1. Let X_1, X_2, \ldots, be a sample from Uniform$(0, 2\mu)$.
 (a) Find the asymptotic distribution of the median.
 (b) Find the asymptotic distribution of the midquartile range; i.e., $\{X_{[3n/4]} + X_{[n/4]}\}/2$.
 (c) Find the asymptotic distribution of $2X_{[3n/4]}/3$.
 (d) Compare these three estimates of μ.

2. Let X_1, X_2, \ldots be a sample from the beta distribution with density $f(x; \theta) = \theta x^{\theta - 1} I(0 < x < 1)$, where $\theta > 0$,
 (a) Let M_n denote the sample median and $m(\theta)$ the population median as a function of θ. What is the asymptotic distribution of $\sqrt{n} \{M_n - m(\theta)\}$.
 (b) Let $\hat{\theta}_n = \log(1/2)/\log(M_n)$. Show $\hat{\theta}_n$ converges to θ in probability.
 (c) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n - \theta)$.

3. For the following distributions, find the normalization such that $(M_n - a_n)/b_n$ has a nondegenerate limit if any exists (M_n is the large order statistics of a sample of size n).
 (a) $f(x) = e^x I(x < 0)$.
 (b) $f(x) = (2/x^3)I(x > 1)$.
 (c) $F(x) = 1 - \exp\{-x/(1 - x)\}$ for $0 < x < 1$.

4. Let X_1, \ldots, X_n be a sample from Uniform$(\theta - 0.5, \theta + 0.5)$. Among the various estimates of θ, one may use the sample median $\hat{\theta}_1$, and one may use the midrange, $\hat{\theta}_2 = (\max X_i + \min X_i)/2$. Compare the 95% confidence interval for θ obtained from these two estimates, when $n = 100$.