STAT 823, Homework 4, due Mar. 10, 2020

1. Let X_{1}, X_{2}, \ldots, be a sample from $\operatorname{Uniform}(0,2 \mu)$.
(a) Find the asymptotic distribution of the median.
(b) Find the asymptotic distribution of the midquartile range; i.e., $\left\{X_{([3 n / 4]: n)}+X_{([n / 4\rceil: n)}\right\} / 2$.
(c) Find the asymptotic distribution of $2 X_{([3 n / 4\rceil: n)} / 3$.
(d) Compare these three estimates of μ.
2. Let X_{1}, X_{2}, \ldots be a sample from the beta distribution with density $f(x \mid \theta)=\theta x^{\theta-1} I(0<x<1)$, where $\theta>0$,
(a) Let M_{n} denote the sample median and $m(\theta)$ the population median as a function of θ. What is the asymptotic distribution of $\sqrt{n}\left\{M_{n}-m(\theta)\right\}$.
(b) Let $\hat{\theta}_{n}=\log (1 / 2) / \log \left(M_{n}\right)$. Show $\hat{\theta}_{n}$ converges to θ in probability.
(c) What is the asymptotic distribution of $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$.
3. For the following distributions, find the normalization such that $\left(M_{n}-a_{n}\right) / b_{n}$ has a nondegenerate limit if any exists (M_{n} is the large order statistics of a sample of size n).
(a) $f(x)=e^{x} I(x<0)$.
(b) $f(x)=\left(2 / x^{3}\right) I(x>1)$.
(c) $F(x)=1-\exp \{-x /(1-x)\}$ for $0<x<1$.
4. Let X_{1}, \ldots, X_{n} be a sample from $\operatorname{Uniform}(\theta-0.5, \theta+0.5)$. Among the various estimates of θ, one may use the sample median $\hat{\theta}_{1}$, and one may use the midrange, $\hat{\theta}_{2}=\left(\max X_{i}+\min X_{i}\right) / 2$. Compare the 95% confidence interval for θ obtained from these two estimates, when $n=100$.
