$$
\begin{aligned}
& {\underset{\sim}{x}}_{n}=\left(\begin{array}{c}
x_{1 n} \\
\vdots \\
x_{p n}
\end{array}\right) \quad \underset{\sim}{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{10}
\end{array}\right) \\
& \quad " x_{j n} \xrightarrow{d} x_{j} \text { for } j=1, \cdots, p \stackrel{\prime \prime}{\prime \prime} \Rightarrow "{\underset{\sim}{x}}_{n} \xrightarrow[\sim]{d}{\underset{\sim}{x}}^{\prime \prime} ? \text { (N10) }
\end{aligned}
$$

Commeresoample
$p=2$. if $\quad{\underset{\sim}{x}}_{n}=\binom{z}{-z} \quad z \sim N(0,1)$
$x=$ standard birariate Normal

$$
\underset{\sim}{x} \sim N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=\binom{x_{1}}{x_{2}}
$$

then $X_{\text {in }} \xrightarrow{d} x_{1}, X_{2 n} \xrightarrow{d} x_{2}$
but $\quad\binom{x_{1 n}}{x_{2 n}} \stackrel{d}{ヤ}\binom{x_{1}}{x_{2}} \quad$ (why?)

$$
x_{1 n}+x_{2 n}=z+(-z)=0 \stackrel{d}{\longrightarrow} x_{1}+x_{2}
$$

$\left\{\right.$ If $\quad x_{j n}^{\prime} ', j=1, \cdots, p$ are mutually independent.
and if $\quad x_{j n} \xrightarrow{d} N\left(\mu_{j}, \sigma_{j}^{2}\right)$
Then ${\underset{\sim}{x}}_{n}=\left(\begin{array}{c}x_{i n} \\ \vdots \\ x_{p n}\end{array}\right) \xrightarrow{d} N\left(\left(\begin{array}{c}\mu_{1} \\ \vdots \\ \dot{\mu}_{p}\end{array}\right) .\left(\begin{array}{ccc}\sigma_{1}{ }^{2} & 0 \\ 0 & 0 \\ 0 & \ddots & \sigma_{p}^{2}\end{array}\right)\right)$

Cramer-Wald device.

$$
\begin{aligned}
&{\underset{\sim}{x}}_{n} \xrightarrow{d} \underset{\sim}{x} \in R^{p} \quad \Leftrightarrow \quad \forall t \in R^{p} \\
& \quad t^{\top}{\underset{\sim}{x}}_{n}^{d} \xrightarrow{t^{\top}} \underset{\sim}{x}
\end{aligned}
$$

Example: $\quad{\underset{\sim}{x}}_{i}, i=1, \cdots, n_{1}$.id $N(\underset{\sim}{\mu}, \underset{\sim}{\xi})$ where $\mu=\left(\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{p}\end{array}\right)$.

$$
E\left(x_{i}\right)=\mu, \operatorname{Cov}\left(x_{i}\right)=\Sigma=\left(\begin{array}{ccc}
\sigma_{1}^{2} & \sigma_{12}, \ldots, & \sigma_{1 p} \\
\sigma_{22}! & \cdots & \ddots \\
\sigma_{p 1}^{2} & \cdots \cdots & \sigma_{p}^{2}
\end{array}\right)
$$

Then $\quad \forall t \in R^{p} \quad E\left(t^{\top} x_{i}\right)=t_{\sim}^{\top} \mu, \quad \operatorname{Var}\left(t^{\top} x_{i}\right)=t^{\top} \Sigma t$

by CLT. $\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} t_{n}^{\top} x_{i}-\underset{\sim}{t^{\top}} \underset{\sim}{\mu}\right) \xrightarrow{d} N\left(\underset{\sim}{0},{\underset{\sim}{t}}^{\top} \Sigma \underset{\sim}{t}\right)$
$\Rightarrow \quad{\underset{\sim}{t}}^{\top} \sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n}{\underset{\sim}{x}}_{i}-\underset{\sim}{\mu}\right) \xrightarrow{d}{\underset{\sim}{t}}^{\top} \underset{\sim}{x}$ when e $\underset{\sim}{ } \sim N(\underset{\sim}{0} . \Sigma)$
by $C-W$ Device

$$
\sqrt{n}\left(\frac{1}{a} \sum_{i=1}^{n} X_{i}-\underset{\sim}{\mu}\right) \xrightarrow{d} N(0, \Sigma)
$$

Delta Cashed.

$$
\sqrt{n}\left({\underset{x}{x}}^{n}-\mu\right) \xrightarrow{d} \underset{\sim}{x} \text { where }{\underset{\sim}{x}}_{n}, \underset{\sim}{x} \in R^{p}
$$

Let $\quad \underset{\sim}{g}: \quad R^{p} \rightarrow R^{k}=\left(\begin{array}{c}g_{1} \\ \vdots \\ g_{k}\end{array}\right)$
Suppose $\frac{\partial g^{2}}{\partial \underline{x}}=\left(\begin{array}{cccc}\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{1}}, & \cdots & \frac{\partial g_{1}}{\partial x_{p}} \\ \frac{\partial g_{k}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial g_{k}}{\partial x_{p}}\end{array}\right)_{k \times p}$

$$
\begin{aligned}
& g\left(x_{1}, x_{2}, x_{3}\right)=\frac{\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3} \\
g_{2}
\end{array}\right)}{g_{2}}: R^{3} \rightarrow n^{2} \\
& g_{1}=g_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2} \\
& g_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}+x_{3}
\end{aligned}
$$

is continuous at a nerghb borneol of $\underset{\sim}{\mu}$
Then $\sqrt{n}\left(\underset{\sim}{g}\left(\underset{\sim}{x} x_{n}\right)-\underset{\sim}{g}(\underset{\sim}{\mu})\right) \xrightarrow{d}\left[\left.\frac{\partial \underset{\sim}{x}}{\partial x}\right|_{x=\mu}\right] \times \underset{\sim}{x}$

- Asymptotic Pistribatiar of Sample Quartiles

Let x_{1}, \cdots, x_{n} ind F where F is continous so that all obsenatisus are distinct with probability 1 .

Order Statistic.

$$
\begin{aligned}
& X_{(1)}<\cdots<X_{(n)} \\
& X_{(l: n)}<\cdots<X_{(n: n)}
\end{aligned}
$$

Population Quantile: for $0<p<1$. the p-th quartile
is defined as $\quad x_{p}=F^{-1}(p)$

Sample Quartile: $\quad X_{(k: n)}$ here $k=\lceil n p\rceil$ ceiling of $n p$

Goal: $\quad \sqrt{n}\left(X_{\text {(k) }}-X_{p}\right) \xrightarrow{d}$?

$$
k \neq n
$$

or for $0<P_{1}<P_{2}<1$

$$
k \neq 1
$$

$$
\begin{aligned}
& X \sim F \quad \text { then } U=F(X) \sim U(0,1) \\
& X_{(1: n)}<\cdots<X_{(n: n)} \\
& \frac{F\left(X_{(1: n)}\right)}{\|}<\cdots<\frac{F\left(X_{(n: n)}\right)}{I I} \\
& U_{(1: n)} U_{(n: n)}
\end{aligned}
$$

Then $U_{(1: n)}<\ldots<U_{(n: n)}$ ate the order statircics
from $U_{1}, \cdots, U_{n} \stackrel{i i d}{\sim} \cup[0,1)$.

Lemma 1. (Question 4 in $H(\omega 3)$ Let $Y_{1} \cdots Y_{n+1}$ ind $\operatorname{Exp}(1)$

$$
\begin{aligned}
S_{1} & =Y_{1} \\
S_{2} & =Y_{1}+Y_{2} \\
& \vdots \\
S_{n} & =Y_{1}+Y_{2}+\cdots+Y_{n} \\
S_{n+1} & =Y_{1}+Y_{2}+\cdots+Y_{n}+Y_{n+1} \quad\left(S_{1}<S_{2}<\cdots<S_{n}<S_{n+1}\right)
\end{aligned}
$$

given $S_{n+1}, \quad\left(\frac{S_{1}}{S_{n+1}}, \frac{S_{2}}{S_{n+1}}, \cdots, \frac{S_{n}}{S_{n+1}}\right)$ has the same joint diseribution

$$
\begin{aligned}
& \left\lceil n p_{1}\right\rceil=\hat{k}_{1} \quad \hat{k_{2}}=\left\lceil n p_{2}\right\rceil \\
& \sqrt{n}\binom{X_{(k, i n}-X_{p_{1}}}{X_{(k, n)}-X_{p_{2}}} \xrightarrow{d} \text { ? }
\end{aligned}
$$

as $\quad\left(U_{(1, n)}, \cdots, U_{(n: n)}\right)$
by CLT: $\sqrt{k}\left(\frac{S_{k}}{k}-1\right) \xrightarrow{d} N(0,1)$ as $k \rightarrow+\infty$ If $n \rightarrow+\infty, \frac{k_{1}}{n} \rightarrow p_{1}$ then

$$
\begin{aligned}
& \left.\sqrt{n+1}\left(\frac{S_{k_{1}}}{n+1}-\frac{k_{1}}{n+1}\right)\right) \leftarrow Y_{1}, \cdots, Y_{k_{1}} \\
& =\underbrace{\sqrt{\frac{k_{1}}{n+1}}}_{\text {有, } k_{2}} \times \underbrace{\sqrt{k_{1}}\left(\frac{1}{k_{1}} S_{k_{1}}-1\right)} \stackrel{d}{ } \sqrt{P_{1}} N(0,1)=N\left(0, P_{1}\right)
\end{aligned}
$$

Similarly. if $n \rightarrow+\infty, \frac{k_{1}}{n} \rightarrow P_{1}$ and $\frac{k_{2}}{n} \rightarrow P_{2}$, then

$$
\begin{aligned}
& \sqrt{n+1}[\frac{1}{n+1}(\underbrace{S_{k_{2}}-S_{k_{1}}})-\left(\frac{k_{2}-k_{1}}{n+1}\right] \stackrel{k_{2}-k_{1} \rightarrow+\infty}{\rightleftarrows}
\end{aligned}
$$

and similarly $K Y_{k_{2}+1}, \cdots, Y_{n+1}$

$$
\sqrt{n+1}\left[\frac{1}{n+1}\left(S_{n+1}-S_{k_{2}}\right)-\frac{n+1-k_{2}}{n+1}\right] \xrightarrow{d} N\left(0,1-P_{2}\right)
$$

$$
\sqrt{n+1}\left(\begin{array}{l}
\frac{S_{k_{1}}}{n+1}-P_{1} \\
\frac{S_{k_{2}}-S_{k_{1}}}{n+1}-\left(P_{2}-P_{1}\right) \\
\frac{S_{n+1}-S_{k_{2}}}{n+1}-\left(1-P_{2}\right)
\end{array}\right) \stackrel{\xrightarrow{d} N\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{lll}
P_{1} & & \\
& P_{2}-P_{1} \\
& & 1-P_{2}
\end{array}\right)\right)\left(\begin{array}{ll}
\\
&
\end{array}\right)}{ }
$$

provided: $\quad \sqrt{n}\left(\frac{k_{1}}{n}-p_{1}\right) \rightarrow 0$ and $\sqrt{n}\left(\frac{k_{2}}{n}-p_{2}\right) \rightarrow 0$.

Then: If $U_{(1: n)}<\cdots<U_{(n: n)}$ are order statistices of an iid sample from $V(0,1)$ and if $n \rightarrow \infty, k_{1} \rightarrow+\infty, k_{2} \rightarrow+\infty$ in such a way that

$$
\sqrt{n}\left(\frac{k_{1}}{n}-p_{1}\right) \rightarrow 0 \quad . \sqrt{n}\left(\frac{k_{2}}{n}-P_{2}\right) \rightarrow 0
$$

$F\left(X_{\text {(dk ,in) }}\right)-F\left(X_{p_{1}}\right)$ where $0<P_{1}<P_{2}<1$
Then $\sqrt{n}\left(\begin{array}{ll}U_{(k 1: n)}^{\prime \prime} & -P_{1} \\ U_{\left(k_{2}: n\right)} & -P_{2}\end{array}\right) \xrightarrow{d} N\left(\binom{0}{0},\left(\begin{array}{ll}P_{1}\left(1-P_{1}\right) & P_{1}\left(1-P_{2}\right) \\ P_{1}\left(1-P_{2}\right) & P_{2}\left(1-P_{2}\right)\end{array}\right)\right)$

$$
F\left(X_{\left(k_{2}, n\right)}^{\prime \prime}\right) \quad F^{\prime \prime}\left(X_{k}\right)
$$

Proof:

$$
\begin{aligned}
& \binom{U_{\left(k_{1}: n\right)}}{U_{(k 2: n)}} \stackrel{d}{=}\binom{\frac{S_{k_{1}}}{S_{n+1}}}{\frac{S_{k_{2}}}{S_{n+1}}} \text { from } \\
& g\left(x_{1}, x_{2}, x_{3}\right)=\binom{\frac{x_{1}}{x_{1}+x_{2}+x_{3}}}{\frac{x_{1}+x_{2}}{x_{1}+x_{2}+x_{3}}}
\end{aligned}
$$

$$
g\left(\frac{S_{k_{1}}}{n+1}, \frac{S_{k_{2}}-S_{k_{1}}}{n+1}, \frac{S_{n+1}-S_{k_{2}}}{n+1}\right)=\binom{\frac{S_{k_{1}}}{S_{n+1}}}{\frac{S_{k_{2}}}{S_{n+1}}}
$$

Corollary, If $X_{(1: n)}<\cdots<X_{(n: n)}$ are order statistics of a sample of size n from a distribution F having $f(x)$ continuous and positive in a neighborhood of the quartiles $X_{P_{1}}$ and $X_{P_{2}}$ with $P_{1}<P_{2}$ $X_{\left(k_{1}: n\right)}^{\uparrow} \quad X_{(2: n}^{\top} \quad$ where $k_{1}=\left[n p_{1} T, k_{2}=\left[n p_{2}\right]\right.$

$$
\sqrt{n}\binom{X_{\left(k_{1}: n\right)}-x_{p_{1}}}{X_{\left(k_{2}: n\right)}-x_{p_{2}}} \stackrel{d}{\rightarrow} N\left(\binom{0}{0},\left(\begin{array}{ll}
\frac{p_{1}\left(1-p_{1}\right)}{f\left(x_{p_{1}}\right)^{2}} & \frac{p_{1}\left(1-p_{2}\right)}{f\left(x_{p_{2}}\right) f\left(x_{\left.p_{2}\right)}\right.} \\
\frac{p_{1}\left(1-p_{2}\right)}{f\left(x_{\left.p_{1}\right)}\right)\left(x_{p_{2}}\right)} & \frac{p_{2}\left(1-p_{2}\right)}{f\left(x_{p_{2}}\right)^{2}}
\end{array}\right)\right)
$$

Proof. $\quad g\left(y_{1}, y_{2}\right)=\binom{F^{-1}\left(y_{2}\right)}{F^{-1}\left(y_{2}\right)}=\binom{g_{1}\left(y_{1}, y_{2}\right)}{g_{2}\left(y_{1}, y_{2}\right)}$

$$
\begin{aligned}
& \frac{\partial g}{\partial \underline{y}}=\left(\begin{array}{ll}
\frac{\partial g_{1}}{\partial y_{1}} & \frac{\partial g_{1}}{\partial y_{2}} \\
\frac{\partial g_{2}}{\partial y_{1}} & \frac{\partial g_{2}}{\partial y_{2}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial F^{-1}\left(y_{1}\right)}{\partial y_{1}}, & 0 \\
0 & \frac{\partial F^{-1}\left(y_{2}\right)}{\partial y_{2}}
\end{array}\right)=\binom{\frac{1}{f\left(F^{-1}\left(y_{1}\right)\right.},}{\frac{1}{f\left(F^{-(}\left(x_{2}\right)\right)}} \\
& \text { known } \\
& \sqrt{n}\binom{F\left(X_{\left(k_{1}, n\right)}\right)-F\left(X_{R_{1}}\right)}{F\left(X_{\left(k_{2}: n\right)}\right)-F\left(X_{\left.p_{2}\right)}\right.} \xrightarrow{d} N\left(\binom{0}{0} \cdot\left(\begin{array}{ll}
P_{1}\left(1-R_{1}\right) & P_{1}\left(1-P_{2}\right) \\
P_{1}\left(1-R_{2}\right) & P_{2}\left(1-P_{2}\right)
\end{array}\right)\right) \\
& \binom{X_{\left(k_{1}: n\right)}}{X_{\left(k_{2}: n\right)}}=g\left(F\left(X_{\left(k_{1}: n\right)}\right), F\left(X_{(k: n)}\right)\right)
\end{aligned}
$$

by Delta Mood.

$$
\begin{aligned}
& \sqrt{n}\binom{X_{\left(k_{1}: n\right)}-X_{p_{1}}}{X_{\left(k_{1}: n\right)}-X_{p_{2}}}=\sqrt{n}\binom{g\left(F\left(X_{(k: n)}\right), F\left(X_{k_{2}: n}\right)\right)-g\left(F\left(X_{\left.p_{1}\right)}, F\left(x_{\left.p_{2}\right)}\right)\right)\right)}{\frac{1}{f\left(x_{p}\right)}} \\
& \xrightarrow{d}\left[\left.\frac{\partial g}{\partial y}\right|_{\left(\begin{array}{l}
y \\
\left.F\left(x_{1}\right)\right) \\
F\left(x_{p_{2}}\right)
\end{array}\right)}=\binom{\frac{1}{f\left(x_{\left.p_{1}\right)}\right.}}{\frac{1}{f\left(x_{p_{2}}\right)}} \times\binom{ 0}{0},\left(\begin{array}{ll}
P_{1}\left(1-P_{1}\right) & P_{1}\left(1-P_{2}\right) \\
P_{1}\left(1-P_{2}\right) & P_{2}\left(1-P_{2}\right)
\end{array}\right)\right) \\
& x\left[\begin{array}{lll}
\frac{\partial g}{\partial y} & & \\
\left(\begin{array}{c}
F\left(x_{\left.p_{1}\right)}\right) \\
F\left(x_{p_{p}}\right)
\end{array}\right]^{\top} \quad\left(\begin{array}{ll}
\frac{1}{f\left(x_{\left.p_{1}\right)}\right.} & \\
& \frac{1}{f\left(x_{p_{2}}\right)}
\end{array}\right) .
\end{array}\right. \\
& y=F(x) \quad x=F^{-1}(y) \quad F(x)=F\left(F^{-1}(y)\right)=y \\
& \frac{\partial F^{-1}(y)}{\partial y}=\frac{1}{f\left(F^{-1}(y)\right)} \Leftarrow f\left(F^{-1}(y) \times \frac{\partial F^{-1}(y)}{\partial y}=1\right.
\end{aligned}
$$

$$
\frac{1}{f\left(F^{-1}\left(F X_{p_{1}}\right)\right)}=\frac{1}{f\left(X_{p_{1}}\right)} \quad \frac{1}{\left.f\left(F^{-1}\left(F X_{p_{1}}\right)\right)\right)}=\frac{1}{f\left(X_{p_{2}}\right)} \#
$$

Example: Let m_{n} represent the median of a sample of size n. $\operatorname{from} N\left(P, \sigma^{2}\right)$

$$
\begin{array}{rlr}
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} N\left(0 . \sigma^{2}\right) & f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(x+\sigma^{2}\right.}{2 \sigma^{2}}\right\} \\
\sqrt{\sqrt{n}\left(m_{n}-\mu\right) \xrightarrow{d} N\left(0, \frac{1}{4 f^{2}(\mu)}\right)} & P=\frac{1}{2} \\
& =N\left(0, \frac{\pi \sigma^{2}}{2}\right) &
\end{array}
$$

Example: \quad Cauchy $\left(H \sigma^{2}\right) \quad f(x)=\frac{1}{\pi G} \times \frac{1}{1+\left[\frac{(x-\mu)}{\sigma}\right]^{2}}$

$$
\text { then } \sqrt{n}(\hat{\sigma}-6)=\sqrt{n}\left(\frac{X_{\left(\left[\frac{3 n}{4}\right]: n\right)}-X_{\left(\left[\frac{n}{4}\right]: n\right)}}{2}-\frac{x_{4}-x_{i}}{2}\right)
$$

$$
\xrightarrow{d} N(0, ? ? ?)
$$

$$
\begin{aligned}
& \sqrt{n}\left(m_{n}-\mu\right) \xrightarrow{d} N\left(0, \frac{\pi^{2} \sigma^{2}}{4}\right) \quad \frac{\frac{1}{2}\left(1-\frac{1}{2}\right)}{f^{2}(\mu)} \\
& \bar{X}_{n} \xrightarrow{p} \mu \\
& x_{p}: p \text { th quantle } \\
& \text { [6] }=\frac{I Q R}{2}=\frac{x_{14}-X_{1 / 4}}{2} \quad \text { semi-interquartile range } \\
& \hat{\sigma}=\frac{X_{\left(\Gamma \frac{3 n}{4} / n\right)}-X_{\left(\left[\frac{n}{4} T: n\right)\right.}}{4} \\
& x_{3}=\mu+\sigma \\
& x_{\frac{1}{2}}=\mu-6 \\
& \text { If. } \left.\sqrt{n}\binom{X_{\left(\left[\frac{3 n}{4}\right]: n\right)-x_{\frac{3}{4}}}}{X_{\left(\left[\frac{n}{4}\right]: n\right)}-x_{\frac{4}{4}}} \xrightarrow{d} N\binom{0}{0}, \pi^{2} \sigma^{2}\left(\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
\left(\frac{1}{2},-\frac{1}{2}\right) \times \pi^{2} \sigma^{2}\left(\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right)\binom{\frac{1}{2}}{-\frac{1}{2}}=\frac{\pi^{2} G^{2}}{4} \quad \sqrt{n}\left(x_{n}-x\right) \xrightarrow{d} N(\mu, \Sigma) \\
\left.\sqrt{n}(\hat{G}-\sigma)^{\top}-t^{\top} x\right) \xrightarrow{d} N\left(t^{\top} \mu^{\top}, t^{\top} t\right) \\
\sqrt{\top} N\left(0, \frac{\pi^{2} \sigma^{2}}{4}\right)
\end{gathered}
$$

Asymptotic Theory of Extreme Order Statistics.

- Example $X_{1} \cdots X_{n} \stackrel{i}{d} \cup(0, \theta) \quad \hat{\theta}=\max _{i}\left(X_{i}\right)=X_{(n: n)}$

Find a_{n}, b_{n}. such that $\frac{X_{(n)}-a_{n}}{b_{n}} \xrightarrow{d}$?

$$
\begin{aligned}
& P(\hat{\theta} \leqslant t)=P\left(X_{(n: n)} \leqslant t\right) \quad a_{n}=\theta \quad b_{n}=? \\
&=\prod_{i=1}^{n} P\left(X_{i} \leq t\right) \\
&=\left(\frac{t}{\theta}\right)^{n} \\
& P\left(\frac{\hat{\theta}-\theta}{b_{n}} \leq t\right) \rightarrow \text { ? } \\
&=P\left(\hat{\theta} \leqslant b_{n} t+\theta\right)\left.=\left(\frac{b_{n} t+\theta}{\theta}\right)^{n}\right) \\
&=\left(\frac{b_{n} t}{\theta}+1\right)^{n} \\
& \text { If } b_{n}=\frac{1}{n}=\left(\frac{t / \theta}{n}+1\right)^{n} \rightarrow e^{\frac{t}{\theta}} \\
& P(n(\hat{\theta}-\theta) \leqslant t) \rightarrow e^{\frac{t}{\theta}} \text { as } n \rightarrow+\infty
\end{aligned}
$$

$X_{1}, \cdots, X_{n} \stackrel{i d}{\sim} F$ continous

$$
M_{n}=\max _{1 \leqslant i \leqslant n} X_{i}
$$

$$
\begin{aligned}
P \text { Goal: to find } & \underbrace{a_{n}, b_{n}}_{\text {real sequence }} \text { such that. } \frac{M_{n}-a_{n}}{b_{n}} \xrightarrow{d} \text { a non-degenenceed dist. } \\
\left.b_{n} \leqslant x\right) & =P\left(M_{n} \leqslant a_{n}+b_{n} x\right) \\
& =P\left(X_{1}, \cdots, x_{n} \leqslant a_{n}+b_{n} x\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \leqslant a_{n}+b_{n} x\right) \\
& =F\left(a_{n}+b_{n} x\right)^{n} \quad\left(1-\frac{x}{n}\right)^{n} \rightarrow e^{-x}!!!
\end{aligned}
$$

Goal find $a_{n} . b_{n}$ s.t. $F\left(a_{n}+b_{n} x\right)^{n} \rightarrow G(x)$ as $n \rightarrow+\infty$

Definition (slowly varying) a function $C:[0, \infty) \rightarrow R$ is slowly varying
if for every $x>0 . \quad \frac{c(t x)}{c(t)} \rightarrow 1$ as $t \rightarrow+\infty$

Example. $\quad C(t)=\log t \quad c(t x)=\log (t x)=\log t+\log x$

$$
\begin{aligned}
& \frac{C(t x)}{c(t)}=\frac{\log t+\log x}{\log t} \rightarrow 1 \quad \text { as } t \rightarrow t \infty \\
& C(t)=(\log t)^{\gamma} \quad \frac{c(t x)}{c(t)}=\left(\frac{\log t+\log x}{\log t}\right)^{\gamma}=(\rightarrow 1)^{\gamma} \rightarrow 1 \\
& C(t)=t^{\gamma} \quad \gamma>0 \quad \frac{c(t x)}{c(t)}=\frac{(t x)^{\gamma}}{t^{\gamma}}=x^{\gamma} \rightarrow 1 \text { as } t \rightarrow+\infty ?
\end{aligned}
$$

Tho: Lee $F(x)$ denote the distribution function of a r.v. X.
Let x_{0} denote the upper boundary, (possibly $+\infty$). of the distribution of X :

$$
x_{0}=\sup \{x: F(x)<1\} \quad \text { Example: } \quad x_{2} \text { Exp }(1) . \quad x_{0}=+\infty
$$

(a) If $x_{0}=+\infty$ and $1-F(x)=x^{-\gamma} c(x)$ for some $\gamma>0$, and some $X_{\sim} N\left(\mu, \sigma^{2}\right) . x_{0}=+\infty$ slowly varying $c(x)$.
then $\underbrace{F\left(b_{n} x\right)^{n} \rightarrow G_{1, r}(x)}=\left\{\begin{array}{cc}\exp \left(-x^{\gamma}\right) & \text { for } x>0 \\ 0 & \text { for } x \leqslant 0\end{array}\right.$
where b_{n} is such that $1-F\left(b_{n}\right)=\frac{1}{n}$.

Proof of (a). we observed that $b_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$

$$
\begin{aligned}
F\left(b_{n} x\right)^{n} & =\left[1-\left(b_{n} x\right)^{-\gamma} c\left(b_{n} x\right)\right]^{n} \\
& =\left[1-\frac{n c\left(b_{n} x\right)}{n\left(b_{n} x\right)^{\gamma}}\right]^{n} \\
& =\left[1-\frac{x^{-\gamma}}{n} \times \frac{n c\left(b_{n} x\right)}{b_{n}^{r}}\right]^{n}
\end{aligned}
$$

If $\quad \frac{n c\left(b_{n} x\right)}{b_{n}^{r}} \rightarrow 1$ as $n \rightarrow+\infty$ whative $F\left(b_{n} x\right)^{n} \rightarrow e^{-x^{-r}}$
known 1-F(bn)=$\frac{1}{n}$ and $1-F(x)=x^{-r} c(x)$
thus,

$$
\begin{aligned}
\frac{1}{n} & =b_{n}^{-r} c\left(b_{n}\right) \\
1 & =\frac{n c\left(b_{n}\right)}{b_{n}^{r}} \quad \text { or } \quad b_{n}^{r}=n c\left(b_{n}\right)
\end{aligned}
$$

Consequently. $\quad \frac{n c\left(b_{n} x\right)}{b_{n}^{\gamma}}=\frac{n c\left(b_{n} x\right)}{n c\left(b_{n}\right)}=\frac{c\left(b_{n} x\right)}{c\left(b_{n}\right)} \rightarrow 1$ as $b_{n} \rightarrow+\infty$

Example:
(tv) $f(x)=\frac{\text { constant }}{\left(v+x^{2}\right)^{\frac{v+1}{2}}} \sim c x^{-(v+1)}$
$1-F(x)=x^{-v} c(x)$ for some function $c(x) \rightarrow \frac{c}{v}$

$$
\begin{aligned}
& 1-F\left(b_{n}\right)=\frac{1}{n} \\
& 1-F\left(b_{n}\right) \sim c\left(b_{n}\right) b_{n}^{-v}=\frac{c}{v} \times \frac{1}{b_{n}^{v}}=\frac{1}{n} \\
& \\
& \Rightarrow b_{n}=\left(\frac{c n}{v}\right)^{\frac{1}{v}} \\
& \frac{M_{n}}{b_{n}}
\end{aligned}=\frac{M_{n}}{\left(\frac{c n}{v}\right)^{\frac{1}{v}}} \stackrel{d}{\rightarrow} G_{1, v} . l .
$$

If Cauchy, $v=1 . \quad c=\frac{1}{\pi} \quad \frac{\pi M_{n}}{n} \xrightarrow{d} G_{1, r}=$ Stander Ixppece.c.

$$
\begin{aligned}
& \begin{array}{ll}
F\left(x_{0}+b_{1} x\right)^{n} \rightarrow G_{2, r}=\left\{\begin{array}{cc}
\exp \left\{-(-x)^{r}\right\} & \\
1 & \text { for } x<0 \\
\text { for } x \geqslant 0
\end{array}\right. \\
\text { where } 1-F\left(x_{0}-b_{n}\right)=\frac{1}{n} & \frac{M_{n}-x_{0}}{b_{n}} \xrightarrow{d} G_{2, y}
\end{array}
\end{aligned}
$$

proof. for $x<0 \quad \uparrow \tau \uparrow \uparrow \uparrow \uparrow$

$$
\begin{aligned}
F\left(x_{0}+b_{n} x\right)^{n} & =\left[1-\left(x_{0}-\left(x_{0}+b_{n} x\right)\right)^{\gamma} c\left(\frac{1}{x_{0}-\left(x_{0}+b_{n} x\right)}\right)\right]^{n} \\
& =\left[1-\left(-b_{n} x\right)^{\gamma} c\left(\frac{1}{-b_{n} x}\right)\right]^{n} \\
& =[1-\frac{(-x)^{\gamma}}{n} \times \underbrace{n\left(b_{n}\right)^{\gamma} \times c\left(\frac{1}{-b_{n} x}\right)}]^{n}
\end{aligned}
$$

It suffices to show $\quad n\left(-b_{n}\right)^{\nu} \subset\left(\frac{1}{-b_{n} x}\right) \rightarrow 1$ as $n \rightarrow+\infty$
what is the limit of b_{n} ? known from $1-F\left(x_{0}-b_{n}\right)=\frac{1}{n}$

$$
b_{n} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

$$
\frac{C\left(\frac{1}{-b_{n} x}\right)}{C\left(\frac{1}{b_{n}}\right)}=\frac{C\left(\frac{1}{b_{n}} \rightarrow+\infty\right.}{C\left(\frac{1}{b_{n}} \times \frac{1}{-x}\right)} \rightarrow 1 \text { slowly vaping }
$$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n\left(+b_{n}\right)^{\gamma} c\left(\frac{1}{-b_{n} x}\right) \lim _{n \rightarrow+t_{\infty}} n\left(+b_{n}\right)^{\gamma} c\left(\frac{1}{b_{n}}\right)
\end{gathered}=1
$$

Example. $\quad X \sim \operatorname{Beta}(\alpha, \beta)$

$$
\begin{aligned}
f(x)= & c x^{\alpha-1}(1-x)^{\beta-1} I(0<x<1) \\
c & =\Gamma(\alpha+\beta) \\
\Gamma(\alpha) \Gamma(\beta) & \frac{M_{n}-a_{n}}{b_{n}} \xrightarrow{d} ?
\end{aligned}
$$

In this case $\quad x_{0}=1 \quad a_{n}=1$
as $x \nrightarrow 1 \quad f(x) \sim c(1-x)^{\beta-1}$

$$
1-F(x) \sim c \int_{x}^{1}(1-u)^{\beta-1} d u=\frac{c(1-x)^{\beta}}{\beta}
$$

Here, we can take. $\gamma=\beta, x_{0}=1$

$$
\begin{gathered}
\frac{1}{n}=1-F\left(x_{0}-b_{n}\right)=1-F\left(1-b_{n}\right)=\frac{c\left(1-\left(1-b_{n}\right)\right)^{\beta}}{\beta}=\frac{c b_{n}^{\beta}}{\beta} \\
\Rightarrow b_{n}^{\beta} \sim\left(\frac{\beta}{n c}\right. \\
\quad P((++))=P(\beta) \times \beta
\end{gathered}
$$

we can take $\quad b_{n}=\left(\frac{\Gamma(\alpha) \Gamma(\beta+1)}{n \Gamma(\alpha+\beta)}\right)^{\frac{1}{\beta}}$

$$
\frac{M_{n}-1}{b_{n}} \xrightarrow{d} a_{2, \beta}
$$

If $X_{i}^{\prime} s \sim V(0,1) \quad x_{0}=1, \quad b_{n}=\frac{1}{n}$

$$
n\left(M_{n}-1\right) \xrightarrow{d} G_{1,1}=-G_{1,1}=-\frac{\text { stander }}{\text { Exposencol ! }}
$$

(c) If there exists a function $R(t)$ such that for all x.

$$
P(x>t+x R(t) \mid x>t)=\frac{1-F(t+x R(t))}{1-F(t)}=\frac{S(t+x R(t))}{S(t)} \rightarrow e^{-x} \text { as } t \rightarrow x_{0}
$$

(could be finite
or $t \infty$)
then. Let $1-F\left(a_{n}\right)=\frac{1}{n} . \quad b_{n}=R\left(a_{n}\right)$
we have $\quad \frac{M_{n}-a_{n}}{b_{n}} \xrightarrow{d} C_{3 . r} \quad$ when $C_{3 . r}(x)=\exp \left\{-e^{-x}\right\}$
Proof:

$$
\begin{aligned}
& P\left(\frac{M_{n}-a_{n}}{b_{n}} \leq x\right)=P\left(M_{n} \leq a_{n}+b_{n} x\right)={ }_{i=1}^{n} P\left(X_{i} \leq a_{n}+b_{n} x\right) \\
= & F\left(a_{n}+b_{n} x\right)^{n} \quad\left(1-\frac{x}{a}\right)^{n} \rightarrow e^{-x} \\
= & \left(1-\left\{1-F\left(a_{n}+b_{n} x\right)\right\}\right)^{n} \quad \text { Goal } \\
= & \left(1-\frac{n\left(1-F\left(a_{n}+b_{n} x\right)\right)}{n}\right)^{n} \xrightarrow{\downarrow} \exp \left\{-e^{-x}\right\} .
\end{aligned}
$$

if suffices to show $\quad n\left(1-F\left(a_{n}+b_{n} x\right)\right) \rightarrow e^{-x}$ as $n \rightarrow+\infty$

$$
n\left(1-F\left(a_{n}+b_{n} x\right)\right)=\frac{1-F\left(a_{n}+R\left(a_{n}\right) x\right)}{\frac{1}{n}}=\frac{1-F\left(a_{n}+R\left(a_{n}\right) x\right)}{1-F\left(a_{n}\right)}(*)
$$

by the definition of a_{n}. we know $a_{n} \rightarrow x_{0}$ as $n \rightarrow+\infty$
Thus $\quad(x) \rightarrow e^{-x}$ as $n \rightarrow+\infty \quad \#$

Note: It is a remarkable foot that the converse to this theorem is tue. If for some normalizing sequences a_{n} and b_{n} Such that

$$
\begin{aligned}
\frac{M_{n}-a_{n}}{b_{n}} \xrightarrow{d} G \quad \begin{array}{l}
\text { a non-degenerate distribution } \\
\\
\\
\text { cup to change of location }
\end{array}
\end{aligned}
$$ (up to change of location

then G is one of the three type:
(1) $G=G_{1, r}$, for $r>0$
(2) $G=G_{2}, r$ for $r>0$
(3) G_{3}

Example: $\quad F(x)=\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left\{-\frac{u^{2}}{2}\right\} d u \quad N(0,1)$

Lemma: $\quad \sqrt{2 \pi}(1-\Phi(x))=\int_{x}^{+\infty} \exp \left\{-\frac{u^{2}}{2}\right\} d u \sim \frac{1}{x} \exp \left\{\frac{-x^{2}}{2}\right\}$ as $x \rightarrow+\infty$
Proof. $\lim _{x \rightarrow+\infty} \frac{\sqrt{2 \pi}(1-\Phi(x))}{\frac{1}{x} \exp \left\{-\frac{x^{2}}{2}\right\}}=1$ is the goal
take derivative

$$
\begin{aligned}
& \text { derivative } \\
& =\lim _{x \rightarrow+\infty} \frac{-\sqrt{2 \pi} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}}{-\frac{1}{x^{2}}} \exp \left\{-\frac{x^{2}}{2}\right\}+\frac{1}{x} \exp \left\{-\frac{x^{2}}{2}\right\}(-x) \\
& =\lim _{x \rightarrow+\infty} \frac{-1}{-\frac{1}{x^{2}}-1}=\lim _{x \rightarrow+\infty} \frac{x^{2}}{x^{2}+1}=1
\end{aligned}
$$

Back to $N(0.1)$. focus on type (c)
find $R(t): \quad \frac{1-\Phi(t+x R(t))}{1-\Phi(t)} \rightarrow e^{-x}$ as $t \rightarrow+\infty$
based on the lemma. $\frac{1-\Phi(t+\times R(t))}{1-\Phi(t)} \sim \frac{\left.\frac{1}{(t+\times R(t)}\right) \times \exp \left\{-\frac{(t+x(t+t)}{2}\right\}}{\frac{1}{t} \exp \left\{-\frac{t^{2}}{2}\right\}}$

$$
\begin{aligned}
& =\frac{1}{t+\times R(t)} \times \exp \left\{-\frac{t^{2}+2 \times R(t) t+x^{2} R^{2}(t)}{2}\right\} \times \frac{t}{\exp \left\{-\frac{t^{2}}{2}\right\}} \\
& =\frac{t}{t+\times R(t)} \exp \left\{-t \times R(t)-\frac{x^{2} R^{2}(t)}{2}\right\} \rightarrow e^{-x} \text { as } t \rightarrow+\infty(*)
\end{aligned}
$$

we see that $R(f)=\frac{1}{t}$ make (x) hold.

Thus $\quad \frac{M_{n}-a_{n}}{b_{n}}=\frac{M_{n}-a_{n}}{R\left(a_{n}\right)}=a_{n}\left(M_{n}-a_{n}\right) \xrightarrow{d} G_{3}$
where $1-F\left(a_{n}\right)=\frac{1}{n} \quad a_{n}=F^{-1}\left(1-\frac{1}{n}\right)=Z_{1-\frac{1}{n}}$
In fact $a_{n} \approx \sqrt{2 \log n}$

Motivating Example: (1) $X_{1}, \cdots, X_{n} \sim \operatorname{Unif}(-\theta, \theta)$ How to ertimere θ ?
$\hat{\theta}=\max \left(\left|X_{(n, n)}\right|\left|X_{(i, n)}\right|\right)$
$\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{?}$?
Can we find a_{n}. bn
$n(\hat{\theta}-\theta) \xrightarrow{?}$? suchther $\frac{\hat{\theta}-a_{n}}{s_{n}} \xrightarrow{d} C$?
(2) $X_{1}, \cdots ; x_{n} \sim \operatorname{mif}(\theta-0.5, \theta+0.5)$ How to et θ ?
$\hat{\theta}_{1}=X_{(n: n)}-0.5, \hat{\theta}_{2}=X_{(1: n)}+0.5$
$\hat{\theta}_{3}=\bar{x}_{n}$
$\hat{\theta}_{4}=\operatorname{median}\left(X_{i}^{\prime} ' s\right)$
$\hat{\theta}_{5}=\frac{X_{(n: n)}+X_{(l: n)}}{2} \cdot \hat{\theta}_{6}=\frac{X_{(k: n)}+X_{(n+1-: n)}}{2}$
(3) How to estimation population Range?

$$
\begin{aligned}
& \hat{R}_{n}=X_{(m, n)}-X_{(l n)} \\
& \hat{R}_{n}=2\left(Q_{3}-Q_{1}\right)
\end{aligned}
$$

- Asymptotic Joint Distributions of Extrema

Suppose $X_{1}, \cdots, X_{n} \stackrel{\text { id }}{\sim} \operatorname{Unifom}(0,1)$.
for any fixed (k)
(a) $n\left(\underline{X_{(1: n)}, X_{(2: n)}, \cdots, X_{(k: n)}}\right) \xrightarrow{d}\left(S_{1}, S_{2}, \cdots, S_{k}\right)$ where $S_{j}=\sum_{i=1}^{j} Y_{l}$ and the $Y_{i} ' s$ are ind $\operatorname{Exp}(1)$.
(b) for fixed $0<p_{1}<P_{2}<\cdots<p_{n}<1$. the three vectors

$$
\begin{equation*}
n\left(X_{(1: n)}, \cdots ; X_{(k: n)}\right) \tag{1}
\end{equation*}
$$

joint quatiliss $\rightarrow \sqrt{n}\left(X_{\left(n p_{1}: n\right)}-p_{1}, \cdots, X_{\left(n p_{n}: n\right)}-p_{n}\right)$

$$
\begin{equation*}
n\left(1-X_{(n: n)}, \cdots, 1-X_{(n-k+1, n)}\right) \tag{3}
\end{equation*}
$$

are asymptotically independent, vith distribution of (1) and (3) as in (a), of (2) as in the quasatile section.

$$
\text { (2) } \left.\stackrel{d}{\longrightarrow} N\left(\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{cccc}
P_{1}\left(1-P_{1}\right) & P_{1}\left(1-P_{2}\right) & P_{1}\left(1-P_{3}\right) \cdots & P_{1}\left(1-P_{n}\right) \\
& P_{2}\left(1-P_{2}\right) & P_{2}\left(1-P_{3}\right) \cdots & \cdots P_{2}\left(1-P_{n}\right) \\
\forall & & \ddots & P_{n}\left(1-P_{n}\right)
\end{array}\right)\right)
$$

\qquad

