1

and
n∑

k=1

xk =
n∑

k=1

(rk−1 − rk) ak

=
n−1∑
j=1

(aj+1 − aj) rj + a1r0 − anrn
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7.4 Strong Laws of Large Numbers

Then for n ≥ N0∣∣∣∣∑n
k=1 xk
an

∣∣∣∣
≤

N0−1∑
j=1

(aj+1 − aj)

an
|rj |+

n−1∑
j=N0

(aj+1 − aj)

an
|rj |+

∣∣∣∣a1r0
an

∣∣∣∣+

∣∣∣∣anrnan

∣∣∣∣
≤const

an
+

ε

an
(aN0+1 − aN0 + aN0+2 − aN0+1

+aN0+3 − aN0+2 + · · ·+ an − an−1) + ε

≤o(1) +
ε (an − aN0)

an
+ ε

≤o(1) + 2ε.

This shows the result.
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7.4 Strong Laws of Large Numbers

Corollary 7.4.1 (A strong law)
Let {Xn} be independent with E (X 2

n ) <∞. Suppose we have a
monotone sequence bn ↑ ∞. If∑

k

var
(
Xk

bk

)
<∞,

then
Sn − E (Sn)

bn

a.s.→ 0.

Proof.

By the Kolmogorov convergence criterion, we know∑
n

((Xk − EXk)/bk) converges a.s.

Then follow the Kronecker Lemma, we have

b−1
n

n∑
k=1

(Xk − EXk)
a.s.→ 0.

27 / 56



7.4.1 Example 1: Record counts

Suppose {Xn} is iid with continuous cdf F . Define

µN =
n∑

j=1

I
[Xj is a record]

.
=

N∑
j=1

1j ,

so µN is the number of recordes in the first N observations.

Proposition 7.4.1 (Logarithmic growth rate)
The number of records in an iid sequence grows logarithmically and
we have the almost sure limit

lim
N→∞

µN
logN

→ 1.

Proof.

Taken from analysis: log n−
∑n

j=1
1
j → c (Euler’s constant)

as n→∞.
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7.4.1 Example 1: Record counts

Recall that {1j , j ≥ 1} are independent. The basic facts about {1j}
are that

P [1j = 1] =
1
j
, E (1j) =

1
j

var (1j) = E (1j)
2 − (E1j)

2 =
1
j
− 1

j2
=

j − 1
j2

This implies that

∞∑
j=2

var
(

1j
log j

)
=
∞∑
2

1
(log j)2 var (1j)

=
∞∑
2

j − 1
j2(log j)2 <∞
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7.4.1 Example 1: Record counts

The Kolmogorov convergence criterion implies that

∞∑
j=2

(
1j − E (1j)

log j

)
=
∞∑
j=2

(
1j − 1

j

)
log j

converges

and Kronecker’s lemma yields

0 a.s.←
∑n

j=1
(
1j − j−1)

log n
=

∑n
j=1 1j −

∑n
j=1 j

−1

log n
=
µn −

∑n
j=1 j

−1

log n

Thus

µn
log n

− 1 =
µn −

∑n
j=1 j

−1

log n
+

∑n
j=1 j

−1 − log n

log n
→ 0

This completes the derivation.
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7.4.2 Example 2: Explosions in the Pure Birth Process.

Let {Xn} be independent with

P[Xn > x ] = e−λnx , x > 0

where λn ≥ 0 are birth parameters. Let S0 = 0, Sn =
∑n

i=1 Xi and
the population size process {X (t), t ≥ 0} of the pure birth process
by

X (t) = n if Sn−1 ≤ t < Sn.

Next define the event explosion by

[explosion] = [
∞∑
n=1

Xn <∞] = [X (t) =∞ for some finite t].

Proposition 7.4.2

P[explosion] = I (
∑
n

λ−1
n <∞).

Proof.

By the Kolmogorov Zero-One Law, we know that P[explosion] =
P[
∑

n Xn <∞] = 0 or 1.
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7.4.2 Example 2: Explosions in the Pure Birth Process.

If
∑

n λ
−1
n <∞, then by the monotone convergence theorem,

E (
∑
n

Xn) =
∑
n

E (Xn) =
∑
n

λ−1
n <∞.

Thus
P[explosion] = P[

∑
n

Xn <∞] = 1.

Conversely, suppose P [
∑

n Xn <∞] = 1. Then 1 > exp {−
∑∞

n=1 Xn} >
0 a.s. which implies that 1 > E (exp {−

∑
n Xn}) > 0. Known that

E
(
e−

∑∞
n=1 Xn

)
= E

( ∞∏
n=1

e−Xn

)
= E

(
lim

N→∞

N∏
k=1

e−Xn

)

= lim
N→∞

E

(
N∏

n=1

e−Xn

)
(by Monotone Convergence)

= lim
N→∞

N∏
n=1

E
(
e−Xn

)
(by independence) = lim

N→∞

N∏
n=1

λn
1 + λn
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7.4.2 Example 2: Explosions in the Pure Birth Process.

Taking log, we have P [
∑

n Xn <∞] = 1 implies

0 <
∞∑
n=1

log(1 + λ−1
n ) <∞.

Then log(1 + λ−1
n )→ 0 which implies λ−1 → 0.since

lim
x↓0

log(1 + x)

x
= 1

by L’Hôpital’s rule, we have

log
(
1 + λ−1

n

)
∼ λ−1

n as n→∞

and thus

0 <
∞∑
n=1

log
(
1 + λ−1

n

)
<∞ iff

∞∑
n=1

λ−1
n <∞
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7.5 The Strong Law of Large Numbers for IID Sequences

Lemma 7.5.1
Let {Xn} be iid. The following are equivalent:
(a) E |X1| <∞
(b) limn→∞

∣∣Xn
n

∣∣ = 0 almost surely.
(c) For ε > 0,

∑∞
n=1 P[|X1| ≥ εn] <∞.

Proof.

(a) ↔ (c): Observe that:

E (|X1|) =

∫ ∞
0

P [|X1| ≥ x ] dx =
∞∑
n=0

∫ n+1

n
P [|X1| ≥ x ] dx

≥
∞∑
n=0

P [|X1| ≥ n + 1] ≤
∞∑
n=0

P [|X1| ≥ n]

Thus E (|X1|) < ∞ iff
∑∞

n=0 P [|X1| ≥ n] < ∞. For every ε >
0, set Y = X1/ε. We get E (|X1|) < ∞ iff E (|Y |) < ∞ iff∑∞

n=0 P [|Y | ≥ n] =
∑∞

n=0 P [|X1| ≥ εn] <∞.
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7.5 The Strong Law of Large Numbers for IID Sequences

(c) ↔ (b): Given ε > 0,∑
n

P [|X1| ≥ εn] =
∑
n

P [|Xn| ≥ εn] <∞

is equivalent, by the Borel zero-one law, to

P

{[
|Xn|
n

> ε

]
i.o.

}
= 0

which is in turn equivalent to

lim sup
n→∞

|Xn|
n
≤ ε

almost surely. since lim supn→∞
|Xn|
n is a tail function, it is a.s.

constant. If this constant is bounded by ε for any ε > 0, then

lim sup
n→∞

|Xn|
n

= 0

This gives (b) and the converse is similar.

35 / 56



7.5 The Strong Law of Large Numbers for IID Sequences

Kolmogorov’s SLLN
Let {Xn} be iid and set Sn =

∑n
i=1 Xi . There exists c ∈ R such

that
X̄n = Sn/n

a.s.→ c

iff E (|X1) <∞ in which case c = µ = E (X1).

Corollary 7.5.1
If {Xn} is iid, then E (|X1|) <∞ implies X̄n

a.s.→ µ and EX 2
1 <∞

implies 1
n

∑n
i=1(Xi − X̄n)2 a.s.→ σ2 = var(X1) and

1
n−1

∑n
i=1(Xi − X̄n)2 a.s.→ σ2 = var(X1).

Proof of Kolmogorov’s SLLN.

We show first that
Sn
n

a.s.→ c implies E (|X1|) <∞.

This is because the following and Lemma 7.5.1
Xn

n
=

Sn − Sn−1

n
=

Sn
n
−
(
n − 1
n

)
Sn−1

n − 1
a.s.→ c − c = 0 .
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7.5 The Strong Law of Large Numbers for IID Sequences

Now we show that E (|X1|) < ∞ implies Sn/n
a.s.→ E (X1) . To do

this, we use a truncation argument. Define

X ′n = XnI[|Xn|≤n], n ≥ 1

Then ∑
n

P
[
Xn 6= X ′n

]
=
∑
n

P [|Xn| > n] <∞

(since E |X1| < ∞ ) and hence {Xn} and {X ′n} are tail equivalent.
Therefore by Proposition 7.1.1

Sn/n
a.s.→ E (X1) iff S ′n/n =

n∑
j=1

X ′j /n
a.s.→ E (X1)

So it suffices to consider the truncated sequence.
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7.5 The Strong Law of Large Numbers for IID Sequences

Next observe that∣∣∣∣S ′n − E (S ′n)

n
− S ′n − E (Sn)

n

∣∣∣∣ =

∣∣∣∣∣nE (X1)−
∑n

j=1 E
(
X1I[|X1|≤j]

)
n

∣∣∣∣∣
=

∣∣∣∣∣∣E (X1)−
n∑

j=1

E
(
X1I[|X1|≤j]

)
n

∣∣∣∣∣∣→ 0.

This last step follows from the fact that∣∣E (X1)− E
(
X1I[|X1|≤n]

)∣∣ ≤ E
(
|X1| I[|X1|>n]

)
→ 0.

We thus conclude that

S ′n
n
− E (X1)

a.s.→ 0 iff

∑n
1

(
X ′j − E

(
X ′j

))
n

a.s.→ 0.

Then, it is enough by Kronecker’s lemma to prove∑
j

var(X ′j /j) <∞.
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∑
j

var

(
X ′j
j

)
≤
∑
j

E
(
X ′j

)2

j2
=
∞∑
j=1

1
j2
E
(
X 2

1 I[|X1|≤j]
)

=
∞∑
j=1

j∑
k=1

1
j2
E
(
X 2

1 I[k−1<|X1|≤k]

)
=
∞∑
k=1

 ∞∑
j=k

1
j2

E
(
X 2

1 I[k−1<|X1|≤k]

)
≤
∞∑
k=2

2
k
E
(
|X1|2 I[k−1<|X1|≤k]

)
≤
∞∑
k=2

2
k
· kE

(
|X1| I[k−1<|X1|≤k]

)
= 2E (|X1|) <∞.
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7.5.1 Application 1: Renewal Theory

Suppose Xn’s are iid and non-negative. with E (Xn) = µ ∈ (0,∞).
Then

Sn/n
a.s.→ µ, and Sn

a.s.→ ∞.

Let S0 = 0 and define

N(t) =
∞∑
j=0

I[Sj≤t].

We call N(t) the number of renewals in [0, t]. Then

[N(t) ≤ n] = [Sn > t] and SN(t)−1 ≤ t < SN(t).

We conjecture that
N(t)/t

a.s.→ µ−1.

40 / 56



7.5.1 Application 1: Renewal Theory

We first show N(t) → ∞ a.s. as t → ∞ and because of the
monotonicity, it suffices to show N(t)

P→∞. Since for any m

lim
t→∞

P[N(t) ≤ m] = lim
t→∞

P [Sm > t]→ 0

we get the desired result that N(t)
P→∞. Now define the sets

Λ1 =
{
ω : Sn(ω)

n → µ
}

Λ2 = {ω : N(t, ω)→∞}

by a.s.→, we have P (Λ1) = P (Λ2) = 1. Then Λ := Λ1 ∩ Λ2 has
P(Λ) = 1. For ω ∈ Λ, as t →∞

SN(t,ω)(ω)/N(t, ω)→ µ

and so SN(t)/N(t)
a.s.→ µ as t →∞. From

N(t)− 1
N(t)

SN(t)−1

N(t)− 1
<

t

N(t)
≤

SN(t)

N(t)
,

we conclude that t/N(t)
a.s.→ µ and thus N(t)/t

a.s.→ µ−1. Thus the
long run rate of renewals is µ−1.
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7.5.1 Application 1: Glivenko-Cantelli Theorem

Suppose Xn’s are iid with common distribution F . We estimate F
by the empirical cumulative distribution function (ecdf)

F̂n(x) = n−1
n∑

j=1

I[Xj≤x].

By the SLLN, F̂n(x)
a.s.→ F (x) for each fixed x.

Glivenko-Cantelli Theorem
Dn = sup

x
|F̂n(x)− F (x)| a.s.→ 0.

Proof.

Define

xv ,k := F←(v/k), v = 1, . . . , k

where F←(x) = inf{u : F (u) ≥ x}. Recall
F←(u) ≤ t iff u ≤ F (t)

and
F (F←(u)) ≥ u, F (F←(u)−) ≤ u.
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7.5.1 Application 1: Glivenko-Cantelli Theorem

If xv ,k ≤ x < xv+1,k , then monotonicity implies

F (xv ,k) ≤ F (x) ≤ F (xv+1,k−) , F̂n (xv ,k) ≤ F̂n(x) ≤ F̂n (xv+1,k−)

and for such x

F̂n (xv ,k)− F (xv+1,k−) ≤ F̂n(x)− F (x)

≤ F̂n (xv+1,k−)− F (xv ,k) .

Since
F (xv+1,k−)− F (xv ,k) ≤ v + 1

k
− v

k
=

1
k
,

we have

F̂n (Xv ,k)− F (xv ,k)− 1
k
≤ F̂n(x)− F (x)

≤ F̂n (xv+1,k−)− F (xv+1,k−) +
1
k
.
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7.5.1 Application 1: Glivenko-Cantelli Theorem

Therefore

supx∈[xv,k ,xv+1,k)

∣∣∣F̂n(x)− F (x)
∣∣∣

≤ 1
k +

∣∣∣F̂n (xv ,k)− F (xv ,k)
∣∣∣ ∨ ∣∣∣F̂n (xv+1,k−)− F (xv+1,k−)

∣∣∣
which is valid for v = 1, . . . , k − 1, and taking the supremum,

supx∈[x1,k ,xk,k)

∣∣∣F̂n(x)− F (x)
∣∣∣

≤ 1
k +

∨k
v=1

∣∣∣F̂n (xv ,k)− F (xv ,k)
∣∣∣ ∨ ∣∣∣F̂n (xv ,k−)− F (xv ,k−)

∣∣∣
= RHS

We now show that this inequality also holds for x < x1,k and x ≥
xk,k . If x ≥ xk,k , then F (x) = F̂n(x) = 1 so F̂n(x)− F (x) = 0 and
RHS is still an upper bound.
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7.5.1 Application 1: Glivenko-Cantelli Theorem

If x < x1,k , either (i) F (x) ≥ F̂n(x) in which case∣∣∣F̂n(x , ω)− F (x)
∣∣∣ = F (x)− Fn(x , ω)

≤ F (x) ≤ F (x1,k−)

≤ 1
k
≤ RHS

or (ii) F̂n(x) > F (x) in which case∣∣∣F̂n(x , ω)− F (x)
∣∣∣ = F̂n(x , ω)− F (x)

≤ F̂n (x1,k−, ω)− F (x1,k−) + F (x1,k−)− F (x)

≤
∣∣∣F̂n (x1,k−, ω)− F (x1,k−)

∣∣∣+ |F (x1k−)− F (x)|

≤ 1
k

+
∣∣∣F̂n (x1k−, ω)− F (x1k−)

∣∣∣ ≤ RHS

We therefore conclude that

Dn ≤ RHS
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The SLLN implies that there exist sets Λv ,k , and Λ̃v ,k , such that

P (Λv ,k) = P
(

Λ̃v ,k

)
= 1 and such that

F̂n (xv ,k)→ F (xvk) ,

F̂n (xv ,k−) =
1
n

n∑
1

I[Xj<xv,k ] → P [X1 < xv ,k ] = F (xv ,k−)

provided ω ∈ Λvk and Λ̃vk respectively. Let

Λk =
⋂
v

Λv ,k

⋂⋂
Λ̃v ,k

so P (Λk) = 1. Then for ω ∈ Λk ,

lim sup
n→∞

Dn(ω) ≤ 1
k

For ω ∈
⋂

k Λk , where P (
⋂

k Λk) = 1,

lim
n→∞

Dn(ω) = 0.
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7.6 The Kolmogorov Three Series Theorem

The Kolmogorov three series theorem provides necessary and suf-
ficient conditions for a series of independent random variables to
converge. The result is especially useful when the Kolmogorov con-
vergence criterion may not be applicable, for example, when existence
of variances is not guaranteed.

Theorem 7.6.1
Let {Xn} be independent. in order for

∑
n Xn converges a.s., it is

necessary and sufficient that there exists c > 0 such that
(i)
∑

n P[|Xn| > c] <∞
(ii)

∑
n var(XnI[|Xn|≤c]) <∞

(iii)
∑

n E (XnI|Xn|≤c) converges.

If
∑

n Xn converges a.s., then (i), (ii), (iii) hold for any c > 0. Thus
if the three series converge for one value of c > 0, they converge for
all c > 0.
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Proof of Sufficiency.

Suppose the three series converge. Define

X ′n = XnI[|Xn|≤c]

Then ∑
n

P
[
X ′n 6= Xn

]
=
∑
n

P [|Xn| > c] <∞

by (i) so {X ′n} and {Xn} are tail equivalent. Thus
∑

n Xn converges
almost surely iff

∑
n X
′
n converges almost surely. From (ii)∑

n

var
(
X ′n
)
<∞

so by the Kolmogorov convergence criterion∑
j

(
X ′j − E

(
X ′j
))

converges

But (iii) implies
∑

n E (X ′n) converges and thus
∑

n X
′
n converges,

as desired.
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We now examine a proof of the necessity of the Kolmogorov three
series theorem. Two lemmas pave the way. The first is a partial
converse to the Kolmogorov convergence criterion.

Lemma 7.6.1
Suppose {Xn} are independent which are uniformly bounded, so
that for some α > 0 and all ω ∈ Ω we have |Xn(ω)| ≤ α. If∑

n(Xn − EXn) converges almost surely, then
∑

n var(Xn) <∞.
Proof.

Without loss of generality, we suppose E (Xn) = 0 for all
n and we prove the statement: If {Xn, n ≥ 1} are independent,
E (Xn) = 0, |Xn| ≤ α, then

∑
n Xn almost surely convergent implies∑

n E
(
X 2
n

)
< ∞. We set Sn =

∑n
i=1 Xi and begin by estimating

var (SN) =
∑N

i=1 E
(
X 2
i

)
for a positive integer N. To help with this,

fix a constant λ > 0, and define the first passage time out of [−λ, λ]

τ := inf {n ≥ 1 : |Sn| > λ} ,

and τ =∞ on the set [∨∞n=1 |Sn| ≤ λ].
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We then have
N∑
i=1

E
(
X 2
i

)
= E

(
S2
N

)
= E

(
S2
N I[τ≤N]

)
+ E

(
S2
N I[τ>N]

) .
= I + II .

Note on τ > N, we have supN
i=1 |Si | ≤ λ, so that in particular,

S2
N ≤ λ2. Hence,

II ≤ λ2P[τ > N] ≤ (λ+ α)2P[τ > N]

For I we have

I =
N∑
j=1

E
(
S2
N I[τ=j]

)
For j < N

E
(
S2
N I[τ=j]

)
= E

Sj +
N∑

i=j+1

Xi

2

I[τ=j]

 .
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Note [τ = j ] =

[
j−1∨
i=1

|Si | ≤ λ, |Sj | > λ

]
∈ σ (X1, . . . ,Xj)

while
N∑

i=j+1

Xi ∈ σ (Xj+1, . . . ,XN) and thus I[τ=j] ⊥
N∑

i=j+1

Xi .

Hence, for j < N,

E
(
S2
N I[τ=j]

)
= E

S2
j + 2Sj

N∑
i=j+1

Xi +

(
N∑

i=j+1

Xi

)2
 I[τ=j]


=E

(
S2
j I[τ=j]

)
+ 0 + E

(
N∑

i=j+1

Xi

)2

P[τ = j ]

≤E
(
(|Sj−1|+ |Xj |)2 I[τ=j]

)
+

N∑
i=j+1

E (Xi )
2 P[τ = j ]

≤(λ+ α)2P[τ = j ] +
N∑

i=j+1

E (Xi )
2 P[τ = j ].
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Defining
∑N

i=N+1 E (Xi )
2 = 0, we have

E
(
S2
N I[τ=j]

)
≤

(λ+ α)2 +
N∑

i=j+1

E (Xi )
2

P[τ = j ], 1 ≤ j ≤ N.

Adding over j yields

I = E
(
S2
N I[τ≤N]

)
≤

(
(λ+ α)2 +

N∑
i=1

E
(
X 2
i

))
P[τ ≤ N]

=
(
(λ+ α)2 + E

(
S2
N

))
P[τ ≤ N]

Finally, E
(
S2
N

)
=

N∑
i=1

E
(
X 2
i

)
= I + II

≤
(
(λ+ α)2 + E

(
S2
N

))
P[τ ≤ N] + (λ+ α)2P[τ > N]

≤ (λ+ α)2 + E
(
S2
N

)
P[τ ≤ N],

i.e., E
(
S2
N

)
≤ (λ+ α)2

P[τ > N]
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Let N →∞. We get

∞∑
i=1

E
(
X 2
i

)
≤ (λ+ α)2

P[τ =∞]

which is helpful and gives the desired result only if P[τ =∞] > 0.
However, note that we assume

∑
n Xn is almost surely convergent,

and hence for almost all ω, we have {Sn(ω), n ≥ 1} is a bounded
sequence of numbers. So supn |Sn| is almost surely a finite random
variable, and there exists λ > 0 such that

P[τ =∞] = P

[
sup
n
|Sn| ≤ λ

]
> 0

else P [supn |Sn| <∞] = 0, which is a contradiction. This completes
the proof of the lemma.
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Lemma 7.6.2
Suppose {Xn} are independent which are uniformly bounded, so
that for some α > 0 and all ω ∈ Ω we have |Xn(ω)| ≤ α. Then∑

n Xn converges almost surely implies that
∑

n EXn converges.
Proof.

The proof uses a technique called symmetrization. De-
fine an independent sequence {Yn, n ≥ 1} which is independent of
{Xn, n ≥ 1} satisfying Yn

d
= Xn. Let

Zn = Xn − Yn, n ≥ 1

Then {Zn, n ≥ 1} are independent random variables, E (Zn) = 0,
and the distribution of each Zn is symmetric which amounts to the
statement that

Zn
d
= −Zn

Further,

var (Zn) = var (Xn) + var (Yn) = 2var (Xn)

and |Zn| ≤ |Xn|+ |Yn| ≤ 2α.
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Since {Xn, n ≥ 1} d
= {Yn, n ≥ 1} as random elements of R∞, the

convergence properties of the two sequences are identical and since∑
n Xn is assumed almost surely convergent, the same is true of∑
n Yn. Hence also

∑
n Zn is almost surely convergent. Since {Zn}

is also uniformly bounded, we conclude from Lemma 7.6.1 that∑
n

var (Zn) =
∑
n

2var (Xn) <∞

From the Kolmogorov convergence criterion we get
∑

n (Xn − E (Xn))
almost surely convergent. Since we also assume

∑
n Xn is almost

surely convergent, it can only be the case that
∑

n E (Xn) converges.
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We now turn to the necessity of the Kolmogorov three series theorem.
Proof of necessity.

Since
∑

n Xn converges almost surely, we have
Xn

a.s.→ 0 and thus

P ([|Xn| > c] i.o. ) = 0

By the Borel zero-one law, it follows that
∑

n P [|Xn| > c] < ∞.
Then {Xn} and

{
XnI[|Xn|≤c]

}
are tail equivalent and one converges

iff the other does. So we get that the uniformly bounded sequence{
XnI[|Xn|≤c]

}
satisfies

∑
n XnI|Xn|≤c converges almost surely. By

Lemma 7.6.2,
∑

n E
(
XnI[|Xn|≤c]

)
(the series in (iii)) is convergent.

Thus the infinite series of uniformly bounded summands∑
n

(
XnI[|Xn|≤c] − E

(
XnI[|Xn|≤c]

))
is almost surely convergent and by Lemma 7.6.1∑

n

var(XnI[|Xn|≤c]) <∞ which is (ii).
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