STAT 823, Homework 3, due Feb. 25, 2020

1. Runs of increasing values. Let $X_{0}, X_{1}, X_{2}, \ldots$ be i.i.d. random variables from a continuous distribution, $F(x)$. Let Z_{j} be one if there is a relative minimum at j, and zero otherwise; that is $Z_{j}=I\left(X_{j-1}>X_{j}<X_{j+1}\right)$. Then $T_{n}=\sum_{j=1}^{n} Z_{j}$ represents the number of relative minima in the sequence of X_{i} 's. Find the asymptotic distribution of T_{n}.
2. Let X_{1}, X_{2}, \ldots be independent and suppose that $X_{n}=\sqrt{n}$ with probability 0.5 and $X_{n}=-\sqrt{n}$ with probability 0.5 for $n=1,2, \ldots$ Find the asymptotic distribution of \bar{X}_{n}. (Check the Lindeberg Condition).
3. Records. Let Z_{1}, Z_{2}, \ldots be i.i.d. continuous random variables. We say a record occurs at k if $Z_{k}>\max _{i<k} Z_{i}$. Let $R_{k}=1$ if a record occurs at k, and let $R_{k}=0$ otherwise. Show that R_{1}, R_{2}, \ldots are independent Bernoulli random variables with $P\left(R_{k}=1\right)=1-P\left(R_{k}=0\right)=1 / k$ for $k=1,2, \ldots$ Let $T_{n}=\sum_{k=1}^{n} R_{k}$ denote the number of records in the first n observations. Find $E\left(T_{n}\right)$ and $\operatorname{Var}\left(T_{n}\right)$, and show that $\left(T_{n}-E\left\{T_{n}\right\}\right) / \sqrt{\operatorname{Var}\left(T_{n}\right)}$ converges to $N(0,1)$ in distribution. 4. Let $Y_{1}, Y_{2}, \ldots Y_{n+1}$ be i.i.d. exponential random variables with mean 1 , and let $S_{j}=\sum_{i=1}^{j} Y_{i}$ for $j=1, \ldots, n+1$. Then the conditional joint distribution of

$$
\left(\frac{S_{1}}{S_{n+1}}, \ldots, \frac{S_{n}}{S_{n+1}}\right)
$$

given S_{n+1} is the same as the order statistics of a i.i.d. sample of size n from $\operatorname{Uniform}(0,1)$.

