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However I In II Yi Tai is not an All estimator byitself
Because there is no function 4 such that
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In case likethis we say Oz 23 a partial all estimator

and to be precise O is a full Ntestimaton
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Then Let E fy gcx.ojlg.gcx.org is an Allestimator
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Eg Consistent roots to the likelihood equation are All estimators
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Eg Moda estimators are All estimates
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WHY are All estimator of interest
1 Many estimators are All estimators
2 All estimates are often consistent asymptoticallynormal

Cat conditions on 4 smoothness efe
b Moment assumption ECE co

3
Obtaining asymptotic distribution of ad estimator is almost

automatic the covariance matrix is easily calculated
4 It is easy to study howthe estimate depends on the data

Sensitivity robustness analysis

Properties Yi Yn d F

E is an M estimator satisfying flyi 7 0 fora specific e
Cor if minimizes It fly q for a specific f

under two different formulations different sees ofconditions
on f or P ensure consistency and asymptotic normalityof
The unwietyofandities can be confusing so we will deal
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The difficulties with the yo approach are those
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depends on the global behaviorof
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b The equation felt E DFC43 0 may not hone any
exact roots

7 There can be multiple roots in which case

a rule is required to select one

if E Y is continuous and strictlymonotone in 0
and if felt 0 dFCT 0 has a unique root 0

the LaEI Echr will have a unique root

and the M1 estimator is unique defined and consistent

Monotonicity and continuity of 4 are frequentlyassumed
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Alternatively one can entirely give upthe ideaof identifying
consistent roots of 2 ll Yi 1 0
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one can look at the one step Newton Raphson estimator
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Consistency even asymptotic normality of fu is automatic
but Sen is nota root of E ll 6.01 0



We now establish theasymptotic distributionof for iid case

Assumptions
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