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8.1 Basic Definitions

This chapter discusses the basic notions of convergence in distribu-
tion. Given a sequence of random variables, when do their distribu-
tions converge in a useful way to a limit?

In statisticians’ language, given a random sample X1, . . . ,Xn, the
sample mean X̄n is CAN; that is, Consistent and Asymptotically Nor-
mal. This means that X̄ has an approximately normal distribution
as the sample size grows. What exactly does this mean?

Recall our notation that df stands for distribution function. For the
time being, we will understand this to correspond to a probability
measure on R. Recall that F is a df if
(i) 0 ≤ F (x) ≤ 1;
(ii) F is non-decreasing;
(iii) F (x+) = F (x),∀x ∈ R, where

F (x+) = lim
ε>0,ε↓0

F (x + ε)

that is, F is right continuous.
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8.1 Basic Definitions

F (∞) := lim
y↑∞

F (y) F (−∞) := lim
y↓∞

F (y).

F is a probability distribution function if

F (−∞) = 0, F (+∞) = 1

In this case, F is proper or non-defective. If F (x) is a df, set

C(F ) = {x ∈ R : F is continuous at x}

A finite interval I with endpoints a < b is called an interval of
continuity for F if both a, b ∈ C(F ). We know that

(C(F ))c = {x : F is discontinuous at x}

is at most countable. For an interval I = (a, b], we write, as usual,
F (I ) = F (b)−F (a). If a, b ∈ C(F ), then F ((a, b)) = F ((a, b]). For
non-interval set B , we write F (B) = P(X ∈ B) where X ∼ F .
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8.1 Basic Definitions

Lemma 8.1.1
A distribution function F (x) is determined on a dense set. Let D
be dense in R. Suppose FD(·) is defined on D and satisfies the
following:
(a) FD(·) is non-decreasing on D.
(b) 0 ≤ FD(x) ≤ 1, for all x ∈ D.

(c) limx∈D,x→+∞ FD(x) = 1, limx∈D,x→−∞ FD(x) = 0
Define for all x ∈ R

F (x) := inf
y>x
y∈D

FD(y) = lim
y↓x
y∈D

FD(y)

Then F is a right continuous probability df. Thus, any two right
continuous df’s agreeing on a dense set will agree everywhere.
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8.1 Basic Definitions

Proof of Lemma 8.1.1.

Given ε > 0, there exists x ′ ∈ D, x ′ > x
such that

F (x) + ε ≥ FD
(
x ′
)

From the definition of F , for y ∈ (x , x ′)

FD
(
x ′
)
≥ F (y)

Thus
F (x) + ε ≥ F (y), ∀y ∈

(
x , x ′

)
Now F is monotone, so let y ↓ x to get

F (x) + ε ≥ F (x+)

This is true for all small ε > 0, so let ε ↓ 0 and we get

F (x) ≥ F (x+)

Since monotonicity of F implies F (x+) ≥ F (x), we get F (x) =
F (x+) as desired.
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8.1 Basic Definitions

Four definitions.
We now consider four definitions related to weak convergence of
probability measures. Let {Fn, n ≥ 1} be probability distribution
functions and let F be a distribution function which is not
necessarily proper.
(1) Vague convergence. The sequence {Fn} converges vaguely to
F , written Fn

v→ F , if for every finite interval of continuity I of F ,
we have

Fn(I )→ F (I )

(See Chung (1968), Feller (1971).)

(2) Proper convergence. The sequence {Fn} converges properly to
F , written Fn → F if Fn

v→ F and F is a proper df; that is F (R) = 1.
(See Feller (1971).)
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8.1 Basic Definitions

(3) Weak convergence. The sequence {Fn} converges weakly to
F , written Fn

w→ F , if
Fn(x)→ F (x)

for all x ∈ C(F ). (See Billingsley (1968, 1995).)

(4) Complete convergence. The sequence {Fn} converges com-
pletely to F , written Fn

c→ F , if Fn
w→ F and F is proper. (See

Loève (1977).)
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8.1 Basic Definitions

Example.
Define

Fn(x) := F (x + (−1)nn)

Then
F2n(x) = F (x + 2n)→ 1

F2n+1(x) = F (x − (2n + 1))→ 0

Thus {Fn(x)} does not converge for any x . Thus weak
convergence fails. However, for any I = (a, b]

F2n(a, b] = F2n(b)− F2n(a)→ 1− 1 = 0

F2n+1(a, b] = F2n+1(b)− F2n+1(a)→ 0− 0 = 0 So Fn(I )→ 0 and
vague convergence holds: Fn

v→ G where G (R) = 0. So the limit is
not proper.
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8.1 Basic Definitions

Theorem 8.1 .1 (Equivalence of the Four Definitions)
If F is proper, then the four definitions (1),(2),(3),(4) are
equivalent.
Proof.

If F is proper, then (1) and (2) are the same and also (3)
and (4) are the same.
We check that (4) implies (2). If

Fn(x)→ F (x), ∀x ∈ C(F )

then

Fn(a, b] = Fn(b)− Fn(a)→ F (b)− F (a) = F (a, b]

if (a, b] is an interval of continuity.
Next we show (2) implies (4): Assume

Fn(I )→ F (I )

for all intervals of continuity I . Let a, b ∈ C(F ). Then

Fn(b) ≥ Fn(a, b]→ F (a, b]

So
lim inf
n→∞

Fn(b) ≥ F (a, b], ∀a < b, a ∈ C(F )

Let a ↓ −∞, a ∈ C(F ) to get

lim inf
n→∞

Fn(b) ≥ F (b)
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8.1 Basic Definitions

So
lim inf
n→∞

Fn(b) ≥ F (a, b], ∀a < b, a ∈ C(F )

Let a ↓ −∞, a ∈ C(F ) to get

lim inf
n→∞

Fn(b) ≥ F (b)

For the reverse inequality, suppose l < b < r , l , r ∈ C(F ), and l
chosen so small and r chosen so large that

F ((l , r ]c) < ε

Then since Fn(l , r ]→ F (l , r ], we have

Fn ((l , r ]c)→ F ((l , r ]c)

So given ε > 0, there exists n0 = n0(ε) such that n ≥ n0 implies

Fn ((l , r ]c) ≤ 2ε
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8.1 Basic Definitions

For n ≥ n0
Fn(b) = Fn(b)− Fn(l) + Fn(l)

= Fn(l , b] + Fn(l)

≤ Fn(l , b] + 2ε

since Fn(l) ≤ Fn ((l , b]c) . So

lim sup
n→∞

Fn(b) ≤ F (l , b] + 2ε

≤ F (b) + 2ε

Since ε > 0 is arbitrary

lim sup
n→∞

Fn(b) ≤ F (b)
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8.1 Basic Definitions

Notation: If {F ,Fn, n ≥ 1} are probability distributions, write Fn ⇒
F to mean any of the equivalent notions given by (1)− (4). If Xn is
a random variable with distribution Fn and X is a random variable
with distribution F , we write Xn ⇒ X to mean Fn ⇒ F . This is
read Xn converges in distribution to X or Fn converges weakly to
F . Notice that unlike almost sure, in probability, or Lp convergence,
convergence in distribution says nothing about the behavior of the
random variables themselves and only comments on the behavior of
the distribution functions of the random variables.

Example 8.1.1.
Let N be an N(0, 1) random variable so that the distribution
function is symmetric. Define for n ≥ 1

Xn = (−1)nN

Then Xn
d
= N, so automatically Xn ⇒ N. But of course {Xn}

neither converges almost surely nor in probability. 12 / 65



8.1 Basic Definitions

Example 8.1.2.
Let {Xn, n ≥ 1} be iid with common unit exponential distribution

P [Xn > x ] = e−x , x > 0

Set Mn = maxni=1 Xi for n ≥ 1. Then Mn − log n⇒ Y , where

P[Y ≤ x ] = exp
{
−e−x

}
, x ∈ R

We have, for x ∈ R

P [Mn − log n ≤ x ] = P

(
n⋂

i=1

[Xi ≤ x + log n]

)
=
(
1− e−(x+log n)

)n
=

(
1− e−x

n

)n

→ exp
{
−e−x

}
.

13 / 65



8.1 Basic Definitions

Remark 8.1.2
Weak limits are unique. If Fn

w→ F , and also Fn
w→ G , then F = G .

Why?

The set (C(F ))c ∪ (C(G ))c is countable so

INT = C(F ) ∩ C(G ) = R \ a countable set

and hence is dense. For x ∈ INT

Fn(x)→ F (x), Fn(x)→ G (x)

so F (x) = G (x) for x ∈ INT, and hence by Lemma 8.1.1, we have
F = G .
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8.2 Scheffé’s lemma

Consider the following modes of convergence that are stronger than
weak convergence.

(a) Fn(A)→ F (A), ∀A ∈ B(R)
(b) supA∈B(R) |Fn(A)− F (A)| → 0 .

Definition (a) (and hence (b)) would rule out many circumstances we
would like to fall under weak convergence. Two examples illustrate
the point of this remark.
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8.2 Scheffé’s lemma

Example 8.2.1 (i). Suppose Xn ∼ Fn puts mass 1
n at points{ 1

n ,
2
n , . . . ,

n
n

}
., and let

Xn ∼ F (x) = x , 0 ≤ x ≤ 1

where F is the uniform distribution on [0, 1].

Then for x ∈ (0, 1)

Fn(x) =
[nx ]

n
→ x = F (x)

Thus we have weak convergence Fn ⇒ F . However if Q is the set
of rationals in [0,1]

Fn(Q) = P(Xn ∈ Q) = 1,F (Q) = P(X ∈ Q) = 0,

so convergence in the sense of (a) fails even though it seems natural
that the discrete uniform distribution should be converging to the
continuous uniform distribution.
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8.2 Scheffé’s lemma

Example 8.2.1 (ii). DeMoivre-Laplace central limit theorem: This
is a situation similar to what was observed in (i). Suppose {Xn, n ≥ 1}
are iid, with

P [Xn = 1] = p = 1− P [Xn = 0]

Set Sn =
∑n

i=1 Xi , which has a binomial distribution with parame-
ters n, p. Then the DeMoivre-Laplace central limit theorem states

Fn(x) = P

[
Sn − np
√
npq

≤ x

]
→ F (x) =

∫ x

−∞

1√
2π

e−u
2/2du

But if

A =

{
k − np
√
npq

: k ≥ 0, n ≥ 0
}

we have

Fn(A) = P

[
Sn − np
√
npq

∈ A

]
= 1 6= F (A) = P(Z ∈ A) = 0.

Weak convergence, because of its connection to continuous func-
tions, is more useful than the convergence notions (a) or (b). 17 / 65



8.2 Scheffé’s lemma

The convergence definition (b) is called total variation convergence
and has connections to density convergence through Scheffé’s lemma.

Lemma 8.2.1 (Scheffé’s lemma)
Suppose {F ,Fn, n ≥ 1} are probability distributions with densities
{f , fn, n ≥ 1} . Then

sup
B∈B(R)

|Fn(B)− F (B)| =
1
2

∫
|fn(x)− f (x)| dx

If fn(x)→ f (x) almost everywhere (that is, for all x except a set
of Lebesgue measure 0), then∫

|fn(x)− f (x)| dx → 0

and thus Fn → F in total variation (and hence weakly).
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8.2 Scheffé’s lemma

Proof of Scheffés lemma.

We have 1−1 =
∫

(fn(x)− f (x)) dx =
0.

0 =

∫
B

(fn(x)− f (x)) dx +

∫
Bc

(fn(x)− f (x)) dx

which implies∣∣∣∣∫
B

(fn(x)− f (x)) dx

∣∣∣∣ =

∣∣∣∣∫
Bc

(fn(x)− f (x)) dx

∣∣∣∣
This leads to |Fn(B)− F (B)| =

∣∣∫
B (fn(x)− f (x)) dx

∣∣
=

1
2

∣∣∣∣∫
B

(fn(x)− f (x)) dx

∣∣∣∣+
1
2

∣∣∣∣∫
Bc

(fn(x)− f (x)) dx

∣∣∣∣
≤ 1

2

∫
B
|fn(x)− f (x)| dx +

1
2

∫
Bc

|fn(x)− f (x)| dx

=
1
2

∫
|fn(x)− f (x)| dx ;

i.e., supB |Fn(B)− F (B)| ≤ 1
2

∫
|fn(x)− f (x)| dx , where the equal-

ity holds when B = [fn ≥ f ]
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8.2 Scheffé’s lemma

Proof of Scheffés lemma.

Now suppose fn(x) → f (x) almost
everywhere. So f − fn → 0 a.e., and therefore (f − fn)+ → 0 almost
everywhere. Also

(f − fn)+ ≤ f

and f is integrable on R with respect to Lebesgue measure. Since

0 =

∫
(f (x)− fn(x)) dx =

∫
(f (x)− fn(x))+ dx−

∫
(f (x)− fn(x))− dx

it follows that∫
|f (x)− fn(x)| dx =

∫
(f (x)− fn(x))+ dx +

∫
(f (x)− fn(x))− dx

= 2
∫

(f (x)− fn(x))+ dx .

By (f − fn)+ → 0 a.e. and dominated convergence implies∫
|f (x)− fn(x)| dx → 0
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8.2 Scheffé’s lemma

Note that if Fn
w→ F and Fn and F have densities fn, f , it does not

necessarily follow that fn(x)→ f (x).

Example.

Suppose Fn has density

fn(x) = 1− cos 2nπx , 0 ≤ x ≤ 1.

Then
Fn(x) = x − sin 2nπx

2nπ
, 0 ≤ x ≤ 1.

By boundedness of sin function, we immediately know that Fn con-
verges weakly to the Uniform distribution on [0, 1]. However, fn does
not converge.
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8.2.1 Scheffé’s lemma and Order Statistics

Proposition 8.2.1 Suppose {Un, n ≥ 1} are iid U(0, 1) random vari-
ables and suppose

U(1,n) ≤ U(2,n) ≤ · · · ≤ U(n,n)

are the order statistics. Assume k = k(n) is a function of n satisfying
k(n)→∞ and k/n→ 0. as n→∞. Let

ξn =
U(k,n) − k

n√
k
n

(
1− k

n

) 1
n

Then the density of ξn converges to a standard normal density and
hence by Scheffe’s lemma, as n→∞,

sup
B∈B(R)

∣∣∣∣P [ξn ∈ B]−
∫
B

1√
2π

e−u
2/2du

∣∣∣∣→ 0

A proof proceeds by playing with the density of U(k,n)

fn(x) =
n!

(k − 1)!(n − k)!
xk−1(1− x)n−k , 0 < x < 1.
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8.3 The Baby Skorohod Theorem

8.3 The Baby Skorohod Theorem Skorohod’s theorem is a conceptual
aid which makes certain weak convergence results easy to prove by
continuity arguments. The theorem is true in great generality. We
only consider the result for real valued random variables and hence
the name Baby Skorohod Theorem.
We begin with a brief discussion of the relationship of almost sure
convergence and weak convergence.

Proposition 8.3.1
Suppose {X ,Xn, n ≥ 1} are random variables.

If Xn
a.s.→ X , then Xn ⇒ X

Proof.

Suppose Xn
a.s.→ X and let F be the distribution function of

X . Set
N = [Xn → X ]c

so that P(N) = 0.
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8.3 The Baby Skorohod Theorem

For any h > 0 and x ∈ C(F ), we have the following set containments:

Nc ∩ [X ≤ x − h] ⊂ lim inf
n→∞

[Xn ≤ x ] ∩ Nc ⊂ lim sup
n→∞

[Xn ≤ x ] ∩ Nc

⊂ [X ≤ x ] ∩ Nc ,

and hence, taking probabilities

F (x − h) ≤ P
(

lim inf
n→∞

[Xn ≤ x ]
)
≤ lim inf

n→∞
P [Xn ≤ x ]

≤ lim sup
n→∞

P [Xn ≤ x ] ≤ P

(
lim sup
n→∞

[Xn ≤ x ]

)
≤ F (x)

Since x ∈ C(F ), let h ↓ 0 to get

F (x) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x)

The converse if false: Recall Example 8.1.1 .
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8.3 The Baby Skorohod Theorem

Despite the fact that convergence in distribution does not imply a.s.
convergence, Skorohod’s theorem provides a partial converse.

Theorem 8.3.2 (Baby Skorohod Theorem)
Suppose {Xn, n ≥ 0} are random variables defined on the
probability space (Ω,B,P) such that

Xn ⇒ X0

Then there exist random variables
{
X#
n , n ≥ 0

}
defined on the

Lebesgue probability space ([0, 1],B([0, 1]), λ = Lebesgue measure
) such that for each fixed n ≥ 0

Xn
d
= X#

n and X#
n

a.s.→ X#
0

where a.s. means almost surely with respect to λ.
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8.3 The Baby Skorohod Theorem

The proof of Skorohod’s theorem requires the following result.

Lemma 8.3.1
Suppose Fn is the distribution function of Xn so that Fn ⇒ F0.

If t ∈ (0, 1) ∩ C (F←0 ) , then F←n (t)→ F←0 (t).

Proof.

Since C (F0)c is at most countable, given ε > 0, there exists
x ∈ C (F0) such that

F←0 (t)− ε < x < F←0 (t)

From the definition of the inverse function, x < F←0 (t) implies that
F0(x) < t. Also, x ∈ C (F0) implies Fn(x) → F0(x). So for large n,
we have Fn(x) < t. Consequently, x ≤ F←n (t). Thus

F←0 (t)− ε < x ≤ F←n (t)

for all large n and since ε > 0 is arbitrary, we conclude

F←0 (t) ≤ lim inf
n→∞

F←n (t).
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8.3 The Baby Skorohod Theorem

Note that we have not yet used the assumption that t is a continuity
point of F←0 . Whenever t ′ > t, we may find y ∈ C (F0) such that

F←0
(
t ′
)
< y < F←0

(
t ′
)

+ ε

This gives F0(y) ≥ t ′ > t.

Since y ∈ C (F0) ,Fn(y)→ F0(y) and for large n,Fn(y) ≥ t, there-
fore y ≥ F←n (t), and thus F←0 (t ′) + ε > y ≥ F←n (t) for all large n.
Moreover, since ε > 0 is arbitrary,

lim sup
n→∞

F←n (t) ≤ F←0
(
t ′
)

Let t ′ ↓ t and use continuity of F←0 at t to conclude that

lim sup
n→∞

F←n (t) ≤ F←0 (t).

This lemma only guarantees convergence of F←n to F←0 at continuity
points of the limit. However, convergence could take place on more
points. For instance, if Fn = F0 for all n,F←n = F←0 and convergence
would be everywhere. 27 / 65



8.3 The Baby Skorohod Theorem

Proof of the Baby Skorohod Theorem.

On the sample space
[0, 1] , define the random variable U(t) = t so that U is uniformly
distributed, since for 0 ≤ x ≤ 1

λ[U ≤ x ] = λ{t ∈ [0, 1] : U(t) ≤ x} = λ[0, x ] = x

For n ≥ 0 define X#
n on [0,1] by

X#
n = F←n (U)

Then for y ∈ R, λ
[
X#
n ≤ y

]
=

λ {t ∈ [0, 1] : F←n (t) ≤ y} = λ {t ∈ [0, 1] : t ≤ Fn(y)} = Fn(y).

So we conclude that X#
n

d
= Xn, for each n ≥ 0. Next, we write

λ{t ∈ [0, 1] : X#
n (t)→ X#

0 (t)
}

= λ {t ∈ [0, 1] : F←n (t)↔ F←0 (t)} ,

and using Lemma 8.3.1 , this is bounded by
λ {t ∈ [0, 1] : F←0 is not continuous at } = λ{a countable set} = 0.
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8.3 The Baby Skorohod Theorem

The next corollary looks tame when restricted to R, but its multidi-
mensional generalizations have profound consequences. For a map
h : R 7→ R, define

Disc(h) = {x : h is not continuous at x} = (C(h))c

Corollary 8.3.1 (Continuous Mapping Theorem)
Let {Xn, n ≥ 0} be a sequence of random variables such that

Xn ⇒ X0

For n ≥ 0, assume Fn is the distribution function of Xn. Let
h : R 7→ R satisfy P [X0 ∈ Disc(h)] = 0. Then

h (Xn)⇒ h (X0)

and if h is bounded, dominated convergence implies

Eh (Xn) =

∫
h(x)Fn(dx)→ Eh(x) =

∫
h(x)F0(dx).
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8.3 The Baby Skorohod Theorem

Proof.

The proof of the corollary uses the Baby Skorohod Theorem
which identifies new random variables X#

n
d
= Xn, n ≥ 0, with X#

n

defined on [0,1] . Also X#
n (t)→ X#

0 (t) for almost all t. If X#
0 (t) ∈

C(h), then h
(
X#
n (t)

)
→ h

(
X#

0 (t)
)
. Thus,

λ{t ∈ [0, 1] : h
(
X#
n (t)

)
→ h

(
X#

0 (t)
)}

≥ λ
{
t ∈ [0, 1] : X#

0 (t) ∈ (Disc(h))c
}

= P ([X0 ∈ Disc(h)]c) = 1

So h
(
X#
n

)
→ h

(
X#

0

)
almost surely with respect to λ, and since

almost sure convergence implies convergence in distribution, we have

h (Xn)
d
= h

(
X#
n

)
⇒ h

(
X#

0

)
d
= h (X0)

so that h (Xn)⇒ h (X0).
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8.3.1 The Delta Method

The delta method allows us to take a basic convergence, for instance
to a limiting normal distribution, and apply smooth functions and
conclude that the functions are asymptotically normal as well.

In statistical estimation we try to estimate a parameter θ from a
parameter set Θ based on a random sample of size n with a statistic

Tn = Tn (X1, . . . ,Xn)

This means we have a family of probability models

{(Ω,B,Pθ) , θ ∈ Θ}
and we are trying to choose the correct model. The estimator Tn is
consistent if

Tn
Pθ→ θ

for every θ. The estimator Tn is CAN, if for all θ ∈ Θ

lim
n→∞

Pθ [σn (Tn − θ) ≤ x ] = N(0, 1, x)

for some σn →∞ 31 / 65
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to a limiting normal distribution, and apply smooth functions and
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8.3.1 The Delta Method

Suppose we have a CAN estimator of θ, but we need to estimate
a smooth function g(θ). For example, in a family of exponential
densities, θ may represent the mean but we are interested in the
variance θ2. We see from the delta method that g (Tn) is also CAN
for g(θ).

We illustrate the method using the central limit theorem (CLT) to
be proved in the next chapter. Let {Xj , j ≥ 1} be iid with E (Xn) =
µ and Var (Xn) = σ2. From the CLT we get in terms of X̄ =∑n

i=1 Xi/n that
√
n

(
X̄ − µ
σ

)
⇒ N(0, 1)

So X̄ is CAN for µ. The delta method asserts that if g(x) has a
non-zero derivative g ′(µ),

√
n

(
g(X̄ )− g(µ)

σg ′(µ)

)
⇒ N(0, 1) (∗)

So g(X̄ ) is CAN for g(µ). 33 / 65



8.3.1 The Delta Method

Proof of (∗).

By the Baby Skorohod Theorem there exist random
variables Z#

n and N# on the probability space ((0, 1),B((0, 1)), λ)
such that

Z#
n

d
=
√
n

(
X̄ − µ
σ

)
, N# d

= N and Z#
n → N# a.s. (λ)

Define
X̄# = µ+ σZ#

n /
√
n

d
= X̄ .

Then using the definition of derivative, since σZ#
n /
√
n

a.s.→ 0,

√
n

(
g(X̄ )− g(µ)

σg ′(µ)

)
d
=
√
n

g
(
µ+ σZ#

n /
√
n
)
− g(µ)

σg ′(µ)


=

g
(
µ+ σZ#

n /
√
n
)
− g(µ)

σZ#
n /
√
n

· σZ
#
n

σg ′(µ)

a.s.(λ)−→ g ′(µ) · σN
#

σg ′(µ)
= N# d

= N

.
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8.3.1 The Delta Method

Remark. Suppose {Xn, n ≥ 0} is a sequence of random variables
such that

Xn ⇒ X0

Suppose further that
h : R 7→ S

where S is some nice metric space, for example, S = R2. Then if

P [X0 ∈ Disc(h)] = 0

Skorohod’s theorem suggests that it should be the case that

h (Xn)⇒ h(X )

in S. But what does weak convergence in S mean?
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8.4 Weak Convergence Equivalences; Portmanteau Theorem

In this section we discuss several conditions which are equivalent to
weak convergence of probability distributions. Some of these are of
theoretical use and some allow easy generalization of the notion of
weak convergence to higher dimensions and even to function spaces.
The definition of weak convergence of distribution functions on R
is notable for not allowing easy generalization to more sophisticated
spaces. The modern theory of weak convergence of stochastic pro-
cesses rests on the equivalences to be discussed next. We nead the
following definition. For B ∈ B(R), let

∂(B) = the boundary of B
= B̄\B◦ = the closure of B minus the interior of B
= {x : ∃yn ∈ B, yn → x and ∃zn ∈ Bc , zn → x}
= points reachable from both outside and inside B.

36 / 65



8.4 Weak Convergence Equivalences; Portmanteau Theorem

Theorem 8.4.1 (Portmanteau Theorem) Alexandrov
Let {Fn, n ≥ 0} be a family of proper distributions with random
vectors Xn ∼ Fn and X ∼ F0. The following are equivalent.
(i) Fn ⇒ F0.
(ii) For all f : R 7→ R which are bounded and continuous,∫

fdFn →
∫

fdF0 or Ef (Xn)→ Ef (X0) .

(iii) Ef (Xn)→ Ef (X0) for all bounded, Lipschitz functions f .
(iv) lim infn→∞ P(Xn ∈ G ) ≥ P(X ∈ G ) for every open set G .
(v) lim supn→∞ P(Xn ∈ F ) ≤ P(X ∈ F ) for every closed set F .
(vi) P(Xn ∈ B)→ P(X ∈ B) for all B ∈ B(R) satisfies

P(X ∈ ∂(B)) = 0.
(vii) Ef (Xn)→ Ef (X0) for all bounded, uniformly continuous

functions f .
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8.4 Weak Convergence Equivalences; Portmanteau Theorem

Proof.

It is trivial to see that (iv)⇔(v), because a set is open iff its
complement is closed; and (ii) or (vii)⇒(iii), because every Lipschitz
function is continuous. Then we show (iv)+(v)⇒(vi). Let B◦ and B̄
denote the interior and the closure of a set B ∈ B(R), respectively.

P(X ∈ B◦) ≤ lim inf
n→∞

P(Xn ∈ B◦) ≤ lim sup
n→∞

P(Xn ∈ B̄) ≤ P(X ∈ B̄).

If P(X ∈ ∂(B)) = 0, then P(X ∈ B◦) = P(X ∈ B̄). Thus
P(Xn ∈ B) → P(X ∈ B). (i) is a direct result of (vi), because for
any B = (−∞, x ] where x is a continuity point of F (x) = P(X ≤ x),
we have P(X ∈ ∂(B)) = P(X = x) = 0. Thus Fn(x) = P(Xn ∈
B)→ P(X ∈ B) = F (x).
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8.4 Weak Convergence Equivalences; Portmanteau Theorem

Next we show (iii)⇒(iv). For every open set G , we define fm(x) =
min(1,m inf{‖x − y‖ : y ∈ G c}) which is

fm(x) =


0 x ∈ G c

m inf{‖x − y‖ : y ∈ G c} inf{‖x − y‖ : y ∈ G c} < m−1

1 inf{‖x − y‖ : y ∈ G c} ≥ m−1

Thus fm(x) ↑ IG (x) as m → and fm(x) is Lipschitz; i.e., |fm(x) −
fm(y)| ≤ m‖x − y‖. Consequently, lim infn→∞ P(Xn ∈ G ) =
lim infn→∞ E (IG (Xn)) ≥ lim infn→∞ E (fm(Xn)) = Efm(X ) for ev-
ery m. As m → ∞, we have Efm(X ) → E (IG (X )) = P(X ∈ G ) by
monotone convergence theorem.
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8.4 Weak Convergence Equivalences; Portmanteau Theorem

We have (ii) or (vii)⇒(iii)⇒(iv)⇔(v)⇒(vi)⇒(i). Lastly: (i)⇒(ii)&(vii).
We see that (i) implies that P (Xn ∈ I ) → P(X ∈ I ) for every
rectangle I . Choose a sufficiently large, compact rectangle I with
P(X /∈ I ) < ε. A continuous function f is uniformly continuous on
the compact set I . Thus there exists a partition I = ∪j Ij into finitely
many rectangles Ij such that f varies at most ε on every Ij . Take a
point xj from each Ij and define fε =

∑
j f (xj) 1Ij . Then |f − fε| < ε

on I , whence if f takes its values in [−1, 1] (WLOG |f | ≤ 1),

|Ef (Xn)− Efε (Xn)| ≤ ε+ P (Xn /∈ I )

|Ef (X )− Efε(X )| ≤ ε+ P(X /∈ I ) < 2ε

For sufficiently large n, the right side of the first equation is smaller
than 2ε as well. We combine this with

|Efε (Xn)− Efε(X )| ≤
∑
j

|P (Xn ∈ Ij)− P (X ∈ Ij)| |f (xj)| → 0

Together with the triangle inequality the three displays show that
|Ef (Xn)− Ef (X )| is bounded by 5ε eventually. This implies (ii).
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8.4 Weak Convergence Equivalences; Portmanteau Theorem

Example 8.4.1 The discrete uniform distribution is close to the
continuous uniform distribution.
Suppose Fn has atoms at i/n, 1 ≤ i ≤ n of size 1/n. Let F0 be the
uniform distribution on [0, 1]. Then Fn ⇒ F0.
Proof.

Let f be real valued, bounded and continuous with domain
[0, 1]. Then ∫

fdFn =
n∑

i=1

f (i/n)
1
n

= Riemann approximating sum

→
∫ 1

0
f (x)dx (n→∞)

=

∫
fdF0.
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8.5 More Relations Among Models of Convergence

Proposition 8.5.1
Let {X ,Xn, n ≥ 1} be random variables on the same probability
space (Ω,B,P)

(i) If Xn
a.s.→ X then Xn

P→ X .
(ii) If Xn

P→ X then Xn ⇒ X .
All the converses are false.
Proof.

The statement (i) is just Theorem 6.2.1 of Chapter 6. To
verify (ii), suppose Xn

P→ X and f is a bounded and continuous
function. Then

f (Xn)
P→ f (X )

By Corollary 6.3.1 of Chapter 6. Dominated convergence implies

E (f (Xn))→ E (f (X ))

(see Corollary 6.3.2 of Chapter 6 ) so by the portmanteau theorem,

Xn ⇒ X .
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8.5 More Relations Among Models of Convergence

There is one special case where convergence in probability and con-
vergence in distribution are the same.

Proposition 8.5.2
Suppose {Xn, n ≥ 1} are random variables. If c is a constant, then

Xn
P→ c ⇔ Xn ⇒ c .

Proof.

⇒ is always true, so we focus on ⇐. If Xn ⇒ c , then

P [Xn ≤ x ]→
{

0, if x < c
1, if x > c

and Xn
P→ c means P [|Xn − c | > ε]→ 0 which happens iff

P [Xn < c − ε]→ 0 and P [Xn < c + ε]→ 1.
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8.6 New Convergences from Old

Theorem 8.6.1 (Slutsky’s Theorem)
Suppose {X ,Xn,Yn, ξn, n ≥ 1} are random variables.
(a) If Xn ⇒ X , and Xn − Yn

P→ 0 then Yn ⇒ X .

(b) Equivalently, if Xn ⇒ X , and ξn
P→ 0, then Xn + ξn ⇒ X .

Proof.

It suffices to prove (b). Let f be real valued, bounded and
uniformly continuous. Define the modulus of continuity

ωδ(f ) = sup
|x−y |≤δ

|f (x)− f (y)|

Because f is uniformly continuous, ωδ(f ) → 0, as δ → 0. From
Corollary 8.4.1, if suffices to show Ef (Xn + ξn)→ Ef (X ):

|Ef (Xn + ξn)− Ef (X )|
≤ |Ef (Xn + ξn)− Ef (Xn)|+ |Ef (Xn)− Ef (X )|
= E |f (Xn + ξn)− f (Xn)| 1[|ξn|≤δ] + 2 sup

x
|f (x)|P [|ξn| > δ] + o(1)

≤ o(1) + ωδ(f ) + ( const )P [|ξn| > δ]→ 0 as n→∞, δ → 0.

44 / 65



8.6 New Convergences from Old

Theorem 8.6.2 (Second Converging Together Theorem)
Let us suppose that {Xun,Xu,Yn,X ; n ≥ 1, u ≥ 1} are random
variables such that for each n Yn,Xun, u ≥ 1 are defined on a
common domain. Assume for each u, as n→∞

Xun ⇒ Xu

and as u →∞
Xu ⇒ X

Suppose further that for all ε > 0,

lim
u→∞

lim sup
n→∞

P [|Xun − Yn| > ε] = 0.

Then we have
Yn ⇒ X

as n→∞.
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8.6 New Convergences from Old

Proof.

We show, for any bounded, uniformly continuous function f ,
limn→∞ Ef (Yn) = Ef (X ). Without loss of generality, suppose that
supx∈R |f (x)| ≤ 1. Observing |Ef (Yn)− Ef (X )| ≤

E |f (Yn)− f (Xun)|+ E |f (Xun)− f (Xu)|+ E |f (Xu)− f (X )| ,

lim sup
n→∞

|Ef (Yn)− Ef (X )| ≤ lim
u→∞

lim sup
n→∞

E |f (Yn)− f (Xun)|+ 0 + 0

≤ lim
u→∞

lim sup
n→∞

E |f (Yn)− f (Xun)|I[|Yn−Xun|≤ε]

+ lim
u→∞

lim sup
n→∞

E |f (Yn)− f (Xun)|I[|Yn−Xun|>ε]

≤ sup{|f (x)− f (y)| : |x − y | ≤ ε}
+ lim

u→∞
lim sup
n→∞

P[|Yn − Xun| > ε]→ 0 as ε→ 0.
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8.7 The Convergence to Types Theorem

Many convergence in distribution results in probability and statistics
are of the following form: Given a sequence of random variables
{ξn, n ≥ 1} and an > 0 and bn ∈ R, we prove that

ξn − bn
an

⇒ Y

where Y is a non-degenerate random variable; that is, Y is not a
constant a.s. This allows us to write

P

[
ξn − bn

an
≤ x

]
≈ P[Y ≤ x ] =: G (x)

or by setting y = anx + bn

P [ξn ≤ y ] ≈ G

(
y − bn
an

)
This allows us to approximate the distribution of ξn with a location-
scale family.
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8.7 The Convergence to Types Theorem

Example. suppose {Xn, n ≥ 1} are iid with E (Xn) = µ and Var (Xn) =
σ2. The Central Limit Theorem: for x ∈ R

P

[
Sn − nµ

σ
√
n
≤ x

]
→ P[Y ≤ x ] =

∫ x

−∞

e−u
2/2

√
2πσ

du

so that

P [Sn ≤ y ] ≈ N

(
y − nµ

σ
√
n

)
Definition. Two distribution functions U(x) and V (x) are of the
same type if there exist constants A > 0 and B ∈ R such that

V (x) = U(Ax + B)

In terms of random variables, if X has distribution U and Y has
distribution V , then

Y
d
=

X − B

A
For example, if X0,1 has N(0, 1, x) as its distribution and Xµ,σ has

N
(
µ, σ2) as its distribution, then Xµ,σ

d
= σX0,1 + µ. 48 / 65



8.7 The Convergence to Types Theorem

Theorem 8.7.1 (Convergence to Types Theorem)
We suppose U(x) and V(x) are two proper distributions, neither of
which is concentrated at a point. Suppose Xn ∼ Fn and the U ∼ U
, V ∼ V. We have constants an > 0, αn > 0, bn ∈ R, βn ∈ R
(a) If Fn (anx + bn)

w→ U(x), Fn (αnx + βn)
w→ V(x) or

equivalently
Xn − bn

an
⇒ U,

Xn − βn
αn

⇒ V (∗1)

then there exist constants A > 0, and B ∈ R such that as n→∞,
αn

an
→ A > 0,

βn − bn
an

→ B (∗2)

and V(x) = U(Ax + B), V
d
= (U − B)/A (∗3) .

(b) Conversely, if (∗2) holds, then either of the relations in (∗1)
implies the other and (∗3) holds.
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8.7 The Convergence to Types Theorem

Proof.

(b) Suppose

Gn(x) := Fn (anx + bn)
w→ U(x).

Then

Fn (αnx + βn) = Gn

(
αn

an
x +

(
βn − bn

an

))
.

Pick x such that x ∈ C(U(A · +B)). Suppose x > 0. A similar
argument works if x ≤ 0. Given ε > 0 for large n we have

(A− ε)x + B − ε ≤ αn

an
x +

(
βn − bn

an

)
≤ (A + ε)x + (B + ε)

so lim sup
n→∞

Fn (αnx + βn) ≤ lim sup
n→∞

Gn((A + ε)x + (B + ε))

Therefore, for any z ∈ C(U(·)) with z > (A + ε)x + (B + ε), we
have lim supn→∞ Fn (αnx + βn) ≤ lim supn→∞ Gn(z) = U(z). Thus

lim sup
n→∞

Fn (αnx + βn) ≤ inf
z>(A+ε)x+(B+ε),z∈C(U(·))

U(z).
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8.7 The Convergence to Types Theorem

Since ε > 0 is arbitrary,

lim sup
n→∞

Fn (αnx + βn) ≤ inf
z>Ax+B

U(z) = U(Ax + B)

by right continuity of U(·). Likewise,

lim inf
n→∞

Fn (αnx + βn) ≥ lim inf
n→∞

Gn((A− ε)x + B − ε)

≥ lim inf
n→∞

Gn(z) = U(z)

for any z < (A− ε)x +B − ε and z ∈ C(U(·)). Since this is true for
all ε > 0

lim inf
n→∞

Fn (αnx + βn) ≥ sup
z<Ax+B
z∈C(U(·))

U(z) = U(Ax + B)

since Ax + B ∈ C(U(·)).
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8.7 The Convergence to Types Theorem

We now focus on the proof of part (a). Suppose

Fn (anx + bn)→ U(x), Fn (αnx + βn)→ V(x).

Recall from Lemma 8.3 .1 that if Gn
w→ G , then also G←n → G←.

Thus we have
F←n (y)−bn

an
→ U←(y), y ∈ C (U←)

F←n (y)−βn
αn

→ V←(y), y ∈ C (V←)

Since U(x) and V (x) do not concentrate at one point, we can find
y1 < y2 with yi ∈ C (U←) ∩ C (V←) , for i = 1, 2, such that

−∞ < U← (y1) < U← (y2) <∞
and

−∞ < V← (y1) < V← (y2) <∞
Therefore, for i = 1, 2 we have

F←n (yi )− bn
an

→ U← (yi ) ,
F←n (yi )− βn

αn
→ V← (yi )
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8.7 The Convergence to Types Theorem

In (8.23) subtract the expressions with i = 1 from the ones with
i = 2 to get

F←n (y2)−F←n (y1)
an

→ U← (y2)− U← (y1)
F←n (y2)−F←n (y1)

αn
→ V← (y2)− V← (y1)

Now divide the second convergence in the previous line into the first
convergence. The result is

αn

an
→ U← (y2)− U← (y1)

V← (y2)− V← (y1)
=: A > 0

Also from (8.23)
F←n (y1)−bn

an
→ U← (y1)

F←n (y1)−βn
an

= F←n (y1)−βn
αn

· αn
an
→ V← (y1)A,

so subtracting yields
βn − bn

an
→ V← (y1)A− U← (y1) =: B

as desired. So (8.21) holds. By part (b) we get (8.22).
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8.7.1 Application of Convergence to Types: Limit
Distributions for Extremes

A beautiful example of the use of the convergence to types theo-
rem is the derivation of the extreme value distributions. These are
the possible limit distributions of centered and scaled maxima of iid
random variables.

Suppose {Xn, n ≥ 1} is an iid sequence of random variables with
common distribution F . The extreme observation among the first n
is

Mn :=
n∨

i=1

Xi
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8.7.1 Application of Convergence to Types: Limit
Distributions for Extremes

Theorem 8.7.2
Suppose there exist normalizing constants an > 0 and bn ∈ R such
that

F n (anx + bn) = P

[
Mn − bn

an
≤ x

]
w→ G (x)

where the limit distribution G is proper and non-degenerate. Then
G is the type of one of the following extreme value distributions:
(i) Φα(x) = exp {−x−α} , x > 0, α > 0
(ii)

Ψα(x) =

{
exp {−(x)α} , x < 0, α > 0
1 x > 0

(iii) Λ(x) = exp {−e−x} , x ∈ R
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8.7.1 Application of Convergence to Types: Limit
Distributions for Extremes

The statistical significance is the following. The types of the three
extreme value distributions can be united as a one parameter family
indexed by a shape parameter γ ∈ R :

Gγ(x) = exp
{
−(1 + γx)−1/γ

}
, 1 + γx > 0

where we interpret the case of γ = 0 as

G0 = exp
{
−e−x

}
, x ∈ R

Often in practical contexts the distribution F is unknown and we
must estimate the distribution of Mn or a quantile of Mn. For in-
stance, we may wish to design a dam so that in 10,000 years, the
probability that water level will exceed the dam height is 0.001 . If
we assume F is unknown but satisfies (8.24) with some Gγ as limit,
then we may write

P [Mn ≤ x ] ≈ Gγ
(
a−1
n (x − bn)

)
and now we have a three parameter estimation problem since we
must estimate γ, an, bn
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8.7.1 Application of Convergence to Types: Limit
Distributions for Extremes

Proof.

We proceed in a sequence of steps. Step (i). We claim that
there exist two functions α(t) > 0 and β(t), t > 0 such that for all
t > 0

an
a[nt]

→ α(t),
bn − b[nt]

a[nt]
→ β(t)

and also
G t(x) = G (α(t)x + β(t))

To see this, note that from (8.24), for every t > 0, we have on the
one hand

F [nt]
(
a[nt]x + b[nt]

) w→ G (x)

and on the other

F [nt] (anx + bn) = (F n (anx + bn))[nt]/n → G t(x)

Thus G t and G are of the same type and the convergence to types
theorem is applicable. Applying it to (8.25) and (8.26) yields the
claim.
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